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Abstract: Data created at industrial sites through industrial internet of things devices are now being
processed automatically or in real-time in the industrial structure, due to the application of artificial
intelligence technology to industrial sites. However, the expenses of autonomous or real-time data
processing and steady data processing (analysis, prediction, prescription, and implementation)
necessitate a new processing method. We propose a blockchain-based industrial internet of things
information reinforcement model in this work that may reliably ensure the integrity of industrial
internet of things data produced at industrial locations. The proposed model processes industrial
internet of things data that may occur at endpoints at industrial sites into the blockchain by processing
data generated by the same industrial internet of things device independently. As a result, the IIoT
data sent to the industrial internet of things server can be evaluated more readily, and production
accuracy may be enhanced. The proposed model optimizes industrial internet of things information
linkage by stochastically reflecting the information based on attribute value frequency. By dynamically
aggregating the related data of industrial internet of things information acquired as a seed through
hierarchical subnets, the proposed model increases stability and accuracy. Furthermore, the proposed
model may be used to enhance an organizations’ operational efficiency (consulting and training, for
example) and strategic decision-making by utilizing fundamental knowledge about items produced
at industrial locations. Furthermore, the proposed model allows for information sharing and system
connectivity between industrial locations, allowing for close collaboration between industrial internet
of things features. As a result of the performance evaluation, the proposed model included an
industrial internet of things sensor to the blockchain, eliminating the need for an extra function in the
manufacturing process and reducing the time required to validate the integrity of industrial internet
of things data. In addition, as a result of analyzing industrial internet of things data by an algorithm
according to the number of simulated clouds, the accuracy of industrial internet of things information
was improved by 2.5% to 3%, on average.

Keywords: blockchain; IIoT; big data; platform; reinforcement; information management technology

1. Introduction

The industrial internet of things (IIoT) which combines low-power processes and
network cards, has recently been applied at production sites to efficiently produce and
evaluate product information across networks in numerous industries [1]. The industrial
internet of things (IIoT) is a subset of the internet of things (IoT), which connects sensors
and networks in many industrial domains. The influence of IIoT on enterprises and daily
life is greater than that of IoT. The most significant distinction between IIoT and IoT is that
IIoT connects industrial machinery and gadgets. IIoT follows the same principles as IoT, but
it adds automated layers and reporting capabilities. However, due to a lack of standards,
integration with legacy technologies, pre-investment expenditures, and knowledge, it is
not effectively employed in the industrial context [2].

Existing IIoT studies look for ways to collect and analyze IIoT datasets to lower
production costs while producing high-quality products at industrial sites [3,4]. However,
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it is critical to managing IIoT wisely since IIoT in industrial settings is utilized in many
ways depending on the objective. It is also necessary to secure the integrity of the data
collected through IIoT. The amount of research being performed on setting up a testbed that
transmits and receives signals using IIoT sensors in industrial settings is rapidly expanding.
In particular, testbeds are being constructed in industrial locations to be reusable in non-
specific situations and specialized scenarios, depending on the type of data collected and
the type of analysis [5].

Furthermore, blockchain and smart contracts are being used in several studies on data
sharing access control in IIoT networks, such as resource and data access control between
IoT devices. However, there are some challenges when blockchain is used directly to IIoT
data-sharing networks. Due to the inability of most low-power IIoT devices to participate
in the consensus process, IIoT data exchange must incorporate data storage. Furthermore,
frequent transmission of shared data requires more energy in low-power IoT devices, and
large-scale access may create severe interference. Edge computing and consortium blocks,
as well as IIoT devices and industrial interaction patterns, must be incorporated into IIoT
data-sharing networks. To date, research in the industrial sector has been insufficient to
handle the problem of data sharing and secure the integrity of IIoT information while
dispersing data sharing by integrating the produced information between IIoT devices
with blockchain.

We propose an IIoT information reinforcement model based on the IIoT information
platform that uses blockchain to enhance IIoT data generated at industrial sites in this study.
The proposed model allows for strengthening IIoT information integrity and the close
linking of diverse IIoT information to improve IIoT information while lowering costs in
small manufacturing enterprises. The proposed model maintains the integrity of IIoT data
acquired at industrial sites and allows for information uniqueness and system connectivity
inside industrial sites, allowing for close collaboration between IIoTs with various features.

The proposed model generates a subnet by stochastically applying the frequency
of attribute information of the acquired information to deep learning in order to collect
and analyze IIoT data efficiently. Using inter-subnet connection information, different
subnets are grouped in a hierarchical framework. This is to improve the IoT device’s
dynamic clustering speed and accuracy. To evaluate IIoT data efficiently, the proposed
model used a deep learning technique. Deep learning can be employed in the proposed
model to accurately check IIoT information, ensuring the data integrity of IIoT devices at a
cheap cost.

Compared with the typical IoT processing model employed in existing industrial
locations, the suggested model has the following properties. The proposed model may
collect real-time product data from IIoT sensors at industrial locations and use it in the
product development process. Second, production product information, such as faults that
may arise in industrial sites, can be tracked and monitored in real-time. Third, the integrity
of the information collected from the IIoT sensor may be easily verified. Fourth, managers
may easily control IIoT devices from afar because it runs on the cloud. Fifth, the linkage
plan with the existing system is smoother than the existing manufacturing process while
increasing the production environment.

