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Abstract: As an essential task in computer vision, video anomaly detection technology is used in video
surveillance, scene understanding, road traffic analysis and other fields. However, the definition
of anomaly, scene change and complex background present great challenges for video anomaly
detection tasks. The insight that motivates this study is that the reconstruction error for normal
samples would be lower since they are closer to the training data, while the anomalies could not be
reconstructed well. In this paper, we proposed a Convolutional Recurrent AutoEncoder (CR-AE),
which combines an attention-based Convolutional Long–Short-Term Memory (ConvLSTM) network
and a Convolutional AutoEncoder. The ConvLSTM network and the Convolutional AutoEncoder
could capture the irregularity of the temporal pattern and spatial irregularity, respectively. The
attention mechanism was used to obtain the current output characteristics from the hidden state of
each Covn-LSTM layer. Then, a convolutional decoder was utilized to reconstruct the input video
clip and the testing video clip with higher reconstruction error, which were further judged to be
anomalies. The proposed method was tested on two popular benchmarks (UCSD ped2 Dataset and
Avenue Dataset), and the experimental results demonstrated that CR-AE achieved 95.6% and 73.1%
frame-level AUC on two public datasets, respectively.

Keywords: video anomaly detection; deep learning; convolutional long–short-term memory; convo-
lutional autoencoder

1. Introduction

In order to improve the safety of people’s lives and public property, video surveillance
systems have been widely installed in public places such as train stations, airports, hospitals,
markets, schools, and resident centers. The main goal of social public safety risk prevention
and control is to detect abnormal events accurately and timely. However, it is a tedious
process to monitor the surveillance videos at a continuously faster rate, which leads to
inefficient utilization of surveillance cameras and requires human presence for monitoring.
Hence, video anomaly detection has recently become an important research problem in
computer vision [1,2]. Given a surveillance video clip, the aim of frame-level video anomaly
detection is to identify frames where there is an event or behavior that differs from the
expectations or that appears infrequent. These abnormal events usually include fights, riots,
violations of traffic rules, sdtrampling, holding arms, and abandoning luggage. However,
video anomaly detection in general is a vast, crucial, and challenging research topic due
to the ambiguity of anomaly definitions, the paucity of anomalous data, and the complex
environmental background.

In general, current research work of video anomaly detection contains two procedures:
feature extraction and model learning [3]. Feature extraction can be achieved by hand-
crafteded feature technology or automatic feature extraction technology (features-based
representation learning or deep learning). For the model learning procedure, normal
samples are used for learning the detection model, and then, the testing samples that do
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not conform to the learned model are judged as abnormal events. There are three main
categories of feature extraction approaches. (1) Trajectory-based methods [4]: Various
methods track the target to obtain trajectory features and achieve satisfactory detection
results for anomalies in both speed and direction, but target tracking in dense scenes is
a big problem. For example, the authors in [5] studied the detection of abnormal vehicle
trajectories, such as illegal U-turns. The authors in [6] extracted human skeleton trajectory
patterns and were thus limited to detecting human behavioral anomalies. (2) Methods based
on variable features [7,8]: Various methods take video frames as a whole and extract some
simultaneous or mid-level features such as spatiotemporal gradients, histogram of gradient,
optical flow, etc., which are effective in moderately crowded and dense environments.
In [9], the authors proposed to associate the optical flows between multiple frames to
capture short-term trajectories and to introduce the histogram-based shape descriptor to
describe such short-term trajectories. (3) Grid feature-based method [10]: For the reason
that each grid can be evaluated separately, this method often divides the video frame into
multiple small grids through dense sampling, and then extracts overlapping features from
the subdivided grids. As an example, Roshtkhari employed a probability density function
to encode spatio-temporal configurations of video volumes based on spatio-temporal
gradient features.

Furthermore, it could be divided into three categories by different model learning
strategies. (1) Cluster-based methods [11]: these methods are often based on the hypotheses
that normal samples belong to a category or are closer to one cluster center, while the
abnormal samples do not belong to any category or away from any cluster center, and then
the normal samples are clustered to build the detection model. In [12], the set of features
generated by a convolutional autoencoder are clustered, and a one-versus-rest classifier is
trained that discriminates between the clusters to detect the anomaly. (2) Sparse reconstruc-
tion based method [13]: This type of method assumes that the sparse linear combination
of normal patterns can represent normal activities with the smallest reconstruction error,
and because there is no abnormal activity in the training dataset, it can represent abnormal
patterns with larger reconstruction errors. One such method is introduced by Hasan [14],
where the use of combining 2D convolutions to autoencoders was produced, wherein the
2D convolutions were taken as input specific raw video segments. (3) The method based
on the probability model [15]: This method considers that normal samples that conform to
a certain probability distribution, while abnormal samples do not match this distribution.
In [15], the detection of anomalies in a video is based on the hypothesis that the normal
samples can be associated with at least one Gaussian component of a Gaussian Mixture
Model (GMM), while anomalies do not belong to any Gaussian component.

