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Abstract: This study presents a novel interturn short-circuit fault (ISCF) and demagnetization fault
(DF) diagnosis strategy based on a self-attention-based severity estimation network (SASEN). We
analyze the effects of the ISCF and DF in a permanent-magnet synchronous machine and select
appropriate inputs for estimating the fault severities, i.e., a positive-sequence voltage and current
and negative-sequence voltage and current. The chosen inputs are fed into the SASEN to estimate
fault indicators for quantifying the fault severities of the ISCF and DF. The SASEN comprises an
encoder and decoder based on a self-attention module. The self-attention mechanism enhances the
high-dimensional feature extraction and regression ability of the network by concentrating on specific
sequence representations, thereby supporting the estimation of the fault severities. The proposed
strategy can diagnose a hybrid fault in which the ISCF and DF occur simultaneously and does not
require the exact model and parameters essential for the existing method for estimating the fault
severity. The effectiveness and feasibility of the proposed fault diagnosis strategy are demonstrated
through experimental results based on various fault cases and load torque conditions.

Keywords: deep learning; demagnetization fault; fault diagnosis; interturn short-circuit fault;
permanent-magnet synchronous machine; self-attention; severity estimation

1. Introduction

Condition monitoring and fault diagnosis are fundamental processes for maintain-
ing the advantages of permanent-magnet synchronous machines (PMSMs) for various
applications. Accurate and preemptive fault diagnoses can reduce economic losses and im-
prove reliability and stability by preventing excessive system downtime and accidents [1].
Accordingly, many studies have been conducted on diagnosing interturn short-circuit
faults (ISCFs), demagnetization faults (DFs), bearing faults (BFs), and eccentricity faults
(EFs), all of which frequently occur in PMSMs [2]. Among these, ISCFs and DFs directly
reduce the efficiency of the PMSM and increase its operational cost. In addition, owing to
their characteristics, each of these faults can lead to the other and/or increase the other’s
severity [3]. Therefore, it is essential to accurately diagnose ISCFs and DFs at an early stage.

The ISCF is one of the most frequently occurring stator winding failures, and results
in a short circuit owing to a breakdown of the insulation between adjacent windings [4].
The main causes of ISCFs are mechanical, electrical, and thermal stresses [5]. A large
amount of circulating current is generated in the short-circuited winding; this increases
the torque ripple owing to the phase imbalance, reducing the efficiency and performance
of the PMSM, and endangering its safe operation [6]. In addition, excessive local heat is
generated, accelerating the insulation breakdown and further increasing the severity of the
ISCF [7]. Furthermore, the permanent magnets (PMs) in a rotor can be irreversibly demag-
netized, owing to the reductions in the magnetic coercivity and local inverse magnetic field
according to the large circulating current [8]. Therefore, it is essential to diagnose an ISCF
at an early stage before it becomes serious and leads to other failures, such as DFs.
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A DF indicates that the strength of the permanent magnet in the PMSM has been
irreversibly reduced. The main causes of DFs are temperature rises owing to operation,
armature reactions, reverse magnetic fields owing to stator currents, and aging [9]. A DF
directly reduces the performance and efficiency of the PMSM, as the electromagnetic torque
of the PMSM is proportional to the cross-product between the current vector and PM
flux linkage vector [10]. When a DF occurs in a PMSM, a larger input current is required
to maintain the same output torque, leading to increased copper loss and higher heat.
This can cause more severe irreversible demagnetization, and the high heat can damage
the insulation of the stator windings [3]. Therefore, it is important to diagnose a DF
before it worsens to avoid serious damage to the PMSM and increase the reliability of the
application system.

Many researchers have studied approaches to diagnosing ISCFs and DFs. For example,
motor current signature analysis (MCSA) uses the fast Fourier transform, continuous
wavelet transform, and Hilbert–Huang transform to detect the faults by analyzing the
harmonics of the phase current caused by the faults [11–13]. However, MCSA does not
accurately estimate the severity of failure, and there is a risk of false detection due to other
failures such as the EF [14].

