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Abstract: Malicious botnets such as Mirai are a major threat to IoT networks regarding cyber security.
The Botnet Defense System (BDS) is a network security system based on the concept of “fight fire with
fire”, and it uses white-hat botnets to fight against malicious botnets. However, the existing white-hat
Worm Launcher of the BDS decides the number of white-hat worms, but it does not consider the
white-hat worms’ placement. This paper proposes a novel machine learning (ML)-based white-hat
Worm Launcher for tactical response by zoning in the BDS. The concept of zoning is introduced to
grasp the malicious botnet spread with bias over the IoT network. This enables the Launcher to
divide the network into zones and make tactical responses for each zone. Three tactics for tactical
responses for each zone are also proposed. Then, the BDS with the Launcher is modeled by using
agent-oriented Petri nets, and the effect of the proposed Launcher is evaluated. The result shows that
the proposed Launcher can reduce the number of infected IoT devices by about 30%.

Keywords: botnet; BDS; machine learning (ML); zoning; IoT; white-hat; Petri net

1. Introduction

The Internet of Things (IoT) has become an exciting technology in the world, and it
has grown into the largest platform of millions of IoT devices interacting with each other to
improve our daily lives. However, such a popular IoT can also be used as a potential tool
for uploading malicious entities. These entities use IoT vulnerabilities caused by various
constraints such as limited resources and weak security to access legitimate devices and can
further take various forms of attack [1]. For example, distributed denial of service (DDoS)
in IoT networks is a very popular malicious attack, which disrupts the normal traffic of
the target server by launching multiple consecutive requests from distributed IoT devices,
eventually causing the server to crash [2–4].

Mirai, a malware capable of launching DDoS attacks, is also accountable for the largest
record of attack traffic to date, targeting a French-managed service provider and up to
15 million IoT devices at a maximum speed of 1 Tbps [5]. The most remarkable thing
is that the source code of Mirai was published by its author [6]. This may give chances
for unethical behavior on the Internet. So far, the devices infected by Mirai have already
reached 164 countries; the speed of spread is amazing. It is estimated that the number of
deployed IoT devices will be about 20–30 billion by 2030 [7].

Faced with such a huge number of IoT devices, one method is to use a kind of white-
hat worm, such as Hajime, to fight Mirai [8]. The white-hat worm has two attributes,
the lifespan and the secondary infection possibility [9]. These two attributes ensure that
the white-hat worms can destroy themselves after the Mirai bots are eliminated by them.
Yamaguchi [10] proposed a promising network security system called the Botnet Defense
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System (BDS). It can use white-hat botnets to eliminate malicious botnets like Mirai. Yam-
aguchi also proposed three basic strategies for white-hat worms according to the network
situation and confirmed the effect of the BDS through an agent-oriented Petri net model
(PN2 model) [11].

The BDS only considers the number of white-hat worms; there is no discussion on
the position of white-hat worms. Pan et al. [12] proposed a machine-learning (ML)-based
white-hat Worm Launcher for the BDS. In this ML-based Launcher, the given network is
rigidly divided into several subnetworks with the divide-and-conquer algorithm (D&C
algorithm) to adapt the machine learning models, and then, the white-hat worms’ positions
are predicted by the ML models. The ML-based Launcher also has a good adaptability
because of the D&C algorithm; even if the given network is very large, we can also
successfully input the modified network into the ML models through the preprocessing
step of “padding” or “multiple divide-and-conquer”. However, the Mirai botnet is not
always spread uniformly over the network. Some parts have a high density of Mirai bots,
while others have a low one. The D&C algorithm always divides the whole network into
the same subnetworks and processes them by ML models, which will increase the time
and resources. In general, there is some bias in the distribution of the Mirai bots, so the
BDS should deal with the Mirai botnet reasonably according to the distribution, and it is
necessary to optimize our ML white-hat worm Launcher.

In this paper, we propose a novel machine learning white-hat Worm Launcher for
tactical response by zoning in the BDS. We introduce the concept of zoning to grasp the
malicious botnet spread with bias over the IoT network. This enables the BDS to divide
the network into areas called zones and make tactical responses for each zone. We also
propose tactics for response to each zone. Then, we model the BDS with the Launcher by
using agent-oriented Petri nets and evaluate the effect of the proposed Launcher. We use
Mirai as a representative of malicious botnets. The proposed method is available to the
other malicious botnets.