Recently, the latest progress of deep learning has proven the obvious advantages
of artificial intelligence-based methods and not be confined to many computer vision
applications [16]. As one of the topic tasks in computer vision, video anomaly detection is
no exception. Unlike the hand-crafteded feature-based methods, these deep learning-based
methods often use pre-trained neural network architecture to extract high-level features,
or build an end-to-end anomaly detection model with existing network architecture. For
the latter idea [1,11–23], the feature extraction step and model building step are jointly
optimized with one network. These end-to-end deep neural networks contain Deep Auto-
Encoders (AE, Auto-Encoder) [14], Deep Siamese Networks (DSN) [17], and Generative
Adversarial Nets (GAN) [18]. However, these network models are often designed for other
tasks such as generative models, compression, etc., rather than for anomaly detection tasks.

Different from the possible solutions discussed earlier, in this paper, we propose a new
deep learning-based method called the Convolutional Recurrent AutoEncoder (CR-AE) for
video anomaly detection. Specifically, the proposed method is based on the combination of
an attention-based Convolutional Long–Short-Term Memory (ConvLSTM) network and the
convolutional encoder of the AutoEncoder, which are employed to capture the irregularity
of the temporal pattern and spatial irregularity, respectively. Then, the convolutional de-
coder of the AutoEncoder is utilized to remodel the input video clip, and the reconstruction
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errors are further employed to detect abnormal frames. This is due to the reason that if
the CR-AE has never observed a similar abnormal pattern before, it may not be able to
reconstruct the input video clip well. Before our work, Hasan et al. [14] proposed to learn
temporal regular patterns using a convolutional AutoEncoder with limited supervision to
detect the video abnormal temporal events. Different from Hasan’s work, the proposed
method could simultaneously detect the spatial and temporal anomalies. In addition,
frame-level annotation is carried out on two public datasets called the UCSD ped2 dataset
and the ShanghaiTech dataset to evaluate anomaly detection performance of our method.
The experimental results demonstrate that our method has good characteristics of strong
generalization ability and outperforms the state-of-the-art methods.

In summary, the main contributions of this study are as follows:

1. We proposed an end-to-end deep learning framework for anomaly detection called
Convolutional Recurrent AutoEncoder (CR-AE) for video anomaly detection. It is
established by encoding the spatial regularity and temporal pattern with two common
network architectures. They are the attention-based Convolutional Long–Short-Term
Memory (ConvLSTM) network and the convolutional AutoEncoder (ConvAE). To the
extent of our knowledge, this is the first time that the hybrid architectures of the attention-
based ConvLSTM and ConvAE have been considered for video anomaly detection.

2. We adopted only a network to simultaneously detect the spatial and temporal anomaly
to replace the conventional two-stream network. Compared with the conventional
two-stream network, the CR-AE need not extract optical flow and train the weights of
the two architectures.

3. We extensively evaluated our approach on the publicly available video anomaly
detection datasets. The experiment demonstrates that our approach attains superior
results compared to the state-of-the-art methods.

The remainder of this paper is structured as follows: Section 2 summarizes the related
literature about existing anomaly detection. Section 3 describes the architecture of the pro-
posed approach. Experimental evaluation on two public experiments is given in Section 4.
Finally, Section 5 draws the conclusions of this paper.

2. Related Work

This section outlines the previous works on existing video anomaly detection meth-
ods, which include the hand-crafted feature-based and deep learning-based anomaly
detection method.

2.1. Hand-Crafted Feature-Based Anomaly Detection Method

Early research on video anomaly detection adopted the hand-crafted features to
represent the appearance and movement characteristics of pedestrians, and then machine
learning method was used to learn the anomaly detection model. According to whether
the object detection and object tracking procedure is adopted, these methods fall into two
broad categories: anomaly detection methods based on trajectories and anomaly detection
methods on cuboids.

