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Abstract: Based on low-rank matrix reconstruction theory, this paper proposes a joint DOD and
DOA estimation method for coherent targets with bistatic coprime array MIMO radar. Unlike the
conventional vectorization, the proposed method processed the coprime array with virtual sensor
interpolation, which obtained a uniform linear array to generate the covariance matrix. Then, we
reconstructed the Toeplitz matrix and established a matrix optimization recovery model according to
the kernel norm minimization theory. Finally, the reduced dimension multiple signal classification
algorithm was applied to estimate the angle of the coherent targets, with which the automatic pairing
of DOD and DOA could be realized. With the same number of physical sensors, the proposed method
expanded the array aperture effectively, so that the degree of freedom and angular resolution could
be improved significantly for coherent signals. However, the effectiveness of the method was largely
limited by the signal-to-noise ratio. The superiority and effectiveness of the method were proved
using simulation experiments.

Keywords: bistatic radar; MIMO radar; coprime array; coherent signal; convex optimization

1. Introduction

At the beginning of the 21st century, with the development of multiple-input multiple-
output (MIMO) communication theory, scholars at the Lincoln Laboratory proposed the
concept of MIMO radar [1] in 2003. MIMO radar has been studied by many scholars
because of its advantages in waveform diversity [2–4], better resolution, and extended array
aperture [5–7]. In recent years, direction of arrival (DOA) estimation [8–15] is increasingly
linked to MIMO radar. When using conventional subspace class algorithms to estimate
the DOA of coherent targets, the vector of the signal subspace penetrates into the noise
subspace, resulting in a deficient covariance matrix rank that is unable to accurately estimate
the number of coherent signal sources. To solve the problem, experts proposed two methods;
one is the non-dimension-reduction algorithm [16,17], including the frequency domain
smoothing algorithm, and the other is the dimension-reduction algorithm [18], including
the classical spatial smoothing algorithm and matrix reconstruction algorithm. When
scholars estimated the DOA, a problem regarding unknown number of target sources was
often encountered; thus, they devised an LS-MDL method for source enumeration [19].
Because a uniform linear array has small apertures, scholars proposed sparse arrays in
order to improve the degrees of freedom [20]. The coprime array [21,22] has been widely
studied by scholars due to its larger element spacing. Thus, the coprime array has a low
mutual coupling effect and a high accuracy in target angle estimation.

However, scholars found it difficult to estimate the DOA of coherent targets by using
sparse arrays because the common method of processing sparse arrays is to form a sum-
difference coarray and vectorize it to obtain a virtual array, but the above method is
invalid for coherent signals. Some scholars proposed a low-rank matrix-reconstruction
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method [23,24] that finds the appropriate constraint conditions through theoretical analysis
and calculation to obtain a more accurate matrix reconstruction. Vaidyanathan, P. combined
the low-rank matrix reconstruction algorithm with an underdetermined estimation of
difference coarray [25], which used the low-rank matrix-reconstruction method to recover
the missing observation matrix elements, and finally used the recovered matrix for DOA
estimation. Liu, C. used the kernel norm minimization method to recover the value of
“holes” in the difference coarray [26], which could expand the degrees of freedom of the
array and improve the performance of the DOA estimation. Chen, T. applied the low-
rank matrix reconstruction method to DOA estimation of a sparse array, and caused the
covariance matrix that was obtained by the sparse array to recover to the normal matrix [27].
Zhou, C. proposed a matrix reconstruction algorithm based on a coprime array and used
the idea of virtual sensor interpolation to construct virtual uniform arrays [28]. Zheng, Z.
proposed an algorithm for DOA estimation of coherent signals that was based on coprime
array interpolation and low-rank matrix recovery [29]. According to the method of coprime
array interpolation and low-rank matrix recovery [28,29], we proposed a joint direction
of departure (DOD) and DOA estimation method of bistatic coprime array MIMO radar
for coherent targets based on low-rank matrix reconstruction. The method uses a virtual
sensor interpolation algorithm and the kernel norm minimization theory to establish a
matrix optimization recovery model. Under the condition of the same number of physical
sensors, the method expands the array aperture and improves the array degree of freedom,
angle estimation accuracy, and angular resolution. In addition, it is suitable for estimating
coherent signals.