The remainder of this study is organized as follows: Section 2 looks at the definition of
IIoT and related research, Section 3 presents an IoT information reinforcement model based
on the IIoT information platform and blockchain, and Section 4 evaluates the proposed
model’s performance through simulation. Finally, Section 5 brings us to a close.

2. Background
2.1. Smart Factory vs. Factory Automation

Recently, most of the items produced at the industrial facility have been created by
machines. Companies fabricated most of their products by hand in the past. However, in
recent years, they have switched to semi-automated or automated methods to cut manage-
ment and production costs and enhance management performance [6]. Companies have
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used industrial automation and smart factories interchangeably until recently. However,
depending on the socio-structural changes in the manufacturing business, safeguarding
competitiveness and productivity, and enhancing efficiency, factory automation or smart
factories have dramatically varied meanings [7]. The ideas of industrial automation and
smart factory are compared and defined in Table 1.

Table 1. Smart factory vs. factory automation.

Division Smart Factory Factory Automation

Definition

An intelligent automation platform
that enhances quality and

performance by automating
environmental safety, marketing,
design, process, and shipping at

the plant.

A production system mechanism that
manages the functioning of a machine

without the need of people.

Advantage
Scripted languages and compiler

languages such as C++ are used to
create available software components.

For automation and digitalization,
integrate internet of things (IoT),

Artificial Intelligence (AI), Big Data,
and other technologies.

Weakness Make a substantial first investment.
Connection, collection, and analysis

of data created during manufacturing
are difficult.

Object Manufacturing’s procurement,
logistics, and consumer.

Computers and robots are examples
of equipment.

Function
Automate unmanned and

manufacturing operations across the
plant utilizing computers and robots.

Provide each thing intelligence and
link it to the internet of things to
connect, gather, and analyze data

autonomously (IoT).

Range ‘Smart’ horizontal integration. Vertical integration, ‘manualizing’
and ‘factory’.

Characteristics

Combine the newest technology to
boost efficiency and productivity

across management, from industrial
operations to management.

Integrate corporate processes with an
emphasis on production

management.

Factory automation is a production system mechanism that manages the functioning of
a machine without relying on people, and it refers to an unmanned factory that automates
the majority of processes. Factory automation is used in the disciplines of computerized
design, computerized production, and integrated manufacturing and typically comprises
control systems such as conveyors, automatic warehouses, numerical control machine tools,
and quality inspection devices [8,9].

The ideas of industrial automation and smart factory are compared and defined
in Table 1.

Factory automation is a production system mechanism that manages the functioning of
a machine without relying on people, and it refers to an unmanned factory that automates
the majority of processes. Factory automation is used in the disciplines of computerized
design, computerized production, and integrated manufacturing and typically comprises
control systems such as conveyors.

2.2. Blockchain System for IIoT

IIoT blockchain systems are created and utilized in industrial locations, combining
IoT with blockchain. They offer IIoT blockchain system procedures trust building, cost
reduction, data trading market activation, and increased security [10]. As illustrated
in Figure 1 [11,12], the IIoT blockchain system, a blockchain-based internet of things
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technology, is employed by splitting the blockchain and IoT platform’s interworking
process into an interworking process and a direct interworking process.
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Figure 1. Interaction between blockchain and IoT for production sites. 
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The connection between the blockchain and the internet of things, as depicted in
Figure 1, applies the acquired data to the blockchain network. The connection of the
blockchain and IoT platform has the benefit of allowing current IoT to coexist by translating
data into blockchain form via blockchain proxy. It also has the disadvantage of relying on
the IoT platform.

IIoT blockchain solutions are primarily used for authentication, fraud prevention, and
the creation of a shared environment [6]. Aiota, Streamer, and Japan’s Nayuta are good
instances of IIoT blockchain creation and functioning. The IIoT blockchain system may be
utilized in the distribution/logistics industry, but it must compensate for the centralized
method’s drawbacks of poor speed, inefficiency, and dispersed ledger.

Permissionless Proof of Work (PoW) systems (e.g., Bitcoin and Ethereum 1.0) enable
scalability, distributed processing, and security, while most existing blockchain systems
do not. Furthermore, centralized block production systems (e.g., Cardano, EOS) aim for
scalability at the price of block producer variance. Meanwhile, multi-chain systems (such
as Cosmos and AION) achieve scalability, dispersibility, and high-speed TTF at the risk of
further assaults.

3. Related Works

IIoT technologies have recently advanced significantly in various industries (environ-
ment, agricultural, monitoring, surveillance, etc.) [13]. Blockchain technology, in particular,
can process, store, and distribute data generated from IIoT devices, addressing some of
IIoT’s shortcomings (security concerns, high operational costs, frequency delay, etc.) [14].

Miller et al., showed how to integrate IIoT with blockchain to boost productivity in
many businesses [15]. Liang et al., suggested a communication architecture for IIoT appli-
cations [16]. This technology can operate IIoT applications’ data assurances, robustness,
and accountability flexibly. To maintain the security and privacy of smart grid energy data
consumption, Aitzhan et al., deployed multi-coded and anonymous encrypted communi-
cations streams [17]. Tesla and colleagues proposed a blockchain-based IoT platform [18].
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However, there is a difficulty in that the blockchain system’s performance (expandability,
decentralization, security, or latency) is not well-specified.