Our major contributions are as follows:

(1) The concept of zoning is introduced to grasp malicious botnets’ spread with bias over
IoT networks.

(2) Tactical response by zone is proposed to build and operate white-hat botnets efficiently
and effectively against the malicious botnets.

(3) The effect of our white-hat Worm Launcher for BDS is confirmed through simulation
evaluation with agent-oriented Petri nets. The result show that the proposed Launcher
can reduce the number of infected IoT devices by about 30%.

The rest of this paper is organized as follows. Section 2 introduces the previous work
and the BDS. Section 3 describes the zoning and the tactics to respond by zoning. Section 4
describes the simulation evaluation. Section 5 summarizes the results obtained in this
paper and gives future work.

2. Related Work
2.1. Previous Work

Recent related studies on botnets can be roughly divided into two categories according
to their purposes: detection and mitigation.

With the popularity of artificial intelligence (AI), the detection mechanisms of mali-
cious network attacks are keen to use AI technology [13]. Nagisetty and Gupta [14] used
four different deep learning models to construct a framework in the IoT backbone network
to identify malicious network traffic. Soe et al. [15] proposed a high-performance attack de-
tection system with three different machine learning (ML) algorithm sequential classifiers.
Gupta et al. [16] proposed a deep-reinforcement-learning (DRL)-based detection framework
with a dataset that contains IoT traces. Qu et al. [17] proposed an evaluation method based
on percolation theory to quantify the security risk in a power CPS network. Qu et al. [18]
also proposed a hybrid detection method with improved AKF and GRU-CNN to detect
false data injection attacks. Wang et al. [19] proposed a new method to automatically mine
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attack patterns from measurement data and information alarm logs. Vishwakarma et al. [20]
proposed a honeypot-based framework with machine learning techniques, which shows
a high performance on zero-day DDoS attacks. In addition, the detection model usually
needs to rely on reliable datasets, and some researchers also pay attention to the generation
of network datasets or simulators. Guerra-Manzanares et al. [21] proposed an IoT dataset
for ML-based detection frameworks, which includes actual malicious network traffic in a
medium-sized IoT. Adan et al. [22] designed an Internet of Things attack simulator, which
shows how Mirai works in DDoS attacks. Other botnet detection frameworks also include
a blockchain-based mechanism [23–25] and an SDN-based mechanism [26].

Botnet mitigation measures are also very important. This aims to mitigate the threats
from the DDoS. Gopal et al. [27] thought of a white-list-based solution to prevent the
spread of Mirai and confirmed the blocking function against botnets through experiments.
Manso et al. [28] proposed an intrusion detection system through a software layer, and it
can launch a software-defined network controller to control the traffic when the system
detects an attack. This can reduce the traffic and makes it possible to maintain normal
traffic when an attack happens. Ceron et al. [29] proposed a method to handle the network
traffic caused by IoT malware. The method can characterize the malware behaviors and
modify the traffic through the network layer to limit malicious activities.

We briefly summarize the attributes and limitations of the above detection and mit-
igation methods in Tables 1 and 2. The previous studies only focused on the detection
methods or mitigation measures; they are not able to exterminate existing botnets.

Table 1. Overview of the detection methods.

Authors Year Attributes Limitations ML Algorithm 1 Eval. Measure

Qu et al. [17] 2018 Quantify the security
risk in CPS network

No corresponding strat-
egy for risk outbreak N/A Failure ratio

Nagisetty et al. [14] 2019 Monitor the network
traffic by DL

Over-reliance on IoT
traffic dataset MLP, CNN RMSE, F1-score

Vishwakarma et al. [20] 2019 Design a honeypot-
based ML framework

Adaptability limitation
to real-time scenarios SVM, NB N/A

Adan et al. [22] 2019 Design an IoT attack
simulator

Limitation to public IoT
networks N/A N/A

Soe et al. [15] 2020 Made sequential classi-
fiers based on ML

Specific botnet can be
classified ANN, DT, NB ACC

Guerra-Manzanares et al. [21] 2020 Generate traffic dataset
of botnet

Low adaptability to real-
time network N/A N/A

Wang et al. [19] 2020 Mine attack patterns
from alarm logs

Lack of adaptability to
local attack sequences NB ACC

Qu et al. [18] 2022 Detect attacks with AKF
and GRU-CNN

Limitations for data loss
and external interfer-
ence

AFK, GRU-CNN FPR, ACC

May raju et al. [16] 2022 Detect intrusion based
on DRL

Compare with only two
common ML models DRL ACC

1 MLP: multilayer perceptron, CNN: convolutional neural network, SVM: support vector machine, NB: naive
Bayes, ANN: artificial neural network, DT: decision tree, AKF: adaptive Kalman filter, GRU: gated recurrent unit,
DRL: deep reinforcement learning.
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Table 2. Overview of the mitigation methods.