Each trajectory represents the movement of a target as a sequence of image coordinates.
The main idea of trajectory-based methods is based on the assumption that the anomalous
trajectories of the abnormal events differ from the normal patterns. Junejo et al. [24]
utilized the size, position, and speed of the trajectory as the feature to represent the event
and to train a dynamic Bayesian network for abnormal behavior detection. Similarly,
Kang et al. [25] proposed to utilize trajectory features to build a hidden Markov model to
achieve an anomaly detection model. Similarly, Wang et al. [26] projected a dense trajectory
algorithm that first densely sampled the feature points, then extracted the point trajectory
features and encoded them, and then classified them through support vector machines in
the end. After that, Wang improved the feature regularization and encoding method, and
employed an improved method dense trajectory algorithm to represent the event in the
video [27]. However, the detection result of the trajectory-based method depends on the
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accuracy of the object tracking method. Furthermore, the results of these methods degrade
in the crowded or complex scenes where there is a lot of occlusion.

Instead of trajectory features, local cuboid-based features are proposed to represent
the events. These features include the histograms of gradients (HOG), histograms of optical
flow (HOF), and other spatio-temporal gradient features that are extracted from local 2D
image patches or local 3D video cuboids. For example, based on the SIFT (Scale-Invariant
Feature Transform) features, Chen et al. [28] employed MoSIFT (Motion Scale Invariant
Feature Transform), which can better describe motion intensity and has stronger discrimi-
nant power. Similarly, using MoSIFT descriptors, Xu [29] extracted the low-level features of
the video to detect violent events. In order to take advantage of the global spatiotemporal
distribution characteristics of interest points, Bregonzio et al. [15] accumulated interest
points from multiple time dimensions to form an interest point cloud as global features
for behavior recognition. Using densely sampled spatio-temporal video volumes (STVs),
Roshtkhari [30] create both local and global compositional graphs of volumes at each pixel
to represent the event. Some examples of these features are shown in Figure 1.

Figure 1. Examples of the hand-crafted feature. (a) Object trajectory [24]. (b) Dense trajectory [26].
(c) Histograms of gradients (HOG) [31]. (d) Spatio-temporal video volumes (STVs) [30].

However, it is quite difficult for hand-crafted-based methods to capture effective and
robust behavior features due to the wide variety of monitoring scenes, complex crowd
movement, and crowd density changes at any time, which can directly affect the anomaly-
detection performance.

2.2. Deep Learning-Based Anomaly Detection Method

With the vigorous development of artificial intelligence technology, researchers began
to explore detecting abnormal crowd behavior based on deep learning, which has yielded
many results. Compared with the hand-crafted-based methods, the methods based on
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deep learning focus on extracting the high-level features of pedestrian appearance and
motion in the video and can further distinguish normal behavior from abnormal behavior.
These methods include the technology that is based on the Convolutional Neural Network
(CNN), Auto-Encoder and Generative Adversarial Network (GAN). It can be classified
into two categories: (1) using the pre-trained CNN to extract features of the video frame to
represent the event and to train a detection model with a one-class classifier [13]; (2) fusing
with the RNN, optical flow information or 3D-CNN [14] to learn the regularity to detect the
motion and appearance anomaly. The former method [13] achieved 90.8% frame-level AUC
on the UCSD ped1 dataset, while the latter achieved 85.0% frame-level AUC on the UCSD
ped2 dataset. The Auto-Encoder contains an encoder and a decoder and is mainly used for
data dimensionality reduction and feature extraction. Given that video clips only contain
normal events, the Auto-Encoder can reconstruct the normal event with a lower error while
the abnormal event is constructed with a higher reconstruction error. Furthermore, the
encoder could map the normal events to latent representations, by learning a detection
model such as the Gaussian Mixture Model [15,32]. This method is called the Gaussian
Mixture Fully Convolutional Variational Autoencoders (GMFC-VAE) and achieves 91.2%
frame-level AUC on the UCSD ped2 dataset and 83.4% frame-level AUC on the Avenue
dataset. The GAN [18,33] contains a generator and a discriminator, which can capture
normal data probability and can estimate the probability that a sample fits the training
data distribution. They achieved 93.5% frame-level AUC on the UCSD ped2 dataset and
99% frame-level AUC on the UMN dataset. Next, the reconstruction errors of the generator
or the classify result of the discriminator are used to detect anomalies. Different from
the method mentioned above, the proposed method called the Convolutional Recurrent
AutoEncoder (CR-AE), which is an improved form of the CNN and Auto-Encoder, can
capture the irregularity of the temporal pattern and spatial irregularity, respectively. Some
examples of these deep learning-based method are shown in Figure 2.