Keping et al., developed a blockchain reinforcement complementary solution for smart
industrial data to safe storage, access control, information update and deletion, and tracking
and termination of bad users [19]. This solution needs the system to function under the
Decision Bilinear Diffie–Hellman (DBDH) assumption to monitor or cancel rogue users at
all stages.

Quansi et al., presented a blockchain-based data-sharing approach for merging IIoT de-
vice monitoring and recording with smart contract storage on the network [20]. Only firms
who meet the access policy to intelligent contracts may execute and examine transaction
data since this approach provides a collaborative solution for IIoT devices.

Aparna et al., presented a distributed approach based on blockchain that focused on
the challenge of data distribution in IIoT systems [21]. Assuming that the P2P network
is safe, this paradigm allows any node to interact with another node. However, via case
studies of intelligent grid systems for IIoT, the model employed data load balancing, energy
management costs, and transfer delay characteristics to deliver various services.

Aamir et al., made a comprehensive framework for the intelligent industry, encompass-
ing the significant concerns and challenges of IIoT and blockchain IIoT [22]. Converging
with blockchain can yield several benefits. However, before IoT adoption, the government
and other policies must address general layouts.

Shen et al., proposed a trustworthy blockchain-based cooperation model that includes
data owners, minors, and third parties [23]. This solution minimizes the income distribution
process by gathering and storing shared data over a private or public cloud. However,
because data owners, minors, and third parties all share a blockchain, this approach has a
flaw: everything is documented by intelligent contracts.

Liu et al., developed a data-sharing strategy based on the Ethereum blockchain and
deep reinforcement learning (DRL) [24]. The approach collects the most quantity of data
possible while also ensuring data security and dependability. It also has greater security
and resilience to assaults than traditional database-based data exchange methods.

Using blockchain technology, Shen et al., proposed a safe and trustworthy shared
platform across many data sources [25]. Paillier, a homomorphic cryptographic system, is
used on the platform, which uses safe building blocks such as polynomial multiplication
and security comparisons. Furthermore, the platform protects each data provider’s vital
data and the SVM model parameters.

Wang et al., proposed a framework that uses Ethereum blockchain and ABE technology
to integrate data storage and sharing strategies in distributed storage systems [26]. This
framework, based on smart contracts, performs a forward search function on password text
in distributed storage systems, addressing the issue of not returning all or inaccurate results.

On mobile cloud platforms, Nguyen et al., proposed a shared architecture integrating
blockchain and the interplanetary file system (IPFS) [27]. This framework provides a
dependable data-sharing solution in the mobile cloud while protecting sensitive health
data from potential attacks.

Sun et al., proposed an attribute-based encryption strategy based on cryptographic
policy attribute-based encryption systems paired with blockchain for securely storing
and distributing electronic medical records in an IPFS storage environment [28]. The
solution prevents a single point of failure by keeping encrypted electronic medical data in
a distributed interplanetary file system (IPFS).

Table 2 examined the contents of the previous research by categorizing them as related
works, related techniques, advantages, and limitations.
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Table 2. Analysis of related works.

Related Works Related Technique Advantages Limitations

Sharing cloud data [20,23] Bitcoin, incentives for data
sharing are highly valued.

Real-time data storage,
ensure data integrity and

information security,
cloud data sharing should

be rewarded fairly.

Collaboration between IIoT
devices is required,

blockchain is used to store
shared data.

Data gathering and sharing
in the IIoT [24]

Deep reinforcement
learning and

mobile crowdsensing.

Collaborative data
collection and sharing.

Blockchain is used to store
shared data.

secureSVM: Data exchange
in smart cities [17,22,25]

Decision Making Trial and
Evaluation Laboratory

(DEMATEL)
Support vector machine

(SVM), Paillier,
gradient descent.

Describe the many concerns
and obstacles associated
with IoT and blockchain

implementation,
IoT data transmission with

privacy protection for
SVM training.

Proactive government and
other policies,

blockchain is used to store
shared data.

Storage systems that share
data [19,26]

Decisional Bilinear
Diffie–Hellman (DBDH),

attributed-based
encryption, interplanetary

file system (IPFS).

Integrate identity
verification, and

at any time, you may trace
and terminate

malicious users,
decentralized storage and
fine-grained access control

for shared data.

Ensuring Decisional
Bilinear Diffie–Hellman

(DBDH) for system security,
IPFS storage systems have

no incentives.

Sharing of electronic health
records [27] IPFS, smart contract. Dependable access control,

decentralized storage.
IPFS storage systems have

no incentives.

Sharing of electronic
medical records [28]

IPFS, encryption system
with attributes.

Data access control and
decentralized storage

without affecting retrieval.

IPFS storage systems have
no incentives.

IoT Platform and
System [15,16,18]

Supply chain, autonomous
vehicle solutions,

manufacturing plant
asset management.

New commercial prospects,
regulatory restrictions, and

measures to promote
transparency and visibility

are discussed.

Blockchain is used to store
shared data.

Smart Grid System [21] P2P network, data
load balancing.

Model efficacy is evaluated
using energy management

costs and transmission
delay characteristics.

Assume P2P network
is secure.