Authors Year Attributes Limitations Eval. Measure

Gopal et al. [27] 2018 Establish a security wall based
on white listing Lack of protection by other mechanisms Router Model

Manso et al. [28] 2019 Construct a software-defined
security system Cause congestion of DNS controller Quality of service

Ceron et al. [29] 2019 Modify the malicious traffic at
network layer Lack of dynamic malware analysis Packet number

2.2. Botnet Defense System

The BDS is a network security system based on the concept of “fight fire with fire”. It
uses white-hat botnets to fight against malicious botnets like Mirai. Figure 1 illustrates the
configuration of the BDS and an IoT system defended by the BDS. The upper part represents
the structure of the BDS. It consists of four parts: Monitor, Strategy Planner, Worm Launcher,
and C&C Server. The lower part represents the IoT system. The inner graph represents
the network of the system. Each vertex represents a network node, and each node has a
single device. Each edge represents a connection between network nodes. A black circle
( ) and a white circle (#) respectively represent a malicious bot and a white-hat bot. When
the Monitor detects a malicious botnet, the Worm Launcher will send the white-hat worm
according to the strategy specified by the Strategy Planner. Yamaguchi also put forward
three basic strategies. These strategies can adjust the number of white-hat worms according
to not only the ability of the worms, but also the structure of the network. However, there
is no discussion on the placement of white-hat worms; it should be reasonably considered
and configured.

IoT system

Botnet Defense System (BDS)

Mirai botnet White-hat botnet

Monitor Strategy Planner Worm Launcher C&C Server

Launch C&CMonitoring

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Figure 1. The overview of the Botnet Defense System.

Pan et al. [12] proposed a machine learning white-hat Worm Launcher for the BDS.
It basically has two phases: decision and placement. The first phase uses a feedforward
neural network (FNN) to decide an appropriate placement tactic. The second phase uses
a multitask learning model to predict white-hat worms’ appropriate position based on
the predicted tactic. Furthermore, this Launcher takes a divide-and-conquer approach
so that it can be adapted to large-scale IoT networks. The procedure of the Launcher
is given as Procedure 1. The Launcher divides a given network into subnetworks. For
each subnetwork, it predicts a tactic and, then, the white-hat worms’ placement based on
the tactic.
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Procedure 1 WORM-LAUNCHER(N, DMirai, M1, M2).

Input: Mirai bots’ distribution DMirai in network N, machine learning model M1 to decide
tactics, machine learning model M2 to place white-hat worms

Output: White-hat worms’ placement DW for DMirai
. Step 1: Divide Stage

1: Divide N into n subnetworks N1, N2, · · · , Nn by network scale
. Step 2: Conquer Stage

2: for each subnetwork Ni in N1, N2, · · · , Nn do
3: Use M1 to decide a tactic Ti for Ni
4: Use M2 to make white-hat worms’ placement DWi on Ni based on Ti
5: end for

. Step 3: Combining Stage
6: Combine DW1 , DW2 , · · · , DWn with the whole placement DW
7: Output DW and stop.

We illustrate the procedure with an example shown in Figure 2. Twenty devices are
infected by Mirai in a 10 × 10 grid network. As a preparation, we trained two machine
learning models, i.e., the FNN model M1 and the multitask learning model M2, for a
small network. The small network actually corresponds to the subnetwork divided in
the procedure:

• Step 1 divides the network into subnetworks by the network scale. Assume n = 4 in
this example. That is, the 10 × 10 network is divided into four 25 × 25 subnetworks.

• Step 2 predicts a tactic with M1 and, then, the white-hat worms’ placement based on
the tactic with M2 for each subnetwork.