Figure 2. Examples of the deep learning-based method. (a) GMFC-VAE [32]. (b) GAN [18,33].

3. Method

Using the notation above, we formally introduce our approach in this section. We first
state the anomaly detection problem formulation that we aim to deal with and then present
the network architecture of the Convolutional Recurrent AutoEncoder (CR-AE).

3.1. Problem Formulation

The problem of the video event anomaly detection can be denoted as follows: In a
video V = [Ci, i = 1, . . . , T], where Ci = [It, I2, · · · , It+k−1] represents the video clip of the
frame, It and k are the length of the video frames. Here, the task is to assign each clip Ci a
binary label to indicate whether this clip contains an anomaly event (yt = 1) or not (yt = 0).

An overview of the proposed method is illustrated in Figure 3. First, the video clips
that only contain the normal event are used to learn the CR-AE network as the detection
model. Then, the test video clip detects the anomaly or not by the reconstruction error.
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Figure 3. Overview of our proposed method.

3.2. Learning the CR-AE Network

The CR-AE network contains a Convolutional Encoder, an attention-based ConvLSTM
and a Convolutional AutoEncoder. The encoder of the AutoEncoder is composed of
multiple convolutional layers. In each layer of the encoder, the model first performs a
convolution operation on the original input or the output of the previous layer and outputs
the result of the convolutional layer to the Covn-LSTM layer. The attention mechanism
is used to obtain the current output characteristics from the hidden state of each Covn-
LSTM layer. In each layer of the Convolutional Decoder, the output feature of the previous
decoder layer and the output feature of the encoder are merged, and they perform the
deconvolution operation. Through layer-by-layer deconvolution, the input of the original
video segment is reconstructed, and the 2-norm of the input and the reconstruction result
are computed as the objective function. The architecture of the proposed CR-AE network is
illustrated in Figure 4.

Figure 4. Overall architecture of the proposed CR-AE model.



Sensors 2022, 22, 4647 7 of 16

In detail, the Convolutional Encoder encodes the input video clip. With the (l − 1)-th
layer feature maps X t,l−1 ∈ <nl−1×nl−1×dl−1 , the result of l-th layer can be represented as:

X t,l = f
(

W l ∗ X t,l−1 + bl
)

(1)

where ∗ is the convolution operation and f (·) is the activation function. W l ∈ <kl×kl×dl−1×dl

denotes dl convolutional kernels of size kl × kl × dl−1; bl ∈ <dl is a bias term, and
X t,l ∈ <nl×nl×dl is the output feature map at l − th layer.

An attention-based ConvLSTM is adopted to capture the temporal regularity. By
spanning different time steps, it can select hidden states, which are relevant to the last
frames to overcome the deterioration of long-term dependencies. Furthermore, it can
select relevant hidden states (feature maps) across different time steps to overcome the
deterioration of the long-term dependence of the previous ConvLSTM [34]. Especially,
with the l-th convolutional layer output feature X t,l ∈ <nl×nl×dl of the Encoder from
the previous hidden state Ht−1,l ∈ <nl×nl×dl , the current hidden state Ht,l is updated
with Ht,l= ConvLSTM(X t,l ,Ht,l). Specifically, the detail of the ConvLSTM cell can be
formulated as:

zt,l = σ
(

W̃ l
XZ ∗ X t,l + W̃ l

HZ ∗ X t−1,l + W̃k
CZ ◦ C t−1,l + b̃l

Z

)
(2)

rt,l = σ
(

W̃ l
XR ∗ X t,l + W̃ l

HR ∗ Ht−1,l + W̃ l
CR ◦ C t−1,l + b̃l

R

)
(3)

Ct,l = zt,l ◦ tanh
(

W̃ l
XC ∗ X t,l + W̃ l

HC ∗ Ht−1,l + W̃ l
CR ◦ C t−1,l + b̃l

R

)
+ rt,l ◦ C t−1,l (4)

ot,l = σ
(

W̃ l
XO ∗ X t,l + W̃ l

HO ∗ Ht−1,l + W̃ l
CO ◦ C t−1,l + b̃l

O

)
(5)