4. An IoT Information Reinforcement Model Using Blockchain

In addition to data collecting, IIoT sensors used in industrial locations strive to handle
IIoT sensing information securely and effectively while minimizing network burden. In
this study, we propose a blockchain-based IIoT information reinforcement model to ensure
the integrity of IIoT sensing information and facilitate information uniqueness and system
connection in industrial settings. The proposed model provides data processing speed,
accuracy, and stability by hierarchically dividing IIoT sensing information into subnets
and dynamically grouping the related information of seeds amongst the built subnets.
In addition, the proposed model performs interactive communication between IIoT and
servers, cross-verifying IIoT sensing information in a time series, providing IIoT information
weight of certain probability information. The reason is that the time required is shortened
by comparing and analyzing the impact on performance by selecting various types of IIoT
information according to the characteristics and types of IIoT information in dimensionally
reducing IIoT information.

4.1. Overview

Small industrial sites recently have produced unrecognizable production data among
the acquired data, so they tend to collect data from a portion of the production process rather
than the full industrial site. Furthermore, because the development cycle of development
goods is quick in domains such as R&D, it is difficult to produce appropriate analysis
findings for data collected at the production site. It is vital to make the most of information
collection, analysis, and exchange to properly fuse and integrate large-scale production
data created at industrial locations.
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To advance IIoT information generated at industrial sites, we propose a reinforcement
model based on the IIoT information platform utilizing blockchain in this study. The
proposed model allows for strengthening IIoT information integrity and the close linking
of diverse IIoT information to improve IIoT information while lowering costs in small
manufacturing enterprises. The proposed model gathers IIoT data from industrial locations
in real-time, independent of time or location. Because a considerable amount of IIoT
sensing data was created in this situation, a probability-based deep learning clustering
approach was used to identify the IIoT sensing data effectively. Information sharing and
system linkage inside industrial sites are made easier due to this procedure, and intimate
connections between IIoT with varied features are conceivable.

The proposed model generates a subnet by stochastically applying the frequency of
attribute information of the acquired information to deep learning in order to collect and
analyze IIoT data efficiently. Different subnets are aggregated into hierarchical structures
utilizing inter-subnet connection information to increase the dynamic clustering speed
and accuracy of IIoT information. The proposed model uses deep learning techniques to
evaluate IIoT data effectively, enhancing accuracy and ensuring the data integrity of IIoT
devices at a cheap cost.

4.2. Information Gathering for IIoT

The proposed model splits the process of gathering IIoT data into two sections. The
first is a transaction area, which stores and processes data from IIoT devices, and the second
is a blockchain system area, which processes data at industrial locations.

Figure 2 shows how the blockchain-based IIoT method, used in industrial settings,
saves money on production efficiency, labor, and production expenses. For the IIoT pro-
cess, such as Figure 2, to be applied to an industrial site, current industrial site facilities
must be changed, which creates an issue in terms of additional facility replacement costs.
Customized services at industrial locations are conceivable if the IIoT process is moved
to a blockchain, as described in the model. The information acquired in IIoT must be
continually added as a block in the manner depicted in Figure 2. This is because freshly
created blocks combine with existing blocks to form a local blockchain.

Figure 3 depicts the data collection model’s procedure for gathering various data
from IIoT sensors deployed at industrial locations in the proposed model. As shown in
Figure 3, data is collected from sensors put in various manufacturing equipment devel-
oped at industrial locations, and production product data is modeled and serviced by
reflecting needs.

As indicated in Figure 3, the following conditions must be addressed in order for
IIoT data gathering to be processed securely and efficiently at industrial locations. First,
connections should allow current facilities and equipment on industrial sites to be replaced
or upgraded. Second, protocols and communication interfaces between diverse systems
must be developed. Third, IIoT data should be sent and received across a network, such as a
cable, wireless, RFID, or Wi-Fi. Fourth, equipment constructed at industrial locations should
be able to be relocated and used. Fifth, data sent and received between devices should
be safeguarded via a secure channel. By applying the findings of data analysis obtained
through equipment installed at small- and medium-sized firm production locations, it
is feasible to integrate support with R&D, education, and human resource development
commercialization consultancy in the proposed model.
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4.3. IIoT Block Generation

When IIoT information develops a blockchain from the IIoT device to the end desti-
nation in industrial locations, IIoT information generates an arbitrary bit block R{0, 1}n

using Equation (1).

I IoT_bi

(
= hi(s) )(i ∈ Integer , s ∈R{0, 1}i) (1)

As shown in Equation (1), the proposed model duplicates the negotiated IIoT blockchain
to an arbitrary block I IoT_bi size of k bits so that hash processing may be performed
without losing IIoT information. The integrity of IIoT data is currently validated by ap-
pending signatures to the beginning and end of the hash chain based on the replication’s
odd/evenness. This is because a solution such as this can reduce the verification overhead
while maintaining the integrity of IIoT data verification.
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Equation (2) shows that the proposed model interleaves IIoT unique identification
information I IoT_Ii to incorporate IIoT unique identification in the produced bit block (1).

→
I IoT_BIi= I IoT_bi = I IoT_Ii (2)

Algorithm 1 divides IIoT data into arbitrary chunks and stores it with signature keys
and access control restrictions in a blockchain. Moreover, IIoT information and signature
keys, computationally demanding data is considered a non-blockchain.

Algorithm 1. IIoT block generation.