The framework of this paper is designed as follows. In Section 2, the paper deduces
the math model of the bistatic coprime array MIMO radar. We elaborate on the method
of interpolating virtual sensors into the “holes” of coprime array and the low-rank matrix
reconstruction algorithm in Section 3. The effectiveness of the algorithm is proved by
simulation experiments in Section 4. Finally, the conclusions are drawn in Section 5.

Notations: We use italicized boldface characters to represent vectors and matrices
in this paper. Superscripts (.)T and (.)H represent transpose and conjugate-transpose
respectively; diag[.] denotes a diagonal matrix; and ⊗ and ◦ denote the Kronecker product
and the Hadamard product, respectively.

2. Signal Model of Coprime Array MIMO Radar

A coprime array is a classical sparse array structure, and it consists of two uniform
linear subarrays. One subarray contains M sensors with an array interval Nd, while another
sub-array contains N sensors with an array interval Md; M and N are mutually prime
numbers. The bistatic coprime array MIMO radar was composed of a transmitting array
and a receiving array. As shown in Figure 1, the transmitting array had M = M1 + N1 − 1
sensors to estimate the DOD, and the receiving array had N = M2 + N2 − 1 sensors to
estimate the DOA. The black circles and red circles respectively represent the two subarrays
of the coprime array; d represents the unit spacing, and it also represents; λ/2; M1 and
N1 are mutually prime numbers; and M2 and N2 are mutually prime numbers, (N1 > M1,
N2 > M2). The sensors’ distribution on the transmitting array and receiving array can be
given by:

St = {mN1d|0 ≤ m ≤ M1 − 1} ∪ {nM1d|0 ≤ n ≤ N1 − 1} (1)

Sr = {mN2d|0 ≤ m ≤ M2 − 1} ∪ {nM2d|0 ≤ n ≤ N2 − 1} (2)

Assuming that there are K coherent far-field narrowband signals in the airspace,
the DOD of the kth signal can be represented by , ϕk, the DOA of the kth signal can
be represented by θk, the waveform vector of the kth signal can be represented by sk(t),
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k = 1, . . . , K, t = 1, . . . , L; and L denotes the number of snapshots of the signals. The
received signal model can be given by:

x(t) = s(t)
K

∑
k=1

αk[at(ϕk)⊗ ar(θk)] + n(t)= Aαs(t) + n(t) (3)

where A = At ◦Ar, α = [α1, α2, . . . , αK] represents the correlation coefficient vector and αK
is nonzero known constant, n(t) ∼ CN(0, σ2

nIMN) represents a white noise vector with a
Gaussian distribution, and IMN is the identity matrix of MN ×MN. The steering matrices
of transmitting array and receiving array are respectively given by:

At = [at(ϕ1), at(ϕ2), . . . , at(ϕK)] (4)

Ar = [ar(θ1), ar(θ2), . . . , ar(θK)] (5)

where the steering vectors at(ϕk) and ar(θk) are denoted by:

at(ϕk) = [1, e−jM1π sin ϕk , . . . , e−j(M1(N1−1)+1)π sin ϕk ]
T

(6)

ar(θk) = [1, e−jM2π sin θk , . . . , e−j(M2(N2−1)+1)π sin θk ]
T

(7)

The covariance matrix of the received signal can be denoted by:

R = E[x(t)xH(t)] = RsAααHAH + σn
2IMN (8)

Rs = E[s(t)sH(t)] = diag[σ1
2, σ2

2, . . . , σK
2] (9)

where Rs represents the covariance matrix of the targets and σk
2 represents the signal power

of the kth target.
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3. Joint DOD and DOA Estimation Algorithm of Coherent Signals Based on
Low-Rank Matrix Reconstruction

In this section, we will discuss the joint DOD and DOA estimation method of bistatic
coprime MIMO radar for coherent signals. The method uses interpolated virtual array
elements to convert the coprime array signal model with holes into a uniform linear
array signal model without holes. It reconstructs the Toeplitz submatrix through spatial
smoothing, and uses the sensor-related information of the coprime array to recovery it into
a low-rank matrix through a convex optimization algorithm. Then, the full-rank covariance
matrix that is reconstructed from the recovered Toeplitz submatrix is applied to the spatial
spectrum estimation. Finally, the method achieves automatic pairing of the DOD and DOA
of coherent targets through a dimension-reduction multiple signal classification algorithm.