A model-based fault diagnosis method for estimating the severity of a fault has also
been proposed. Methods have been proposed for estimating fault indicators by using
zero-sequence components and negative-sequence components, with the aim of diagnosing
ISCFs [15,16]. In [17], a method was studied for diagnosing ISCFs based on residual current
by using a dynamic model. Parameter estimation methods based on a mathematical model
of the PMSM have also been proposed for diagnosing DFs [18]. However, the accuracy of
model-based fault-diagnosis methods is highly dependent on the accuracy of the model.
Changes in model parameters owing to the occurrence of other faults directly influence
the reliability and robustness of the fault diagnosis, as the existing methods assume that
only one fault occurs. For example, in the method in [17], if a DF occurs, an ISCF may
be misdiagnosed, because the residual current vector changes owing to the decrease in
the amplitude of the PM flux from the DF. In addition, ISCFs and DFs can induce each
other. As such, a method for diagnosing both faults is essential, but has not yet been
studied. Therefore, it is necessary to develop a method for accurately diagnosing both
ISCFs and DFs.

In view of recent developments in deep learning, data-driven fault-diagnosis methods
have been widely studied. In [19], a detection method for DFs and BFs in a PMSM was
studied; it used a Visual Geometry Group-16 network with signal-to-image conversion.
Similarly, a 1-D convolutional neural network (CNN) composed of multi-scale feature
extraction modules has been proposed for detecting DFs and BFs [20]. In [21], a CNN-
based diagnostic method for DFs and mixed damages using raw stator current signals
was proposed. Also, a detection and classification method for the incipient ISCF using
a CNN was presented [22]. In [23], a sparse autoencoder was applied to detect ISCFs in
a PMSM by using data augmentation and a conditional generative adversarial network.
In [24], a transformer convolution network (TCN) was proposed, with transfer learning for
complementing a limited number of training samples. In [25], an attention recurrent neural
network (RNN) was applied to estimate the severity of ISCFs for early-stage diagnoses by
using only current signals. Data-driven fault diagnosis methods using deep learning have
shown remarkable results; however, they are mainly directed to only fault detection and
classification, and studies on estimating the fault severity are relatively rare. An estimation
of fault severity can provide a reliable guide for establishing safe operating areas for PMSMs,
and can be applied to fault-tolerant controls and maintenance schedules. Therefore, it is
essential to develop a method for estimating the severity of faults, rather than simply
detecting them.

This study proposes a novel fault-diagnosis strategy for estimating the severity of
ISCFs and DFs in a PMSM by using a self-attention-based severity estimation network
(SASEN) inspired by the transformer [26]. The SASEN consists of an encoder and decoder,
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both of which comprise self-attention modules. A multi-head self-attention (MSA) module,
in which self-attention modules are configured in parallel, is advantageous for extracting
various high-dimensional features from input data. In addition, the SASEN concentrates
on certain features of the encoder through the encoder–decoder attention process, thereby
improving the regression performance. The SASEN receives a positive-sequence voltage
(PSV), positive-sequence current (PSC), negative-sequence voltage (NSV), and negative-
sequence current (NSC) as inputs, and outputs two fault indicators directly related to the
severity of the ISCF and DF. The network can diagnose ISCFs and DFs by estimating the
severity of faults through regression. In addition, the proposed strategy can diagnose a
hybrid fault (HF) in which the ISCF and DF occur simultaneously. This is believed to be the
first approach that can diagnose the HF. The experimental results validate the effectiveness
and feasibility of the proposed diagnosis strategy for estimating the severities of ISCFs,
DFs, and HFs under various load torques and fault conditions.

The main contributions of this study are as follows.

1. The proposed SASEN can be used to evaluate the severity of ISCFs and DFs. By apply-
ing the self-attention mechanism, the SASEN provides superior model representation,
feature extraction, and regression capabilities. The proposed strategy can be extended
to the diagnosis of other faults.

2. The proposed strategy can diagnose an HF, i.e., when the ISCF and DF occur simulta-
neously. To the best of our knowledge, this is the first study on diagnosing an HF by
estimating its severity.

3. Fault diagnosis is achieved for various load torques and fault conditions. In partic-
ular, the proposed strategy can diagnose faults even under untrained load torques.
Therefore, it has an excellent generalization ability and is more effective, as it is not
necessary to train all possible load torques.

4. The proposed strategy can accurately diagnose faults without requiring the exact
model and parameters necessary for severity estimation in the conventional method.

The remainder of this paper is organized as follows. In Section 2, the impacts of ISCFs
and DFs on the PMSM are analyzed, aiming to select the inputs and outputs for the severity
estimation network. In Section 3, a SASEN is proposed for the diagnosis of ISCFs, DFs,
and even HFs. In Section 4, the effectiveness and feasibility of the proposed diagnosis
strategy are demonstrated by using experimental results. Finally, Section 5 concludes
the study.