Input: IIoT information generated at the industrial site
Output: Create a k-bit blockchain based on odd/even
1: Generate IIoT information
2: While receive IIoT information
3: if IoT information then
4: Compare IIoT information with IIoT information from each other IIoT sensor
5: Generate and store the IIoT information block
6: While the IIoT information block can be identified
7: if generate random blocks in n-bit form using R{0, 1}n from all IIoT information
8: Convert each block to replication
9: if generate hash values for odd/even
10: Add signature to first and last of hash chains
11: Verification of integrity of IIoT information
12: Interleaved process to exclude IIoT bit blocks and IIoT unique identification information
13: else
14: Regenerate hash values for odd/even
15: end if
16: else
17: Process computationally intensive information into a non-blockchain
18: reconfirm the IoT Informaiton
19: end if
20: do while
21: else
22: Request IoT information
23: end if
24: do while

4.4. Information Processing in IIoT

Because IIoT data created at industrial sites is difficult to utilize for business right
away, the process of processing, changing, and extracting IIoT data should be performed.
The proposed model processes IIoT data in seven phases, as shown in Figure 4.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18 
 

 

22:             Request IoT information  
23:      end if 
24: do while 

4.4. Information Processing in IIoT 
Because IIoT data created at industrial sites is difficult to utilize for business right 

away, the process of processing, changing, and extracting IIoT data should be performed. 
The proposed model processes IIoT data in seven phases, as shown in Figure 4. 

IIoT Data 
accumulation

Increase production and increase 
productivity using IIoT data

Production cost reduction

Factory

Production 
Process System

Data Storage

HadoopsFS 
storage

Manufacturing 
Process

Indusgrial 
Manufacturing 

process

Manager

Various Data Analysis

Structured/unstructured 
data

Indusgrial 
Manufacturing process

Artificial intelligence process

Artificial intelligence system

Facility Preventive maintence

Interprocess linkage control

Expert process control

Robotic Automation

Monitoring Data Transfer

Reducted rework of production products

Improve data integrity and accuracy

Provides manager access to IIoT data

Simultaneously design and process the 
product using IIoT data

Remove manual processes

 
Figure 4. Processing of the proposed model. 

  Step 1: Create IIoT data 
This step involves gathering IIoT data from industrial equipment, which requires 

each piece of equipment to attach or interlock IIoT sensors. IIoT data is divided into three 
categories: general data, statistical data, and other data, and IIoT data is created in real-
time. 
  Step 2: Deployment of IIoT Networks 

In this stage, equipment with IIoT sensors links IIoT information to each other to 
create a new IIoT network, creating a pair of connections between each IIoT information 
through link points. 

Algorithm 2 depicts a method for constructing a new IIoT network by interconnect-
ing IIoT data. Algorithm 2 displays the freshly produced IIoT data from the IIoT sensor 
through the link point 𝑃 . The link point 𝑃  is used to construct a connection pair 
that connects IIoT data.  

Algorithm 2. IIoT link point build. 

Input: The IIoT’s new connectivity point 𝑃   
Output: IIoT generation of linking pairs 
1: Creating IIot information links 
2: for(i = 0; i ≤ n; i++): 
3:    for(j = 0; j ≤ n − 1; j++): 
4:        Create a triple link [𝐿 , , 𝐿 , , 𝐿 , ] 
5:        Correspondence estimates for the link pairs (𝐿 , , 𝐿 , ) and (𝐿 , , 𝐿 , ) 
from two link pairings 
6:    end for 
7: end for 

Figure 4. Processing of the proposed model.

Step 1: Create IIoT data
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This step involves gathering IIoT data from industrial equipment, which requires
each piece of equipment to attach or interlock IIoT sensors. IIoT data is divided into three
categories: general data, statistical data, and other data, and IIoT data is created in real-time.

Step 2: Deployment of IIoT Networks
In this stage, equipment with IIoT sensors links IIoT information to each other to

create a new IIoT network, creating a pair of connections between each IIoT information
through link points.

Algorithm 2 depicts a method for constructing a new IIoT network by interconnecting
IIoT data. Algorithm 2 displays the freshly produced IIoT data from the IIoT sensor through
the link point Pn−1

i . The link point Pn−1
i is used to construct a connection pair that connects

IIoT data.

Algorithm 2. IIoT link point build.

Input: The IIoT’s new connectivity point Pn−1
i

Output: IIoT generation of linking pairs
1: Creating IIot information links
2: for(i = 0; i ≤ n; i++):
3: for(j = 0; j ≤ n − 1; j++):
4: Create a triple link [Li−1,j−1, Li,j , Li+1,j+1]
5: Correspondence estimates for the link pairs (Li−1,j−1, Li,j) and (Li,j , Li+1,j+1) from two link pairings
6: end for
7: end for

(Li−1,j−1, Li,j) and (Li,j, Li+1,j+1) is the link pair of IIoT information. It is formed in the
form of (Li−1,j−1, Li,j) and (Li,j, Li+1,j+1). The function of these pairs of connections is to
increase the integrity verification and management efficiency IIoT information by linking
IIoT information together.

Step 3: IIoT data transmission to IIoT servers
The IIoT network environment maintains a network speed above LTE level and a

network environment to reduce network latency throughout this stage of delivering IIoT
information to the IIoT server.