• Step 3 combines the predictions of all subnetworks into the final white-hat worm’s
placement.

Divide

Decide Place

Decide Place

Decide Place

Decide Place

Place

Step 1

Step 2

Step 3

Figure 2. The operation of Procedure WORM-LAUNCHER. After dividing a given 10 × 10 network
into four 25× 25 subnetworks, for each subnetwork, the Launcher predicts the placement of white-hat
worms by machine learning models.

3. White-Hat Worm Launcher for Tactical Response by Zoning
3.1. Zoning

The Mirai botnet is not always spread uniformly over the network. There may be
some bias in the distribution of the Mirai bots. The BDS should deal with the Mirai botnet
based on its bots’ distribution. We define a density of bots in some area of the network
as follows.

Definition 1. (Bots density) Given a distribution of bots on a network, for a specific area of the
network, the density δ of the bots is given as follows:

δ
def
=

Number of bots
Number of devices in the area

[%].
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We introduce the concept of zoning to the BDS. The BDS divides a given IoT network
into some zones and plans a tactic for each zone. Note that the zoning depends not on the
network scale, but on the Mirai bots’ density. We can expect the BDS to predict a tactic
appropriate for the bots’ density in each zone and to build a white-hat botnet effectively
and efficiently.

For zoning, we used a density-based clustering algorithm called density-based spatial
clustering of applications with noise (DBSCAN) [30]. Density-based clustering extracts
areas that have a higher density than the rest as clusters. DBSCAN takes two parameters: ε
and minPts. ε is the radius from a point. minPts is the minimum number of points needed
to form a dense region. Given a set of points, DBSCAN classifies each point into three
categories: Core, Border, and Noise. Core points are points with at least minPts neighbors
within ε. Border points are points with no more than minPts neighbors within ε, but with
Core points within ε. Noise points are points with no neighbors within ε. Finally, DBSCAN
creates clusters from a collection of Core points and Border points. We formalize DBSCAN
as follows.

Definition 2. (DBSCAN) For a set P of points, a radius ε from a point, and the minimum number
minPts of points needed to form a dense region, DBSCAN is given as a mapping:

DBSCAN : (P, ε, minPts) 7→ C1, C2, · · · , Cm, (1)

where C1, C2, · · · , Cm are clusters of the points.

The reason for using DBSCAN is that it can find non-linearly separable clusters unlike
k-means or Gaussian mixture EM clustering. It can find even a cluster that is surrounded
by others. This is very important for zoning. Another reason is it is easy to control since
there are only two parameters.

Combining clusters with a similar density, we define an obtained area as a zone.

Definition 3. (Zone) Let C be any cluster obtained by DBSCAN and δ(C) be the bot density of C.
For some range of bots density, a zone is the union of cluster C such that δ(C) is in the range.

We used the following three zones in this paper:

• Danger Zone ZDanger: contains a cluster C such that δ is δDanger≤δ(C)≤δDanger (=100%).
Almost all devices in this zone are infected by Mirai.

• Safe Zone ZSa f e: contains a cluster C such that δSa f e (=0%) ≤δ(C)≤δSa f e. Almost no
devices in this zone are infected.

• Unknown Zone ZUnknown: contains a cluster C such that δ is δSa f e<δ(C)<δDanger. The
devices in this zone are at risk of being infected.

We propose a procedure for zoning, which divides the given network into the three
zones. The procedure is given as Procedure 2. Simply put, we ran DBSCAN twice for zoning.
The first is for finding the Danger Zone, where a point represents the position of an infected
device. The second is for finding the Safe Zone, where we regard a point to represent the
position of a normal (uninfected) device. The remaining areas are incorporated into the
Unknown Zone.
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Procedure 2 DBSCAN-BASED-ZONING(N, DMirai, Dnormal).

Input: Mirai bots’ distribution DMirai in network N, normal devices’ distribution Dnormal
on N.

Output: Danger Zone ZDanger, Safe Zone ZSa f e, Unknown Zone ZUnknown.
. Step 1: Finding Danger Zone

1: PMirai ← {the point of each Mirai bot in DMirai in the space of N}.
2: CMirai

1 , CMirai
2 , · · · , CMirai

m ← DBSCAN(PMirai, εMirai, minPtsMirai).
3: ZDanger ← ∅.
4: for each cluster C in CMirai

1 , CMirai
2 , · · · , CMirai

m do
5: if δ(C) ≥ δDanger then
6: ZDanger ← ZDanger ∪ C.
7: end if
8: end for

. Step 2: Finding Safe Zone
9: Pnormal ← {the point of each normal device in Dnormal in the space of N}.