2. Analysis of Faults

In this section, the impacts of the ISCF, DF, and the HF on the PMSM are analyzed.
The changes in three-phase voltage and current due to the faults are analyzed by using
the model equation of the faulty PMSM. By using the analysis, we select the inputs and
outputs of the deep-learning model for estimating the severity of the faults.

2.1. Analysis of Interturn Short-Circuit Fault

The stator phase voltage equation for a PMSM with an ISCF in the abc reference frame
is expressed as follows [3]:

[vabc] = Rs[iabc] +
d
dt
([Ls][iabc] + [ψm,abc])− Rs[P]µi f −

d
dt

(
[Ls][P]µi f

)
(1)

where [vabc] =
[
va vb vc

]T , [iabc] =
[
ia ib ic

]T , [ψm,abc] = ψm

 cos(θ)
cos
(
θ − 2

3 π
)

cos
(
θ + 2

3 π
)
,

[Ls] =

 L M M
M L M
M M L

, and [P] =
[
1 0 0

]T . [vabc] and [iabc] are the stator-phase volt-

age and current vectors, respectively. [ψm,abc] is the flux linkage vector, ψm is the amplitude
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of the PM flux and θ is the electrical angle of the rotor. Rs is the stator resistance. [P]
represents the location where the ISCF occurs. [P] becomes

[
0 1 0

]T or
[
0 0 1

]T when
the ISCF occurs in phases b or c, respectively. [Ls] is the stator inductance matrix, and L
and M denote the self and mutual inductances, respectively. µ is the shorted turn ratio. i f
is the fault current through the shorted circuit.

The ISCF can be modeled as an additional circuit, owing to the short between windings
with broken insulation in a single phase. A large amount of circulating current flows
through this circuit, significantly affecting the PMSM. The fault current depends on µ
and the fault resistance r f ; as µ increases or r f decreases, the magnitude of the fault
current increases. As shown in (1), new components are generated when an ISCF occurs.
These fault components are the largest in the phase where the fault occurs, and break the
balance between phases. This results in imbalances in the three-phase impedance and
current. In addition, the magnitude of the three-phase current increases to provide similar
performance at a given load torque [3]. The degree of the imbalance and magnitude of
the three-phase current can be easily quantified by using the NSC and PSC, respectively.
The NSC and PSC are calculated as follows:

iNS =
1
3
(ia + α2·ib + α·ic) (2)

iPS =
1
3
(ia + α·ib + α2·ic), (3)

where iNS and iPS represent the NSC and PSC, respectively. α is the phase-rotation operator

and is ej· 2pi
3 .

The NSC is suitable for quantifying the imbalance in the three-phase current of the
PMSM. Even for a healthy PMSM, the NSC is non-zero, owing to the inherent asymmetry
created by manufacturing. However, when an ISCF occurs, the NSC increases significantly
compared with that of a healthy PMSM. As the severity of the ISCF increases, the imbalance
of the three-phase current also increases, significantly increasing the NSC. The NSC also
affects the NSV, which is calculated as follows:

vNS =
1
3
(va + α2·vb + α·vc). (4)

Accordingly, the NSC and NSV can be used to estimate the severity of an ISCF.
In addition, the magnitude of the three-phase current is increased to maintain the given
load torque; in this context, the average magnitude of the three-phase current can be
calculated by using the PSC.

2.2. Analysis of Demagnetization Fault and Hybrid Fault

A DF is an irreversible decrease in the flux of the PMs. In other words, the DF can be
modeled as a decrease in the amplitude of the PM flux. The stator phase voltage equation
of the PMSM with a DF in the abc reference frame is expressed as follows:

[vabc] = Rs[iabc] +
d
dt

(
[Ls][iabc] + [ψm, f ,abc]