Step 4: Information from the IIoT is pre-processed
This step involves pre-processing structured and unstructured data from IIoT sensors,

which is performed using various methods to collect information needed by industrial
sites in real-time. In this case, hash chains are used to aggregate, and process n pieces of
IIoT data, and the technique utilized is presented in Algorithm 3. The IIoT information in
Algorithm 3 is completely connected by repeating the number of IIoT sensors of equipment
placed at industrial locations, resulting in a connection offset.

Algorithm 3. Gathering algorithm of IIoT.

Input: Information gathered from the IIoT
Output: Calculate the offset of IIoT connection information
1: Verify IIoT connection details
2: Set the number of IIoT connection parameters: 0 for initial value [0]
3: Set the IIoT connection index to zero
4: for(i = 0; i ≥ n; i++)
5: index = { i | GI ∈ Z, Z is integer}
6: Intitial_value[index] ± Initial_value[index]
7: offset [index] = Intitial_value[index] + linking_length
8: index ++
9: end for

Step 5: IIoT information and blockchain setup
This step involves creating a blockchain by adding additional IIoT information Ii,j to

connection information <In−1
i,j , Pn−1

i,j > ∈ Rn−1
i,j . IIoT information is generally exchanged

through a connection offset of IIoT information, with a thorough operation methodology
as shown in Algorithm 4. Algorithm 4 adds an offset to the IIoT information acquired from
the IIoT sensor based on the blockchain, updating the association point Pn−1

i,j of the newly

added IIoT information <In−1
i,j , Pn−1

i,j >. The rationale is that IIoT data may be updated
while minimizing the cost of configuring blockchain between IIoT data.
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Algorithm 4. IIoT information and blockchain setup.

Input: The IIoT connectivity information utilizing offset
Output: Using connection points Pn−1

i,j , update IIoT data jointly (n − 1)
1: Gather IIoT connectivity information
2: for i from 1 to n:
3: for each piece of linking information
4: To produce new IIoT connecting information, add offset[i] to each IIoT information
5. Refresh the link information Pn−1

i,j of IIoT at linking information <Ln−1
i,j , Pn−1

i,j > ∈ Rn−1
i,j

6: IoT data configuration on the blockchain
7: end for
8: end for

Step 6: Information Analysis and Monitoring in the IIoT
This step involves using data mining techniques (statistics, text mining, visualization,

etc.) to study and monitor data processed by the IIoT server, and IIoT information is
processed, processed, assessed, and analyzed. In this case, the manager is responsible for
both monitoring and managing the analysis outcome.

Step 7: Management and usage of services
This step uses and manages services based on analysis findings so that IIoT data may

be utilized in the industry based on monitoring data and to support services by analyzing
machine learning/R-based statistical data.

4.5. IIoT Information Reinforcement Learning

The index, collection location (binary value of X-axis and Y-axis coordinates), group
index, type, and type of IIoT information are considered in the proposed model for re-
inforcement learning of IIoT details, as shown in Figure 5. According to the aim and
features of IIoT, the suggested model creates and learns IIoT information using a machine
learning-based method, as illustrated in Figure 5.
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As shown in Figure 5, the proposed model load balances IIoT information so that
it may be asymmetrically connected, then orthogonalizes IIoT information to group IIoT
information asymmetrically using the weight probability function IIoT information, as
indicated in Equation (3). This is because IIoT details may be secured outside using hash
processing. Interference between IIoT data was reduced by classifying it according to its
kind and features and producing it regularly.

−
n

∑
i=1

1
n

log
1
n
= log n (3)
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where i is the number of IIoT data associations.
The proposed model diversifies the IIoT data collecting model by processing the

dimensions of vectorized IIoT data in multiple ways, as shown in Figure 6. In identifying
missing values of IIoT information, the dropout ratio in Figure 6 is utilized as a restriction
to prevent the overfitting of IIoT details. To strengthen the expressive power of the IIoT
information gathering model, the Dense is raised by 2n times to reduce overfitting.
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Table 3 shows how the proposed model extracts IIoT data using probabilistic statistical
techniques. Table 3 shows how to build up a layer (L) using a machine learning deep
learning model, set input and output data, and learn to obtain an extraction value. The
proposed model enhances computational efficiency by reducing dimension d to feature
subspace (k), which is assisted in the proposed model by leveraging the importance of
security information in bit form while lowering the burden on IIoT information. IIoT data
is handled asymmetrically if the signature value of IIoT information is randomly chosen to
link IIoT information with the hash chain.

Table 3. Features extract and selection equation of IIoT data.
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5. Evaluation
5.1. Environment Setting

The proposed model’s experimental setting was setup as stated in Table 4, and the
simulation was run. The simulation environment used an OPNet simulator to simulate the
production site, and the obtained data was combined with information gathered on the
production site. Google Collaboration provided programming languages and frameworks
for analyzing IIoT datasets.

Table 4. Simulation environment.

Division Specification

OS OPNet simulation

VMware Workstation

VMware Workstation 14

OS Windows 10 Professional

CPU 1 core

RAM/HDD 8 GB/150 GB

Language Python 3.9.5

Tool Google Colab

Library Scikit-learn, matplot, numpy, pandas, etc.