10: Cnormal
1 , Cnormal

2 , · · · , Cnormal
n ← DBSCAN(Pnormal , εnormal , minPtsnormal).

11: ZSa f e ← ∅.
12: for each cluster C in Cnormal

1 , Cnormal
2 , · · · , Cnormal

n do
13: if δ(C) ≤ δSa f e then
14: ZSa f e ← ZSa f e ∪ C.
15: end if
16: end for

. Step 3: Finding Unknown Zone
17: ZUnknown ← (DMirai ∪ Dnormal) \ (ZDanger ∪ ZSa f e).

. Step 4
18: Output ZDanger, ZSa f e, ZUnknown and stop.

The DBSCAN algorithm is known to have difficulty determining the parameter values
for a dataset with large density differences. To solve this problem, we decided to run the
DBSCAN algorithm many times, depending on the density. In fact, Procedure DBSCAN-
BASED-ZONING runs the DBSCAN algorithm twice.

We illustrate the proposed zoning procedure with an example shown in Figure 3.
Figure 3a represents the Mirai bots’ distribution in a 10 × 10 grid network. In this example,
we set εMirai = 1 and minPtsMirai = 3. This means that if Mirai has infected a device and
it is surrounded by more than two neighbors, we regard them to be in danger because
they form a cluster. Meanwhile, we set εnormal = 1 and minPtsnormal = 5. This means that
if an uninfected device is surrounded by four uninfected devices, we regard them to be
safe because there is no risk of infection. We can determine these values according to the
security policy and network configuration. For example, if εMirai = 1 and minPtsMirai = 2,
we identify Danger Zones with greater sensitivity. This may launch more white-hat bots
than necessary. On the other hand, if εMirai = 1 and minPtsMirai = 5, we identify Danger
Zones with lower sensitivity. This may build weak a white-hat botnet. There is a trade-off
between the detection and the disinfection ability. These parameters provide adaptability
to balance between them:

• Step 1 finds the Danger Zone. As a result of DBSCAN with εMirai = 1 and minPtsMirai = 3,
we obtain two clusters CMirai

1 (red area in the upper right of Figure 3b) and CMirai
2 (red

area in the lower right of Figure 3b). Since δ(CMirai
1 ) = δ(CMirai

2 ) = 100% ≥ δDanger,

these clusters comprise the Danger Zone, i.e., ZDanger = CMirai
1 ∪ CMirai

2 .
• Step 2 finds the Safe Zone. As a result of DBSCAN with εnormal = 1 and minPtsnormal = 5,

we obtain one cluster Cnormal
1 (blue area in the left of Figure 3b). For δSa f e = 0, since

δ(Cnormal
1 ) = 0% ≤ δSa f e, the cluster becomes the Safe Zone, i.e., ZSa f e = CMirai

1 .
• Step 3 finds the Unknown Zone. The remaining areas comprise ZUnknown (yellow areas

of Figure 3b).
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• Step 4 outputs ZDanger, ZSa f e, ZUnknown as the Danger, Safe, and Unknown Zones.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

1 2 3 4 5 6 7 8 9 10
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21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Safe zone 

Danger zone 

Unknown zone 

(a) (b)

Figure 3. Application example of Procedure DBSCAN-BASED-ZONING. (a) Mirai bots’ distribution.
(b) Result of zoning.

3.2. Tactics by Zone

We propose tactics for sending white-hat worms by zone to build the white-hat botnet
efficiently and effectively. The tactic for each zone is as follows.

3.2.1. Surrounding Tactic TSurrounding for Danger Zone

In the Danger Zone, Mirai bots are clumped. The BDS should confine those Mirai bots
within the zone. The surrounding tactic [31] places white-hat worms around the zone and
prevents the Mirai bots from spreading. See Figure 4.

(a) (b)

Figure 4. Application example of surrounding tactic for Danger Zone. (a) Before. The red area
represents a Danger Zone. (b) After. The white-hat worms are placed to surround the zone.