)
, (5)

where [ψm, f ,abc] = ψm, f

 cos(θ)
cos
(
θ − 2

3 π
)

cos
(
θ + 2

3 π
)
 is the flux linkage from the demagnetized magnets,

and ψm, f is the amplitude of the demagnetized magnet flux. The stator phase voltage is
reduced when a DF occurs, because ψm, f is smaller than ψm. Moreover, the decrease in the
magnetic flux leads to a decrease in the torque output, because the torque of the PMSM is
proportional to the amplitude of the PM flux. Therefore, similar to the case with the ISCF,
the magnitude of the three-phase current increases to maintain the given load torque [3].
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The magnitudes of the phase voltage and current can be quantified by using the PSV and
PSC. The PSC is defined above, and the PSV can be calculated as follows:

vPS =
1
3
(va + α·vb + α2·vc), (6)

where vPS represents the PSV. The PSV provides the average magnitude of the three-phase
voltage. As the DF becomes more severe, the magnitude of the stator phase voltage is
further reduced, leading to a proportional reduction in the PSV. Conversely, to maintain
the load torque, the PSC increases as the DF becomes more severe. Therefore, the severity
of the DF can be estimated by utilizing the property that the PSV decreases and the PSC
increases as the DF becomes severe.

The HF represents the simultaneous occurrence of the ISCF and DF, and has the
properties of both faults. Similar to the ISCF, the HF increases the NSC, owing to a three-
phase imbalance. In addition, the PSC is increased to maintain the load torque, owing to
the reduced efficiency of the faulty PMSM. In addition, the PSV decreases because the flux
of the PM decreases.

2.3. Input and Output Selection

Analyses of faults suggest that the severity of a fault can be estimated by using the
PSV, PSC, NSV, and NSC, as the severity is closely related to these signals. Therefore, fault
indicators for quantifying the severity of the ISCF, DF, and HF should be defined for an
accurate diagnosis. Considering the factors indicating the severity of the faults, two fault
indicators are defined as follows:

FIISCF = µI f (7)

FIDF =
ψm, f

ψm,h
, (8)

where I f represents the magnitude of the fault current, and ψm,h represents the amplitude
of the healthy magnet flux. FIISCF and FIDF represent the fault indicators for the ISCF and
DF, respectively. In a healthy PMSM, FIISCF and FIDF are 0 and 1, respectively. In the case of
an ISCF, FIISCF increases, but FIDF remains 1. Conversely, in the case of a DF, FIDF decreases,
but FIISCF is zero. In the case of an HF, FIISCF increases and FIDF decreases. Therefore,
to diagnose the ISCF, DF, and HF, a nonlinear relationship is learned by using the SASEN,
with the PSV, PSC, NSV, and NSC as inputs, and the fault indicators as outputs.

3. Proposed Severity Estimation Method

This section introduces the proposed self-attention-based severity estimation network
for the diagnosis of the ISCF, DF, and the HF. First, the self-attention module underlying
the SASEN is described, followed by the overall structure of the SASEN. The SASEN has
an encoder–decoder structure and has excellent regression capabilities by using attention
layers. Then, the overall structure of the fault diagnosis system by using the SASEN
is illustrated.

3.1. Self-Attention Module

The attention mechanism is used to increase the performance of the deep-learning
model by making the model pay attention to a specific vector. It does so by constructing
a weighted combination of vectors according to specific rules. Self-attention is a type of
attention mechanism, and comprises calculating a sequence expression by finding the
correlations between components at different positions in a sequence. The overall structure
of the self-attention module is shown in Figure 1. The scaled dot-product attention [26] is
used, and is expressed as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (9)
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where Q, K, and V are the query, key, and value matrices, with dimensions of dk, dk, and dv,
respectively.

√
dk is a scaling factor. First, the dot products between the query and keys are

calculated, and then are scaled to 1/
√

dk. The scaling factor helps to stabilize the gradient
while training the network. Then, a softmax function is applied to obtain the normalized
attention weights, which are multiplied by the values. Through this process, the attention
module outputs a new sequence representation.

Figure 1. Structure of self-attention module.

3.2. Self-Attention-Based Severity Estimation Network

The overall architecture of the SASEN is shown in Figure 2. Initially, input embedding
is required before an input sequence can be used as an input to the network. An input
sequence with dimensions of dinput is projected as a vector with dimensions of dmodel by
applying a linear projection in the input embedding. This process is essential because the
dimensions of the sequence in all layers of the SASEN are constant, as dmodel . In this study,
dmodel is 64.