Ht,l = ot,l ◦ tanh
(

Ct,l
)

(6)

where ∗ and ◦ are the convolutional operator and hadamard product, respectively; σ is the
activation function. W̃ l

XZ ,W̃ l
HZ ,W̃k

CZ ,W̃ l
XR,W̃ l

HR,W̃ l
CR,W̃ l

XC ,W̃ l
HC ,W̃ l

XO ,W̃ l
HO ,W̃ l

CR,W̃ l
CO are

the convolution kernels and b̃l
Z ,b̃l

R,b̃l
R,b̃l
O are the bias parameters. Different from the LSTM,

all of the input, cell outputs, hidden states and gates are 3D tensors. The step length h is set
as 5, and all the convolutional kernel sizes are set as the same. Next, a temporal attention
mechanism is adopted to choose the relevant time steps and to obtain a refined output of
feature mapsHt,l , which can be expressed by:

_
H

t,l
= ∑

i∈(t−h,t)
αiHt,l (7)

αi =
exp

{
V(Ht,l)V(Hi,l)

λ

}
∑i∈(t−h,t) exp

{
V(Ht,l)V(Hi,l)

λ

} (8)

where V(·) denotes vector and λ is a rescale factor (λ = 10.0). The last hidden state Ht,l

is used as a group-level context vector, and the importance weight αi is measured by the
softmax function. In this way, the attention-based ConvLSTM can capture the irregularity
of the temporal pattern and spatial irregularity.

The Convolutional Decoder is used to decode the feature map obtained in the pre-
vious step to obtain the reconstructed video clip. In detail, the Convolutional Decoder is
expressed as:

X t,l−1 =


f
(

W̃t,l ,⊗,
_
H

t,l
,+, bt,l

)
, l = 4

f
(

W̃t,l ⊗
(

_
H

t,l
⊕

_
X

t,l)
+

_
b

t,l)
, l = 3, 2, 1

(9)
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where ⊗ and ⊕ are the deconvolution and concatenation operations, respectively; f (·) is
the activation unit; W̃t,l and bt,l are the filter kernel and bias parameter, respectively. The
reconstructed video clips from the previous layer of the decoder and the output of the
previous ConvLSTM layer are combined and fed into the next deconvolution layer. The
final output X t,0 denotes the reconstructed video clip.

The detailed configurations of the proposed CR-AE model architecture are presented
in Section 4.3. Finally, the objective function of the CR-AE model can be defined as the
reconstruction error over the input video clips as below:

L = ∑
k
‖Vk − fW(V)‖2

2 (10)

where Vk and fW(V) are the video clip and reconstructed video clip.

3.3. Prediction

After training the model, the reconstruction error between the input frame Ii
x,y and the

reconstruction frame fw(Ii
x,y) are represented as follows:

R(x, y, t) =
∥∥∥Ii

x,y − fw(Ii
x,y)
∥∥∥

2
(11)

where fw is the learned CR-AE model. Then, the frame-level anomaly detection evaluation
criteria can be represented by the sum of the all the pixel errors as below:

e(i) = ∑
(x,y)

R(x, y, t) (12)

Finally, the final frame-level score is

Si =
e(i)−minie(i)

maxie(i)
(13)

The scores estimated from a frame of anomalous events are expected to be higher
than those for normal events, and a threshold θ is set to determine the sensitivity of the
anomalous detection method.

4. Experiment and Results
4.1. Datasets

To verify the method proposed in this paper, we performed experiments on two
publicly available video anomaly datasets, namely the UCSD PED2 dataset [35] and the
ShanghaiTech [36] dataset. Both of the two datasets have their own challenges and unique
particularity, such as abnormal events, degradation of video quality, complex background
environment, etc. Therefore, the model needs to be experimented on the two datasets
separately, which are briefly introduced as follows.

The UCSD dataset is a collection of footage from a stationary camera overlooking
the sidewalk at 10 frames per second. In this dataset, anomaly events are caused by
non-pedestrians and abnormal pedestrian movements on the sidewalk. Specifically, some
abnormal examples include cyclists, skaters, cars, etc. This dataset has two different subsets,
PED1 and PED2, which are divided by the working direction. This paper only adopts the
second scene, UCSD PED2 for experimentation. Ped2 is parallel to the camera plane and is
split into 16 training clips and 14 test clips, consisting of 4560 frames and with a resolution
of 320 × 240.