3.2.2. Protecting Tactic TProtecting for Safe Zone

In the Safe Zone, there are few Mirai bots. Therefore, the BDS should prevent the Mirai
botnet from entering this area. The protecting tactic [32] places white-hat worms on the
border of the area to protect them like a firewall and prevent the bots from entering. See
Figure 5.
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(a) (b)

Figure 5. Application example of protecting tactic for Safe Zone. (a) Before. The blue area represents
a Safe Zone. (b) After. The white-hat worms are placed to frame the zone.

3.2.3. Machine Learning Tactic TML for Unknown Zone

This tactic places white-hat worms according to the result of the machine learning
models. See Figure 6. We used a multitask learning model to implement this tactic in the
same way as the second phase of [12].

(a) (b)

Figure 6. Application example of machine learning tactic for Unknown Zone. (a) Before. The yellow
area represents an Unknown Zone. (b) After. The white-hat worms are placed according to the
prediction of the given machine learning model.

3.3. White-Hat Worm Launcher by Zoning

Combining the zoning procedure and the tactics for sending white-hat worms by
zone, we propose a new white-hat Worm Launcher that can make tactical responses for the
divided zones. The procedure of the Launcher is given as Procedure 3. The first step uses
Procedure DBSCAN-BASED-ZONING to divide a given network into three zones, i.e., the
Danger, Safe, and Unknown Zones. The second step makes the placement of white-hat
worms according to the tactic for each zone, i.e., the surrounding tactic for the Danger Zone,
the protecting tactic for the Safe Zone, and the machine learning tactic for the Unknown
Zone. The third step combines those results for the whole placement.

We illustrate the proposed procedure with an example shown in Figure 7. The network
and Mirai bots’ distribution are the same as the example of Figure 3:

• Step 1 divides the network into three zones by using Procedure DBSCAN-BASED-
ZONING. As stated before, we obtain the result of zoning shown in Figure 3b.
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• Step 2 places white-hat worms in each zone. Each zone takes a different tactic, i.e., the
surrounding tactic for the Danger Zone, the protecting tactic for the Safe Zone, and the
machine learning tactic for the Unknown Zone.

• Step 3 combines those results for the whole placement.

Procedure 3 ZONING-BASED-WORM-LAUNCHER(N, DMirai, Dnormal , M2).

Input: Mirai bots’ distribution DMirai in network N, normal devices’ distribution Dnormal
on N, machine learning model to place white-hat worms M2.

Output: White-hat worms’ placement DW for DMirai.
. Step 1: Zoning Stage

1: ZDanger, ZSa f e, ZUnknown ← DBSCAN-BASED-ZONING(N, DMirai, Dnormal).
. Step 2: Placing Stage

2: for each zone Z in ZDanger, ZSa f e, ZUnknown do
3: Place white-hat worms as follows:
4: if Z is ZDanger then
5: Use the surrounding tactic and store the placement result in DWDanger .
6: end if
7: if Z is ZSa f e then
8: Use the protecting tactic and store the placement result in DWSa f e .
9: end if

10: if Z is ZUnknown then
11: Use the machine Learning tactic and store the placement result predicted by M2 in

DWUnknown .
12: end if
13: end for

. Step 3: Combining Stage
14: Combine DWDanger , DWSa f e , DWUnknown with the whole placement DW .
15: Output DW and stop.

Zoning Place

Place

Combine

Step 1

Step 2

Step 3

Combine

Safe zone

Unknown

zone

Place

Danger zone

Surrounding

tactic

Protecting

tactic

ML tactic

Figure 7. The operation of Procedure ZONING-BASED-WORM-LAUNCHER. After dividing a given
10 × 10 network into three zones based on the Mirai bots’ density, the Launcher places white-hat
worms according to the tactic for each zone.
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Procedure ZONING-BASED-WORM-LAUNCHER can run in a few seconds on a PC with
an Intel Core i7 2.6 GHz and 16 GB RAM. Zoning in Step 1 takes about one second. Step 2
decides the placement of white-hat bots for each zone. Zoning omits predictions by the
learning model in some zones and allows for a significant reduction in computation time.
As a result, it can run in one second. Combining in Step 3 hardly takes any time.

4. Simulation Evaluation
4.1. Experiment

We modeled the BDS with the proposed zoning-based Worm Launcher by using an
agent-oriented Petri net PN2 and, then, carried out experiments to evaluate the effect of the
Launcher through the simulation of the PN2 model. For the detail of the modeling by PN2,
refer to [9].