The embedded sequence is the input to the SASEN. The SASEN has an encoder–
decoder structure. The encoder maps the incoming sequence to a feature representation.
The encoder is composed of multiple encoder layers, each of which consists of two sublayers:
an MSA, and a fully connected feed-forward network (FFN). The MSA applies the attention
function to each of the h times linearly projected versions of the keys, values, and queries
with dimensions of dk, dk, and dv, respectively. That is, the MSA represents a combination
of multiple self-attentions in parallel, and can be expressed as follows:

MSA(Q, K, V) = Concat(Head1, . . . , Headh)W
O (10)

Headi = Attention(QWQ
i , KWK

i , VWV
i ), (11)

where the trainable linear projection matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk ,
WV

i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel . As the MSA approach jointly uses multiple
self-attention modules, it is possible to find the correlation in the sequence from various
angles, thereby enhancing the expressive power of the attention layer. Therefore, the model
can collect various types of information from different representation subspaces at different
locations, without increasing the number of parameters.

The other sublayer, the FFN, is composed of two linear transformations with the
rectified linear unit activation function in the middle. The FFN is expressed as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2. (12)

The input and output of the FFN have dimensions of dmodel , and the hidden layer of the
FFN has dimensions of d f f = 2048. After the FFN, the input sequences are fully expressed
as feature representations. Residual connections [27] are used around the MSA and the
FFN. The residual connections prevent gradient vanishing in the deep network. In addition,
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applying layer normalization [28] helps the training to converge stably, and shortens the
training time.

Figure 2. Overall architecture of the self-attention-based severity estimation network (SASEN).

The decoder receives the feature representations from the encoder and generates the
target output sequences. The decoder has a similar structure as the encoder, but includes
another MSA, called the encoder–decoder attention. This attention layer supports the
decoding process by calculating the associations between the encoder and decoder and au-
tomatically concentrating on the relevant encoded features. Through the encoder–decoder
attention, the regression performance for producing the target sequence is improved.
As with the encoder, residual connections are used around the sublayers in the decoder,
followed by layer normalization. Finally, the decoder outputs the target sequences. In this
study, dk, dv, and h are 8, 8, and 8, respectively. The number of encoder and decoder layers
(N) is two.

3.3. Training Procedure

In this study, the proposed SASEN model was implemented by using Python with
the Pytorch deep-learning library. Based on the analysis in Section 2, the inputs of the
network were four sequences, i.e., the PSV, PSC, NSV, and NSC, and the outputs were the
two fault indicators FIISCF and FIDF. The learnable parameters of the SASEN were trained
by standard backpropagation with an l2 loss function, which is expressed as follows:

l2(y, ŷ) =
1
M

M

∑
i=1

(ŷi − yi)
2, (13)

where ŷ and y are the estimated and actual values, respectively. The diagnosis model was
trained by using the Adam optimizer with mini-batches of size 100 and a learning rate of
0.0001. The total number of training epochs was 400. A dropout rate of 0.2 was applied
for regularization.
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3.4. Overall Structure of Diagnosis System

The overall structure of the fault diagnosis system is shown in Figure 3. First, the three-
phase voltage and current signals measured from the PMSM were pre-processed. In par-
ticular, (2)–(4) and (6) were used to convert the three-phase voltage and current signals to
the NSC, PSC, NSV, and PSV, respectively, and then were passed through a bandpass filter
to reduce noise. The pre-processed signals were normalized and fed into the proposed
SASEN, which outputs the fault indicators representing the severity of the ISCF and DF.
At this point, the proposed network was trained to exhibit excellent feature extraction
and regression capabilities by using a sufficient number of healthy and faulty samples.
In general, the influences of disturbances or noise during a test can cause fluctuations
in the estimated fault indicators. To compensate for this, the output of the network was
post-processed by using a moving average filter, so as to provide a more reliable estimate
of the fault severities.

Figure 3. Overall structure of fault diagnosis system.

4. Experimental Results
4.1. Experimental Setup

To demonstrate the effectiveness and feasibility of the proposed fault diagnosis strat-
egy, experiments were conducted by using a test rig, as shown in Figure 4. The experimen-
tal setup consisted of an interior PMSM (IPMSM), dynamo machine, encoder, and data-
acquisition device. The IPMSM had six poles, 36 slots, and 120 turns, with a concentrated
winding in each phase. The detailed specifications of the IPMSM are listed in Table 1.
The data-acquisition device acquired the stator three-phase voltage, current, and rotational
speed at a sampling rate of 100 kHz. In addition, 1/20 downsampling was performed on
the measured data.

Figure 4. Experimental setup of the interior permanent-magnet synchronous machine (IPMSM).
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Table 1. Detailed specifications of the interior permanent-magnet synchronous machine (IPMSM).