The transmit/receive power of the I IoT 0.1 W/0.15 W

The network coverage radius 100 m

The static circuit power 0.01 W

The pathloss exponent 1

The subnet tree depth 4

The available bandwidth for βServer/βI IoT 5 MHz/2.5 MHz

The power of noise −174 dBm/Hz

Subnet storage capacity 0.25 TB

Input data size 3 kbits/s

Delay threshold 8s

Link capacity 5 Gbps

Poisson lambda 85%

Data generation span 5 min

Max access count 20

The unit price of energy 0.2 Token/J

The network has a range of 100 m and a rental bandwidth of 5 MHz/2.5 MHz. The
typical transaction size was set to 100–200 B, with a variance compensation coefficient limit
time of 0.002 s/KB. Table 4 shows the additional options.

5.2. Configuring the Model

The proposed model divided IIoT datasets into training and test sets using classifi-
cation (LR, Multilayer Perceptron (MLP)), Support Vector Machines (SVM), and learning
(K-nearest neighbors (KNNs)), and Random Forest (RF) methods. Table 5 shows the param-
eter values for each method utilized in the proposed model. The model was built with five
specified features (index, collection location (binary value of X-axis and Y-axis coordinates),
group index, type, etc.) for machine learning.
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Table 5. Algorithm parameter values.

Algorithm Parameter Value

LR Regularization strength(C): 5, 10, 15; solver: lbfgs; penalty: l2

MLP Hidden_layer: 50; activation: relu; weight optimization: adam; learning rate: 0.001

SVM Regularization parameter(C): 0.001, 0.01, 1, 10, 25, 50; kernel: rbf; probability: true

KNN Number of neighbors: 3∼5; weights: uniform

RF number of trees: 50

5.3. Performance Evaluation
5.3.1. Performance Evaluation by Category

IIoT information was segregated into blockchain and non-blockchain-based scenarios
to verify the integrity of IIoT information provided by IIoT sensors at production sites,
and efficiency, throughput, overhead, and other factors were assessed in Table 6 based on
the number of simulated routers. Because the proposed model uses blockchain to handle
IIoT data, the average performance efficiency was 16.9%, the average processing rate was
12.1%, and the average overhead was 21.1% lower than the present environment without a
blockchain-based IIoT. Because a blockchain-based IIoT sensor is applied to the line that
creates IIoT information at the manufacturing facility, no extra function is required for
the production process. The time required to verify the integrity of IIoT data is reduced.
The proposed model, in particular, was able to achieve better outcomes because it could
evaluate IIoT device groups separately for administrators to assess by processing IIoT data
that may occur at endpoints at production sites as blockchain.

Table 6. Performance category assessment.

Category The Count Number of Simulations

1 2 3 4 5 6

Efficiency
(%)

Not using
blockchain 24.2 23.3 22.9 25.1 27.3 26.5

Using
blockchain 33.7 40.2 39.2 36.8 38.7 35.6

Throughput
(%)

Not using
blockchain 1.21 1.44 1.33 1.47 1.29 1.39

Using
blockchain 2.21 2.11 1.99 1.83 2.06 2.14

Overhead
(%)

Not using
blockchain 16.73 20.31 19.26 21.05 18.97 17.47

Using
blockchain 9.32 10.04 9.98 12.65 11.65 13.11

5.3.2. Reinforcement Algorithm Evaluation

The performance analysis findings for each algorithm employed in the proposed
model are shown in Table 7. As shown in Table 7, the proposed model evaluated data
obtained from IIoT sensing using an algorithm based on the number of simulated clouds.
The accuracy changed by 2.5% to 3% as the IIoT information grew. When comparing
performance before and after dimension reduction, Multilayer Perceptron (MLP) performed
well before dimension reduction, whereas Random Forest (RF) performed well. Regarding
IIoT data collecting performance, the smaller the data collection, the better the Support
Vector Machine (SVM) method, and the bigger the data collection, the better the Multilayer
Perceptron algorithm (MLP).
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Table 7. Evaluation by reinforcement algorithm.

LR

CN 1 2 3 4 5 6

A 79.15 82.08 81.74 83.77 82.17 84.08

LT 0.006 0.007 0.006 0.007 0.006 0.009

F1 80.65 82.14 81.08 82.65 84.06 83.38

MLP

CN 1 2 3 4 5 6

A 89.07 90.95 91.39 91.05 90.11 92.36

LT 0.004 0.005 0.003 0.006 0.007 0.005

F1 91.30 89.47 87.98 90.43 88.12 90.61

SVM

CN 1 2 3 4 5 6

A 84.71 86.37 85.02 89.01 86.98 85.49

LT 0.006 0.007 0.006 0.007 0.006 0.006

F1 84.12 86.08 85.99 87.15 86.07 85.35

KNN

CN 1 2 3 4 5 6

A 86.37 84.92 86.71 87.05 85.63 87.41

LT 0.003 0.004 0.005 0.004 0.006 0.005

F1 83.03 86.32 82.98 85.02 83.84 85.69

RF

CN 1 2 3 4 5 6

A 88.27 89.42 88.78 90.14 89.89 90.36

LT 0.004 0.003 0.003 0.005 0.004 0.006

F1 87.09 85.47 88.14 90.41 87.38 86.25
CN: the count number of simulations; A: accuracy; LT: learning time; F1: F1-score.