We configured a 10 × 10 grid network N and considered four kinds of initial distri-
butions of Mirai. The first three distributions and the result of zoning are illustrated in
Figure 8:

• Distribution 1: Has a low density of Mirai bots in the whole network, i.e., δ(N) = 31%.
This is illustrated in Figure 8a. The infected network is divided into 25% Danger Zone,
50% Safe Zone, and 25% Unknown Zone.

• Distribution 2: Has a medium density of Mirai bots in the whole network, i.e., δ(N) = 37%.
This is illustrated in Figure 8b. The infected network is divided into 25% Danger Zone,
25% Safe Zone, and 50% Unknown Zone.

• Distribution 3: Has a high density of Mirai bots in the whole network, i.e., δ(N) = 56%.
This is illustrated in Figure 8c. The infected network is divided into 50% Danger Zone,
25% Safe Zone, and 25% Unknown Zone.

• Distribution 4: Set to be random. It has almost the same density as Distribution 1,
i.e., δ(N) = 30%; unlike Distribution 1, all the Mirai bots are placed randomly.

We used the tool PN2Simulator [33] for the simulation. We took Mirai’s infection rate
RMirai as a quantitative index. RMirai is given by RMirai = #Mirai/#device, where #Mirai is the
number of devices infected by Mirai and #device is the number of all devices in N. The other
simulation parameters are given as follows:

• Lifespan ` = 2;
• Delay time δ = 7 until rebooting;
• Secondary infection probability ρ = 50%.

4.2. Simulation Result

We compared the proposed Launcher with the Launcher of [12]. The notable difference
between them having or not having zoning, i.e., the proposed Launcher has zoning, while
the Launcher of [12] has no zoning. The simulation results can be seen in Table 3. Each
value represents the mean of RMirai at 1, 10, 100, 1000, and 10,000 steps for 1000 trials. In
every distribution and step, the infection rate of the Launcher with zoning had to a lower
value than the Launcher without zoning. Figure 9 charts these results to make it easier to
compare these Launchers. From the graphs, we found that in the early stage, the Launcher
with zoning removed significantly more Mirai bots than the Launcher without zoning.
Especially in the case of Distribution 1, which contains 50% Safe Zone, the protecting tactic
effectively prevented the devices in the zone from infection. However, the white-hat botnet
behaves autonomously. Thus, the formation will collapse with the passage of time, and
therefore, the effect of the initial launch position will disappear. This implies that the tactic
has a time limit for its effect.



Sensors 2022, 22, 4666 12 of 16

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Safe zone 

Danger zone 

Unknown zone 

(a)

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Safe zone 

Danger zone 

Unknown zone 

(b)

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Safe zone 

Danger zone 

Unknown zone 

(c)

Figure 8. Three kinds of Mirai distributions in a 10 × 10 grid network used for simulation evaluation.
(a) Distribution 1 and the result of zoning. (b) Distribution 2 and the result of zoning. (c) Distribution
3 and the result of zoning.
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Table 3. Simulation result. Each value represents the mean of infection rate RMirai for 1000 trials.

(a) Distribution 1

Step Without Zoning With Zoning

1 37.11% 36.97%
10 38.20% 36.99%

100 38.50% 31.89%
1000 8.51% 7.62%

10,000 1.49% 0.82%

(b) Distribution 2

Step Without Zoning With Zoning

1 31.03% 31.01%
10 32.03% 30.70%

100 31.89% 20.71%
1000 6.78% 5.99%

10,000 0.38% 0.29%

(c) Distribution 3

Step Without Zoning With Zoning

1 56.07% 55.89%
10 56.43% 54.86%

100 52.02% 45.47%
1000 11.56% 10.60%

10,000 0.62% 0.60%

(d) Distribution 4

Step Without Zoning With Zoning

1 27.96% 27.82%
10 27.67% 25.99%

100 18.37% 12.20%
1000 6.58% 6.11%

10,000 1.00% 0.97%

In addition, from the graph of Figure 9d, the random distribution resulted in a similar
tendency as the other distributions. That is, the infection rate curve with zoning is steeper
than without zoning, which means that the infection rate decreases more significantly. We
confirmed that the proposed Launcher can also show performance in a general environment
and effectively remove Mirai bots.