Parameters Values

Power 2.2 kW
Rated torque 4.7 Nm
Rated speed 4500 rpm

Rated current 8.4 A
d-axis inductance 2.836 mH
q-axis inductance 5.999 mH
Stator resistance 0.43 Ω

Back EMF constant 36 V/kr/min

The experiments were conducted for four cases, i.e., one healthy machine, and three
faulty machines with the ISCF, DF, and HF, respectively. The detailed fault and operating
conditions are shown in Table 2. In all of the experiments, the IPMSM was operated at
a rotational speed of 4500 rpm and various load torques ranging from 1 to 4 Nm. First,
to implement the ISCF in the IPMSM, we implemented a turn-to-turn short by connecting
a resistor to the turns of the last winding of phase c, as shown in the ISCF tap in Figure 4.
The resistor connected at this short circuit provided the fault resistance, and had a value of
0.218 Ω. In addition, 5, 10, and 15 turns were sequentially shorted out of a total of 120 turns
to realize three different levels of fault severity. The 5-turns short was the weakest fault,
and the 15-turns fault was the most serious. The fault current circulating through the short
circuit was measured. When only the ISCF occurred, the magnitudes of the fault currents
were 20 A and 35 A for the weakest and most severe faults, respectively.

Table 2. Description of fault cases for interturn short-circuit faults (ISCFs), demagnetization faults
(DFs), and hybrid faults (HFs), and operating conditions.

Case Healthy ISCF1 ISCF2 ISCF3 DF1 DF2

r f (Ω) inf 0.218 0.218 0.218 inf inf
µ 0 0.042 0.083 0.125 0 0

ψm, f /ψm,h 1 1 1 1 0.833 0.667

Case HF1 HF2 HF3 HF4 HF5 HF6

r f (Ω) 0.217 0.217 0.217 0.217 0.217 0.217
µ 0.042 0.083 0.125 0.042 0.083 0.125

ψm, f /ψm,h 0.833 0.833 0.833 0.667 0.667 0.667

Speed (rpm) 4500
Torque (Nm) 1, 2, 3, 4

Next, to implement the DF in the IPMSM, the PM embedded in the rotor was replaced
with a dummy block with the same weight and volume but no magnetism to realize
demagnetization, as shown in Figure 5. There were six permanent magnets in the IPMSM,
and two levels of fault severity were implemented by sequentially replacing one or two
magnets with dummy blocks. Therefore, the demagnetized IPMSM was tested with 83.3%
and 66.7% residual fluxes as compared to those of a healthy machine, respectively.

The HF comprised a simultaneous implementation of an ISCF and DF. Six types of
fault conditions were tested, in view of the three levels of ISCF severity and two levels of
DF severity. In the HF, the characteristics of the ISCF and DF appeared simultaneously.

4.2. Training and Test

In total, 29,896 data samples were acquired through the experiments with healthy and
faulty IPMSMs, consisting of 4067 healthy samples, 6951 ISCF samples, 5072 DF samples,
and 13,806 HF samples. The sequence length of each data sample was 136. This dataset
was used in the training and validation sets for the SASEN. The SASEN was trained on
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a desktop with an Intel Core i5-9600 CPU @ 3.70 GHz, 32 GB RAM, and NVidia Titan
X Pascal.

Figure 5. Demagnetized IPMSM. Permanent magnets are replaced with dummies.

To demonstrate the effectiveness of the proposed fault diagnosis strategy, two tests
were performed. The first test was conducted on the experimental data while considering
the transient state to be similar to that of the actual operating machine, as shown in Figure 6.
The proposed method was tested by using data in which the load torque was transiently
increased from 1 to 4 Nm for 18 s. The second test was performed on untrained data with
various load torques. To achieve high accuracy in actual applications, it is essential to
show that fault diagnoses can be performed under various operating conditions with an
appropriate amount of training data. The proposed method was tested under untrained
load torque conditions from 1.2 to 3.8 Nm in increments of 0.2 Nm.

0 3 6 9 12 15 18
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)

Figure 6. Change in the load torque for the test 1.