3.1. Reconstructed Toeplitz Matrix Algorithm Based on Virtual Sensor Interpolation

As shown in Figure 1, the receiving array and transmitting array of the bistatic MIMO
radar are nonuniform linear arrays, as there are holes between the physical sensors, causing
the array to be discontinuous and unable to provide a covariance matrix suitable for spatial
spectral estimation. The traditional method to deal with the coprime array is to obtain the
sum–difference coarray of physical sensors, then vectorize the covariance matrix formed
by sum–difference coarray, and finally construct the new covariance matrix to estimate the
DOA. However, this method is not suitable for coherent targets. In Figure 2, the dotted
circles are virtual sensors, which are later interpolated into the array, and the solid circles
are physical sensors; the virtual sensors interpolated are essentially zero elements. The
method fills the holes by interpolating virtual sensors [26,30,31], and a bistatic radar model
of uniform linear array is constructed.
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In Figure 2, the dotted circle represents the interpolation virtual sensor, which has two
meanings: firstly, the virtual sensor interpolation is only implemented in the virtual domain;
secondly, the virtual sensors can be used as nonfunctional sensors, and the positions of
these virtual sensors are set to zeros in the array.
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After interpolating the virtual sensors, the numbers of transmitting array sensors
and receiving array sensors become M′ = M1(N1 − 1) + 1 and N′ = M2(N2 − 1) + 1,
respectively. Assuming that the virtual sensors’ (dotted circles) position on the transmitting
array is Zt and the virtual sensors’ position on the receiving array is Zr, after interpolating
the virtual sensors, the transmitting array sensors’ distribution and receiving array sensors’
distribution can be given by:

St
′ = {Ut ∪ Zt|Ut ∈ St, Zt ∈ Zt} (10)

Sr
′ = {Ur ∪ Zr|Ur ∈ Sr, Zr ∈ Zr} (11)

For example, assuming that the positions of the transmitting array St and the receiving
array Sr sensors are both {0, 3d, 5d, 6d, 9d, 10d, 12d}, after interpolating the virtual sensors,
the positions of the transmitting array St

′ and the receiving array Sr
′ sensors are both

{0, ‘0′, ‘0′, 3d, ‘0′, 5d, 6d, ‘0′, ‘0′, 9d, 10d, ‘0′, 12d}, the ‘0’ only represents virtual locations and
is distributed in d, 2d, 4d, 7d, 8d, and 11d.

The transmitting steering vector and the receiving steering vector after interpolating
virtual sensors are given by:

at
′(ϕk) = [1, . . . , 0, . . . , e−j(M1(N1−1))π sin ϕk ]

T
(12)

ar
′(θk) = [1, . . . , 0, . . . , e−j(M2(N2−1))π sin θk ]

T
(13)

where the zeros of the transmitting steering vector and the receiving steering vector are all
distributed over virtual locations.

Using the new steering vector to form the steering matrix At
′ of the transmitting array

and the steering matrix Ar
′ of the receiving array, the output signal model of the bistatic

uniform linear array is given by:

x′(t) = (At
′ ◦Ar

′)αs(t) + n(t) (14)

The covariance matrix of the bistatic uniform linear array model after interpolating
the virtual sensors can be expressed as:

R′ = E[x′(t)x′
H
(t)] = RsA′ααHA′

H
+ σn

2IM′N′ (15)

where A′ denotes the steering matrix after interpolating virtual sensors and IM′N′ denotes
the M′N′ ×M′N′ dimension identity matrix.