The ShanghaiTech dataset is one of the largest datasets and was created to expand
scene diversity. Compared to the other dataset, the ShanghaiTech dataset contains more
video clips, split into 330 training and 107 test video clips, which are taken in 13 different
scenes and a large number of different anomaly types. There are around 316 K video frames
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with a resolution of 856 × 480 in this dataset. In addition, it contains 130 abnormal events
that include anomalies caused by sudden movements such as bicycles on the sidewalk,
chases, and quarrels.

Figure 5 presents some examples of the two datasets.

Figure 5. This is a figure. Schemes follow the same formatting.

4.2. Implementation Details

Before training the model, many details need to be emphasized. We first convert all
frames of the video clip to a grayscale image and then resize them to 227 × 227. Five
consecutive frames are used as the input of the model. In detail, the C1-C4 consists of
128 3 × 3 convolutional kernels, 64 3 × 3 convolutional kernels, 64 3 × 3 convolutional
kernels, and 32 3 × 3 convolutional kernels, as well as 2 × 2, 2 × 2, 2 × 2, and 2 × 2
strides, respectively. The Decoder comprises the reverse architecture of the encoder. It
contains four deconvolutional layers: DeConv1-DeConv4 with 32 3 × 3 convolutional
kernels, 64 3 × 3 convolutional kernels, 64 3 × 3 convolutional kernels, and 128 3 × 3
convolutional kernels, as well as 2 × 2, 2 × 2, 2 × 2, and 2 × 2 strides, respectively. The
decoder can combine different deconvolutional and ConvLSTM layers to obtain the feature
maps, which effectively improve the anomaly detection performance. Detail of the CR-AE
model are shown in Table 1.

The network weights are initialized by the “Xavier” method and are optimized by the
Adam optimizer [37] to minimize the above loss. The Adam optimizer computes dimen-
sional learning rates to adjust the gradient rates through all previously updated functions
in each dimension. The Adam optimizer is widely used due to its strong convergence and
empirically successful theory. The learning rate of the Adam optimizer is set at a learning
rate of 0.0001, a weight decay of 0:9 for each 100 epochs, a hyperparameter β1 of 0.9, and a
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hyperparameter β2 of 0.999. The experiment is performed on a PC desktop with Intel Core
i9-12900 CPU, NVIDIA GeForce GTX 3080 GPU and 32 GB RAM.

Table 1. Specifications of the CR-AE model.

Layer Input Kernel Size Stride/ Pad Output Last/ Next Layer

Input 5 × 227 × 227
Conv1 5 × 227 × 227 3 × 3 2/0 128 × 55 × 55 Input/Conv2 + Lstm1
Conv2 128 × 27 × 27 3 × 3 2/0 65 × 27 × 27 Conv 1/Conv3 + Lstm2
Conv3 64 × 27 × 27 3 × 3 2/0 64 × 13 × 13 Conv 2/Conv4 + Lstm3
Conv4 64 × 13 × 13 3 × 3 2/0 32 × 13 × 13 Conv 3/De-conv1 + Lstm4
Lstm1 128 × 55 × 55 N/A N/A 128 × 55 × 55 Conv1/De-conv4
Lstm2 64 × 27 × 27 N/A N/A 64 × 27 × 27 Conv2/De-conv3
Lstm3 64 × 13 × 13 N/A N/A 64 × 13 × 13 Conv3/De-conv2
Lstm4 32 × 13 × 13 N/A N/A 32 × 13 × 13 Conv4/De-conv1

De-conv1 32 × 13 × 13 3 × 3 2/0 64 × 13 × 13 Lstm4 + Conv4/De-conv2
De-conv2 64 × 13 × 13 3 × 3 2/0 128 × 27 × 27 Lstm3 + Conv1/De-conv3
De-conv3 128 × 27 × 27 3 × 3 2/0 256 × 55 × 55 Lstm2 + Conv2/De-conv4
De-conv4 128 × 55 × 55 3 × 3 2/0 5 × 277 × 277 Lstm3 + De-conv3/Output
Output 5 × 277 × 277

Input, input layer; Conv, convolutional layer; Lstm, ConvLSTM layer; De-conv, deconvolutional layer; Output,
output layer. The Encoder and Decoder consist of Conv1, Conv2, Conv3, Conv4 and De-conv1, De-conv2,
De-conv3, De-conv4, respectively.