4.3. Discussion

Table 4 shows the positioning of this study among the related research. Most of the
related research focuses on detecting botnets and mitigating the threat, while only the last
three research works focus on exterminating existing botnets. The three research works
deal with the BDS, but propose different Launchers. The Launcher of [10] gives only a
basic functionality, which sends white-hat worms to the infected network. That is, it places
worms at random and does not specify concrete nodes. On the other hand, the Launcher
of [12] specifies nodes to launch. This Launcher learns how to place white-hat worms based
on machine learning. The Launcher also divides the given network into small networks and
increases the accuracy of the prediction. The Launcher proposed in this paper introduces
the concept of zoning and applies tactics for each zone. In general, there is a bias in the
distribution of Mirai bots. Therefore, the given network should be divided by the Mirai
bots’ density rather than by network scale in a uniform manner. The proposed Launcher
divides the given network into zones based on density and can use appropriate tactics
depending on the density.
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Figure 9. Comparison of the Launchers with and without zoning. (a) Distribution 1, (b) Distribution
2, (c) Distribution 3, and (d) Distribution 4.

Table 4. Positioning of this study among the related works.

Authors Year Detection Mitigation Extermination Tactics Zoning

Qu et al. [17] 2018 X × × × ×
Nagisetty et al. [14] 2019 X × × × ×
Vishwakarma et al. [20] 2019 X × × × ×
Adan et al. [22] 2019 X × × × ×
Soe et al. [15] 2020 X × × × ×
Guerra-Manzanares et al. [21] 2020 X × × × ×
Wang et al. [19] 2020 X × × × ×
Qu et al. [18] 2022 X × × × ×
May raju et al. [16] 2022 X × × × ×

Gopal et al. [27] 2018 × X × × ×
Manso et al. [28] 2019 X X × × ×
Ceron et al. [29] 2019 × X × × ×

Yamaguchi [10] 2020 × × X × ×
Pan et al. [12] 2022 × × X X ×
This study 2022 × × X X X

Next, we discuss tactical response by zoning. For the Safe and Danger Zones, we
observed that the effect of the tactics for those zones was obvious, especially in the early
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stage, which showed that the white-hat botnet can effectively prevent the Mirai botnet
from spreading as a “wall”. On the other hand, although it is not easy to isolate randomly
distributed Mirai bots, our proposed Launcher showed excellent performance in the case of
a random distribution. In general, the proposed Launcher can effectively reduce the Mirai
infection rate and reduce the number of infected devices in the network. Zoning helps
us make it easier to consider tactics because we separated the phenomenon. In addition,
zoning saves time and cost during the design and runtime. This is important because
machine learning often requires much computational time and cost.

The proposed Worm Launcher was designed to be scalable. In this paper, we used a
10 × 10 network to illustrate the proposed method. However, we can apply it to a network
with a different size. At this time, we only have to perform padding or use the divide-and-
conquer step given in our previous paper as the preprocess. This preprocess hardly takes
any time. Actually, we performed a preliminary experiment using a larger network with
20 × 20 nodes and confirmed that the proposed Launcher is efficient. From the above, it
can be said that the proposed Launcher is adaptable to large-scale networks.

5. Conclusions

In this paper, we proposed a novel machine learning white-hat Worm Launcher for
tactical response by zoning in the Botnet Defense System. We first introduced the previous
work and the BDS. Next, we proposed a new concept of zoning to grasp malicious botnets’
spread with bias over IoT networks. We also proposed three tactics to respond to each
zone. Then, we confirmed the effect of the proposed white-hat Worm Launcher through a
simulation evaluation with agent-oriented Petri net models. The result showed that the
proposed Launcher is effective and can reduce the number of infected IoT devices by about
30% overall.

In this paper, we focused on the case of the Mirai botnet infecting only once. However,
the Mirai botnet may infect many times. Whenever the Mirai botnet appears, we should
nip it in the bud as early as possible. However, when a few Mirai bots are scattered,
the proposed Launcher may not work well because all of the network is identified as a Safe
Zone. To resolve this problem, we can use several approaches. For example, we can predict
future infection situations and make a proactive response based on the prediction. We also
can make a white-hat botnet resident to continually disinfect Mirai bots [34].
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