5.3.3. Comparison of Time Complexity

Server computing complicated, IIoT computing complex, verifier computing complex,
verifier storage complex, communication, complexity blockchain generation complex, and
Table 8 were used to classify the time complexity between the proposed and current models.
Because IIoT request and answer messages are gathered across all servers in an IIoT ecosys-
tem, IoT edge servers cryptographically enhance data or decrease communication before
IIoT ensures the integrity of IIoT information delivered to the server. Meta-information
must be saved in advance to validate the IIoT information stored in the server. Because the
validated data is so extensive, the amount of this meta-information should be kept as little
as is feasible. In this situation, the IIoT must store more data while keeping the IIoT data
to a bare minimum. Because the verifier handles the information on the outside without
extra processing, the proposed model reduces the amount of computing required to process
the integrity of IIoT details compared with the present paradigm. Verifier complexity of
O(logn) was demonstrated since the suggested model hierarchically splits IIoT information
into subgroups and combines IIoT’s critical data. Because it verifies the integrity of IIoT
information by replicating the negotiated blockchain of IIoT information to any block size
of kbits without loss of IIoT information by adding signatures at the beginning and end of
the hash chain according to odd/even of the replication, the proposed model has the same
time complexity as O(slogn).
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Table 8. Comparisons of time complexity.

Model
IIoT Edge Server

Computation
Complexity

IIoT
Computation
Complexity

Verifier
Computation
Complexity

Verifier Storage
Complexity

Communication
Complexity

Blockchain
Generation
Complexity

[20,23] O(logn) O(1) O(logn2) O(logn) O(1) O(logn2)

[24] O(logn) O(logn) O(nlogn) O(1) O(nlogn) O(logn)

[17,22,25] O(1) O(logn) O(logn2) O(nlogn) O(1) O(slogn)

[19,26] O(nlogn) O(logn) O(1) O(1) O(clogn) O(nlogn)

[27] O(1) O(logn) O(logn) O(nlogn) O(logn2) O(logn)

[28] O(logn) O(1) O(logn) O(nlogn) O(logn2) O(nlogn)

[15,16,18] O(nlogn) O(1) O(1) O(1) O(1) O(1)

Proposed
model O(logn) O(logn) O(logn) O(logn) O(clogn) O(slogn)

n: total number of message blocks, c: number of sampling messages, s: number of block signatures in the network.

5.3.4. Discussions

The pace at which IIoT data is collected, processed, and interpreted must be en-
hanced to efficiently manage the production and delivery of physical commodities in the
manufacturing business; it is much less likely that data will be intercepted or violated.
Large corporations are improving their competitiveness by investing in IIoT and future tech-
nologies (digital twin, electronic recorder (ELD), intelligent edge, predictive maintenance,
and RFID) in the manufacturing business (Radio Frequency Identification). However, the
cost is insufficient in small-scale manufacturing sectors, such as small- and medium-sized
firms, and the latest technologies are not adopted into the manufacturing industry. The
proposed model is based on an IIoT information platform that uses a blockchain to advance
IIoT information while lowering costs in a small manufacturing business. The proposed
model is the most crucial aim of IIoT information progress, and it can be used to improve
the integrity of IIoT data and connect disparate IIoT data. The proposed model was tested
in contexts where vast quantities of varied items are produced in tiny production facili-
ties. Compared with the prior environment without a blockchain-based IIoT information
platform, efficiency, throughput, and overhead were all improved. However, because the
suggested model is tailored for small manufacturing industries, optimal performance is
unlikely in big manufacturing industries. Large-scale manufacturing industry locations
must be addressed differently from small-scale industry settings. Therefore, extra needs
must be reflected. Furthermore, future technologies (digital twin, electronic recorder (ELD),
intelligent edge, predictive maintenance, and Radio Frequency Identification (RFID)) are
used in various combinations at the manufacturing site. Different results are obtained
depending on the manufacturing industry’s conditions.

6. Conclusions

Industrial sites are making a lot of efforts to reduce production costs by improving
the efficiency and integrity of IIoT sensors. In most industrial sites, there is an urgent
need to ensure the integrity of IIoT information because there is a lot of information that is
abnormally generated from IIoT sensors. In this study, we proposed an IIoT information
reinforcement model based on the IIoT information platform using blockchain to ensure the
integrity of IIoT information generated at industrial sites. The proposed model senses IIoT
information in real-time regardless of time and place and performs close linkage between
IIoT information with different characteristics. The proposed model constructed a subnet by
probabilistic use of the attribute frequency of IIoT information in order to efficiently collect
and analyze IIoT information. The deployed subnets were grouped by small blockchain to
improve dynamic clustering speed and accuracy, and then gradually ensured the integrity



Sensors 2022, 22, 4645 17 of 18

of IIoT information. The performance evaluation for the proposed blockchain-based IIoT
solution shows that its efficiency is 16.9% better, its average processing rate is 12.1%
faster, and its average overhead is 21.1% lower than for the present environment without
blockchain-based IIoT. In addition, the proposed model analyzed the data collected from
IIoT sensing by algorithm according to the number of simulated clouds and found that the
accuracy differed by 2.5% to 3% on average as the IIoT information increased constantly. In
future studies, based on the results of this study additional research and supplementation
will be conducted for IIoT sensors attached to other production facilities in industrial sites.
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