4.3. Results on the UCSD ped2 Dataset

On the UCSD ped2 dataset, we compared the results with the existing state-of-the-art
methods, including the MPPCA [35], mixture dynamic texture (MDT) [35], 2D Convolu-
tional AutoEncoder method (MT-FRCN [10], Conv2D-AE [14]), 3D Convolutional AutoEn-
coder method (Conv3D-AE) [14], AutoEncoder method based on Convolutional Long- and
Short-term Memory Network (ConvLSTM-AE) [21], Stacked Recurrent Neural Network
(StackRNN) [36], Baseline method [38], Semiparametric Scan Statistic (SSS) [39], Online
GNG [40] and Unmasking [41], Appearance and Motion DeepNet (AMDN) [13]. Among
these methods, the first five use handcrafted features and the last eight use deep learning
techniques, the latter including common techniques such as convolutional neural networks,
recurrent neural networks, autoencoders, generative adversarial networks, etc.

Frame-level evaluation criterion is adopted to evaluate the performance of the pro-
posed method. For this criterion, the frame is determined as abnormal if at least one pixel
of a frame is marked as abnormal. In order to use a frame-level criterion for evaluation, the
time label is used to determine the true positive and false positive of the metric. Then, the
detection rate (True Positive Rate, TPR) and false alarm rate (False Positive Rate, FPR) of
the method are computed, as shown below:

TPR =
TP

TP + FN
(14)

FPR =
FP

FP + TN
(15)

The receiver operating characteristics (ROC) are plotted with the true positive rate on
the y-axis vs. the false positive rate. Then the area under the curve (AUC) is computed
with different thresholds θ as the evaluation metric. A higher AUC score manifests better
anomaly detection effects.

All the results of the comparison methods are taken from their respective papers. The
qualitative frame-level evaluation results, in the form of ROC curves, are shown in Figure 6.
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Figure 6. ROC curves for the UCSD Ped2 dataset.

From Figure 6, it can be observed that the proposed method achieves a larger area
under the curve (AUC) except for the Baseline method [19]. By visual observation, it is
difficult to distinguish the size of the AUC of these two methods from the figure. The
quantitative results frame-level evaluation, in the form of AUC, are presented in Table 2. It
is obvious from Table 2 that the AUC of the proposed method outperforms the Baseline
method, with a 0.2% frame-level AUC lead. More specifically, the performance of the deep
learning methods surpasses the hand-crafted features-based method. Among the fourteen
algorithms, our method obtains the best result with a 95.6% frame-level AUC.

Table 2. Comparison with the state-of-the-art methods in terms of AUC% on the USCD Ped2 Dataset.

Method AUC

MPPCA [35] 69.3%
MDT [35] 82.9%
SSS [39] 94.0%

Online GNG [40] 94.0%
Unmasking [41] 82.2%

ADMN [13] 90.8%
MT-FRCN [10] 92.2%

Conv2D-AE [14] 85.0%
Conv3D-AE [14] 91.2%

ConvLSTM-AE [21] 88.1%
StackRNN [36] 92.2%

Baseline [38] 95.4%
The proposed CR-AE 95.6%

4.4. Results on the ShanghaiTech Dataset

The ShanghaiTech dataset is a recently proposed dataset, has a large number of frames,
and requires a relatively large calculation cost. Only a few methods have been tested
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on this dataset. These compared methods include the Conv2D-AE [14], StackRNN [36],
Baseline [38], Asymptotic Bound [32] and MemAE [23]. The quantitative results in the form
of AUC are presented in Table 3.

Table 3. Comparison with the state-of-the-art methods in terms of AUC% on the ShanghaiTech dataset.

Method AUC

Conv2D-AE [14] 60.9%
StackRNN [36] 68.0%

Baseline [38] 72.8%
Asymptotic Bound [32] 70.9%

MemAE [23] 71.2%
The proposed CR-AE 73.1%

It is shown that the proposed CR-AE method achieved the best detection results
on this dataset. Specifically, the AUC of the proposed method is 0.3% better than the
Baseline [38] method. However, the method proposed obtained a 73.1% frame-level AUC
on the ShanghaiTech dataset, which is much lower than the frame-level AUC obtained on
the UCSD Ped2 dataset. This is mainly because the ShanghaiTech dataset is more complex
and contains more challenges. It is more complex, including multiple scenes, multiple
frames, and abnormal events that have not previously appeared in other datasets.