4.3. Results and Discussion
4.3.1. Test Results for Transient Load Torque

Figure 7 shows the test results for the ISCF cases with transient changes in the load
torque. The fault diagnosis results for ISCF Cases 1, 2, and 3 are presented, and the test
results for the healthy machine are also included for comparison. The SASEN outputs
two fault indicators: FIISCF, which represents the severity of the ISCF (see Figure 7a),
and FIDF, which represents the severity of the DF (see Figure 7b). For the healthy IPMSM,
the estimated FIISCF and FIDF are 0.05 and 1.005, which are close to 0 and 1, respectively,
even when the load torque changes transiently. The estimated fault indicators are similar
to the actual values, suggesting that no fault has occurred. However, when the ISCF
occurs, FIISCF increases, but FIDF does not change as the shorted turn ratio µ increases from
0.042 to 0.125. This suggests that the proposed strategy can diagnose ISCFs. In addition, it
can be seen that the ISCF is diagnosed by estimating the severity of the fault, even with
the transient load torque. This is because the NSC and NSV reflect the severity of the
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ISCF, whereas the PSC reflects the change in the load torque and compensates for the
change in the operating point to the network. In addition, the fault indicator for the DF
does not change because the PSV, which reflects the demagnetization severity, does not
change significantly with the ISCF. Therefore, the proposed strategy can diagnose an ISCF
by estimating the severity, and can clearly distinguish between machines with the ISCFs
and healthy machines, and also from a DF.

(a)

(b)

Figure 7. Test results for the interturn short-circuit fault (ISCF) at transient load torque. (a) Fault
indicator for the ISCF. (b) Fault indicator for the demagnetization fault (DF). The solid line and
dashed line represent the estimated and real fault indicators, respectively.

Figure 8 shows the test results for the DF cases with transient changes in the load
torque. The fault diagnosis results for DFs with two severity levels are presented. Contrary
to the ISCF diagnosis results, the estimated FIDF is reduced compared to that of the healthy
machine, but the estimated FIISCF is close to 0, similar to that of the healthy machine when
the DF occurs. In addition, as the severity of DF increases from 83.3% to 66.7%, the estimated
FIDF is further reduced and becomes closer to the actual value, suggesting that the proposed
strategy can diagnose DFs. Meanwhile, the severity of DF is accurately estimated even with
transient load torque, and it is possible to accurately distinguish DF from ISCF because
FIISCF does not respond to DF. This is because the PSV and PSC accurately reflect the
decrease in flux, whereas the NSC does not increase with DF. Therefore, the results validate
that the proposed strategy can diagnose DF by estimating its severity.
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(a)

(b)

Figure 8. Test results for the DF at transient load torque. (a) Fault indicator for the ISCF. (b) Fault
indicator for the DF. The solid line and dashed line represent the estimated and real fault
indicators, respectively.

Figure 9 shows the test results for the HF cases with transient changes in the load
torque. The fault diagnosis results for HF with six cases are presented. Both FIISCF and
FIDF are changed compared to the healthy machine, as the HF is the fault where the
ISCF and DF occur simultaneously. The estimated FIISCF increases as µ increases, and the
estimated FIDF decreases as the IPMSM becomes more demagnetized. Remarkably, the HF
has the same fault conditions as in the ISCF, but FIISCF shows a reduced value compared
to that with the ISCF. This is because the flux linkage from the PM to the stator winding
is reduced owing to the demagnetization, which in turn reduces the magnitude of the
fault current. Nevertheless, as the input signals reflect the characteristics of the faults,
the SASEN can accurately estimate the severity of the faults. Therefore, it is demonstrated
through experiments that the proposed strategy can diagnose HFs by estimating these two
fault indicators.

4.3.2. Test Results for Untrained Load Torque

Figure 10 shows the test results for the HF5 at untrained load torques from 1.2 to 3.8 Nm.
For each load torque, three seconds of measurement data were used for the fault diagnosis
test. The proposed strategy can diagnose the fault even for untrained load torques, even
though the SASEN is trained only on the data of the four load torques from 1 to 4 Nm.
The results show more errors and fluctuations compared with the results from Test 1.
Nevertheless, the proposed strategy provides a fault severity estimation for the HF, and a
clear distinction from a healthy IPMSM. Because the PSC reflects changes in the load torque
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and the NSC, NSV, and PSV reflect the severities of the ISCF and DF to the network, fault
diagnosis is possible even with untrained data.

(a)

(b)

Figure 9. Test results for the hybrid fault (HF) at transient load torque. (a) Fault indicator for the ISCF.
(b) Fault indicator for the DF. The solid line and dashed line represent the estimated and real fault
indicators, respectively.

(a)

Figure 10. Cont.
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(b)

Figure 10. Test results for the untrained load torque. Test case is HF5 at untrained load torques of
1.2 to 3.8 Nm. (a) Fault indicator for the ISCF. (b) Fault indicator for the DF.