In practical signal processing, the covariance matrix R′ usually cannot be obtained
directly, and it must be approximated by L times of snapshot signals. The processed
covariance matrix is given by:

Rx =
1
L

L

∑
i=1

x′(t)x′
H
(t) (16)

This study mainly researched the angle estimation for coherent targets, and the co-
variance matrix must be a rank-deficient matrix. So, Rx cannot be directly used for spatial
spectrum estimation, and it must be processed and recovered to a full-rank matrix before
it can be used normally. Rx is a covariance matrix formed by bistatic radar, so the matrix
dimension is higher, and Rx cannot be processed using a conventional spatial smoothing
algorithm. We chose a spatial smoothing algorithm based on a reconstructed Toeplitz
matrix that could convert Rx into a full-rank matrix.

Rx is a M′N′×M′N′ dimensional matrix. We chose any row of the matrix; for example,
the row r-th, r ∈ [1, M′N′], and divided the row into N′ vectors with each one having a
1× M′ dimension. Assuming that [Rr]i represents the i-th vector in the r-th row of Rx,
i ∈ [1, N′], [rr]j represents the j-th element in [Rr]i,j ∈ [1, M′].
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We performed spatial smoothing on the r-th row of Rx; the unit of smoothing was [Rr]i.
It could be regarded as one-dimensional spatial smoothing for N′ sensors; the number of
subarrays and the number of sensors in each sub-array were all Qr, Qr = (N′ + 1)/2. The
Toeplitz matrix R′r can be constructed and expressed as:

R′r =


[R′r]Qr

[R′r]Qr+1 . . . [R′r]N′
[R′r]Qr−1 [R′r]Qr

. . . [R′r]N′−1
...

... . . .
...

[R′r]1 [R′r]2 . . . [R′r]Qr

 (17)

For the Toeplitz matrix R′r, we smoothed the [R′r]i of in units of [rr]j, and it could be
regarded as one-dimensional spatial smoothing for M′ sensors; the number of subarrays
and the number of sensors in each subarray were all Qt, Qt = (M′ + 1)/2. The Toeplitz
matrix Ri could be constructed and is given by:

Ri =


[ri]Qt

[ri]Qt+1 . . . [ri]M′
[ri]Qt−1 [ri]Qt

. . . [ri]M′−1
...

... . . .
...

[ri]1 [ri]2 . . . [ri]Qt

 (18)

We performed spatial smoothing twice on the r-th row of Rx. The first spatial smooth-
ing obtained Qr Toeplitz matrices and formed R′r in (17). For the [R′r]i in R′r, the second
spatial smoothing obtained Qt Toeplitz matrices and formed Ri in (18). Assuming that Ri
in (18) corresponded to [R′r]i in (17), R′r became a new matrix Rxr . Thus, the r-th row of
Rx can become a matrix Rxr after the above two spatial smoothings.

According to the above smoothing process, Rxr was a QrQt × QrQt dimension full-
rank covariance matrix. In addition, if M′ and N′ were odd numbers, the matrix forms
of R′r and Ri were the same as (17) and (18). If M′ and N′ were even numbers, we still
used the smoothing method, but set the matrix main diagonal elements of both R′r and Ri
to zero.

3.2. Joint DOD and DOA Estimation Algorithm Based on Convex Optimization to Recover
Covariance Matrix

As described above, we proposed a method of interpolating virtual sensors “0” to
convert the coprime array into a uniform linear array, so the covariance matrix obtained
after two Toeplitz matrix reconstructions had a small zero element, and then we needed
to recover the zero elements to optimal elements. This section focuses on the problem
of matrix recovery, and uses the kernel norm minimization theory to establish a matrix
optimization recovery model.

Assuming that the transmitting array sensors position St
′ and the receiving array

sensors position Sr
′ can be represented as St and Sr by vectors St ∈ C1×M′ and Sr ∈ C1×N′ ,

a matrix S can be represented by S = StSr
T, and a vector V can be obtained by vectorizing

S, V ∈ C1×M′N′ . St and Sr had some zero elements, so V similarly had zero elements, and
we denoted the zero elements in V in order as F and the nonzero elements in V in order
as
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(21)

where tr(.)  represents the trace of the matrix; (21) can also be represented as: 

1 1
T1

2

T 1 1 TF

1min    ( ) + tr( )  
2L L

μ
×∈

−
R

R P R R


  

1Ts.t.     0≥R  
(22)

where μ  represents the error of 1TR . 