4.5. Visual Results

The detection results are visualized to further evaluate the performance of the pro-
posed CR-AE model. As Figure 6 depicts, the frame-level detection results and some video
screenshots of the two datasets are provided. In detail, the horizontal coordinate is the time
of the video frame, the vertical coordinate abnormal score has been normalized to 1, and
the red area represents the anomaly frames. It is evident that the proposed method can
accurately detect video anomalies and can predict anomaly scores close to zero on normal
videos, which demonstrates the effectiveness and robustness of the proposed CR-AE. Fur-
thermore, it can be observed that the area with larger anomaly scores can correspond to the
ground truth. Some abnormal events, such as bicycles and cars on the sidewalk, fights, and
pushes, can basically be detected. Additionally, Figure 7 also provides some key frames of
the detection results. When an abnormal event occurs suddenly, such as a car appearing
on the scene in the right panel of Figure 7a, the anomaly score increases suddenly; on the
contrary, if the anomalous object leaves the camera’s field of view, as shown in the left
panel of Figure 7b, the anomaly score rapidly declines.

Examples of better and worse abnormality detection results are shown in Figure 8.
The first row shows the examples of the better cases with a higher frame-level score and,
the second row shows the examples of the worse cases with a lower frame-level score. It
is obvious that the anomalies such as cars (Figure 8a–d) and bikes (Figure 8b) move on
the sidewalk, and intense movements (Figure 8c) are easy to detect. However, occluded
(Figure 8e–g) and poorly illuminated (Figure 8f) anomalous objects are difficult to detect.
Furthermore, detecting anomalous events with little movement such as a lost package
(Figure 8h) is also challenging for the proposed methods.



Sensors 2022, 22, 4647 13 of 16

Figure 7. Visualization of the testing results.

Figure 8. Examples of better and worse abnormality detection results. (a) cars on the sidewalk. (b)
cyclists on the sidewalk. (c) intense movements. (d) cars on the sidewalk. (e) occluded, cyclists on
the sidewalk (f) poorly illuminated, cyclists on the sidewalk. (g) occluded, scooters on the sidewalk.
(h) lost package.
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4.6. Computational Efficiency

Table 4 shows the detection speed comparison between our method and the other de-
tection methods on the UCSD ped2 dataset, and the results of the comparison methods are
from their corresponding articles. Some information, such as the computing environment
and RAM, is not provided in these papers, but this does not affect the preliminary com-
parison of the results. The hardware environment of the whole experiment process is Intel
Core i9-12900 CPU, NVIDIA GeForce GTX 3080 GPU and 32GB RAM, and the computing
platform is Python 3.7 and Tensorflow 2.5. As can be seen from Table 3, the detection speed
of the method proposed in this paper is 249 fps, which reaches the real-time detection speed
(25 fps) and significantly exceeds the detection speed of other comparison methods.

Table 4. Running time comparison of the UCSD Ped2 dataset.

Method Computing Environment CPU GPU RAM Detection Speed (fps)

MDT [35] - 3.0 GHz - 2.0 GB 0.04
StackRNN [36] Python + Tensorflow 3.5 GHz - 16 GB 120

AMDN [13] MATLAB 2015 2.1 GHz Nvidia Quadro
K4000 32 GB 0.11

Unmasking [41] Python + Tensorflow - GTX TITAN Xp - 20

Proposed CR-AE Python 3.7 + Tensorflow2.5 5.1 GHz NVIDIA GTX
3080 32 GB 249

5. Conclusions

In this study, we have introduced a Convolutional Recurrent AutoEncoder (CR-AE)
to explicitly model the normal dynamics in video sequences for anomaly detection. The
framework was able to model both spatial and temporal irregularities of the video data,
which are based on the combination of an attention-based Convolutional Long–Short-Term
Memory (ConvLSTM) network and the convolutional encoder of the AutoEncoder. Then,
the reconstruction errors of the convolutional decoder were further employed to detect
abnormal frames. Both the qualitative and quantitative results showed that the proposed
method outperforms the state-of-the-art anomaly detection method on the UCSD ped2
dataset and the ShanghaiTech dataset. In the future, we will further study online and
adaptive model updating to improve the performance of video anomaly detection. The
limitations of the study are that our method could only provide frame-level detection
results, which are unable to locate anomaly events. Another future research focus is on
object-level and pixel-level anomaly detection.
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