4.4. Comparison with Other Methods

To verify the superiority of the proposed strategy, the strategy was compared with
the latest fault diagnosis methods via experiments. The fault diagnosis results are listed
in Table 3. Untrained data were used to test each fault diagnosis method. The evaluation
metrics were the root mean squared error (RMSE) for each fault indicator, and the time
consumption for the test. The TCN [24] represents the latest study on fault detection
and classification; it was used in a comparative study, because fault severity estimation
studies are extremely rare, and because it shows good results in detection and classifica-
tion. The activation and softmax functions were removed from the TCN for regression.
The attention RNN [25] was also compared. The hyperparameters used for the TCN and
attention RNN were those presented in each study, respectively, and inputs were the same
as those for the proposed strategy, i.e., the NSV, NSC, PSV, and PSC. As can be seen from
the results, the RMSE of FIISCF shows the best result with the smallest value of 0.0566 in the
proposed method. The attention RNN shows the smallest RMSE for FIISCF, but there is no
significant difference relative to the proposed method. Moreover, the time consumption for
testing is 516.4 ms with the attention RNN, i.e., much larger than the 40.6 ms required for
the proposed method. This is because the attention RNN requires sequential operations,
thereby increasing the computational complexity. In contrast, the proposed strategy enables
parallel operations without the sequential operations used in the RNN, resulting in a much
shorter test time. Similar to the proposed strategy, the TCN can be tested quickly with
parallel operations, but the accuracy of estimating the fault severity is much lower than that
in the proposed strategy; the FIISCF and FIDF show four and seven times greater RMSEs,
respectively. This is because in the proposed strategy, the decoder and encoder–decoder
attention used behind the encoder further improve the regression performance. Therefore,
the proposed strategy exhibits the best fault diagnosis performance for severity estimations.

Table 3. Comparison of diagnostic results including root mean squared error (RMSE) for the un-
trained load torque for the proposed method, transformer convolution network (TCN), and attention
recurrent neural network (RNN).

RMSE of FIISCF RMSE of FIDF Test Time (ms)

TCN [24] 0.225 0.0126 28.8
Attention RNN [25] 0.0879 0.0006 516.4

Proposed 0.0566 0.0019 40.6

Table 4 presents qualitative comparisons with other fault diagnosis methods to further
evaluate the advances of the proposed method. Model-based methods [17,18] can diag-
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nose only one fault by estimating the severity and require accurate models. Data-driven
methods [20,21,23,25] do not require accurate models, but most studies do not estimate
the severity of faults. The proposed method diagnoses the ISCF, DF, and HF by estimat-
ing fault severities and does not require an accurate model. In addition, the proposed
method demonstrates that generalization capability as fault diagnosis is possible even
under varying load torque and untrained load torque.

Table 4. Comparison with other fault diagnosis methods.

Proposed Method [17] [18] [20] [21] [23] [25]

Fault diagnosis for ISCF O O X X X O O
Fault diagnosis for DF O X O O O X X
Fault diagnosis for HF O X X X O X X

Estimation of fault severity O O O X X X O
No need for accurate model O X X O O O O

Fault diagnosis under varying torque O O O O O X O

The bold meaning is to highlight better indices. O is better.

5. Conclusions

In this study, we proposed a novel fault diagnosis strategy for ISCFs, DFs, and HFs in
a PMSM by using the SASEN with an encoder–decoder structure based on a self-attention
module. The SASEN estimates fault indicators for quantifying the severity of each fault,
and uses the PSV, PSC, NSV, and NSC as inputs. An MSA approach is used for the
encoder and decoder to improve the regression ability of the network, i.e., by focusing on a
specific feature representation. The proposed method does not require accurate models
and parameters to estimate the severity of faults, and is believed to represent the first study
to diagnose an HF by estimating its severity. Experiments implementing the ISCF, DF,
and HF validate that the proposed strategy successfully estimates the fault indicators and
diagnoses the faults under various fault and load torque conditions. In a future study,
we will focus on the severity estimations for the various faults occurring in a PMSM with
varying speeds and untrained operating conditions.
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SASEN Self-attention-based severity estimation network
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PSV Positive-sequence voltage
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NSV Negative-sequence voltage
NSC Negative-sequence current
HF Hybrid fault
FFN Fully connected feed-forward network
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