We could obtain an ideal Hermitian Toeplitz matrix 1TR  using (22), and 1TR  was 
the solution of the first matrix in iR , [1, ]i N∈ ′ . If all the matrices in the matrix set iR , 

[1, ]i N∈ ′  were solved by convex optimization, then we could obtain an ideal matrix set 

.
Thus, the received signal of the interpolated virtual sensors can also be given by:

x′(t) =
〈
x′(t)

〉
i =

{
〈x′(t)〉i, i ∈
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where F.  represents the Frobenius norm and ε  represents the error threshold that ob-
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Because the rank minimization optimization problem is a nonconvex optimization 

problem, there may be countless local optimal solutions in the feasible region set, which 
is difficult to solve. In order to solve this problem, we chose convex relaxation techniques 
to transform the nonconvex optimization problem in (20) into a convex optimization prob-
lem that minimized the trace of ideal matrix 1TR . The convex optimization problem is 
given by: 
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2

T 1 1 TF
s.t.     ( ) ε , 0− < ≥R P R R
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where tr(.)  represents the trace of the matrix; (21) can also be represented as: 
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R P R R

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where μ  represents the error of 1TR . 

We could obtain an ideal Hermitian Toeplitz matrix 1TR  using (22), and 1TR  was 
the solution of the first matrix in iR , [1, ]i N∈ ′ . If all the matrices in the matrix set iR , 

[1, ]i N∈ ′  were solved by convex optimization, then we could obtain an ideal matrix set 

0, i ∈ F (19)

where i denotes the value in order from 1 to M′N′ and 〈.〉i denotes the virtual signal at i. If
i ∈ F, the virtual signal is 0, and if i ∈
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estimate the target angles, but Rxr was not a Toeplitz matrix after matrix reconstruction of
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(17) and (18). The matrix set Ri,i ∈ [1, N′] in (18) were all Toeplitz matrices, and they could
be used for low-rank matrix reconstruction.

Take the 1-th matrix R1 as an example, and build a projection matrix P1 that matches
R1,R1 ∈ CQr×Qr , P1 ∈ CQr×Qr . The construction rules of P1 hold that if a certain position
in R1 is 0, then the same position in P1 is also 0, otherwise it is 1.

According to the kernel norm minimization theory in [26], we assumed that R1 was
a reference matrix, and needed to obtain an ideal matrix RT1 with low rank character-
istics. RT1 represents a recovery matrix; when it was a Hermitian Toeplitz matrix, its
positive semidefiniteness could be guaranteed, and then we could establish a nonconvex
optimization problem with RT1 as a variable:

min
RT1∈C

L×L
rank(RT1)s.t. ‖(RT1 ◦ P1)−R1‖2

F < ε , RT1 ≥ 0 (20)

where ‖.‖F represents the Frobenius norm and ε represents the error threshold that ob-
tains RT1 .

Because the rank minimization optimization problem is a nonconvex optimization
problem, there may be countless local optimal solutions in the feasible region set, which is
difficult to solve. In order to solve this problem, we chose convex relaxation techniques to
transform the nonconvex optimization problem in (20) into a convex optimization problem
that minimized the trace of ideal matrix RT1 . The convex optimization problem is given by:

min
RT1∈C

L×L
tr(RT1)s.t. ‖(RT1 ◦ P1)−R1‖2

F < ε , RT1 ≥ 0 (21)

where tr( .) represents the trace of the matrix; (21) can also be represented as:

min
RT1∈C

L×L

1
2
‖(RT1 ◦ P1)−R1‖2

F + µtr(RT1)s.t. RT1 ≥ 0 (22)

where µ represents the error of RT1 .
We could obtain an ideal Hermitian Toeplitz matrix RT1 using (22), and RT1 was the

solution of the first matrix in Ri, i ∈ [1, N′]. If all the matrices in the matrix set Ri, i ∈ [1, N′]
were solved by convex optimization, then we could obtain an ideal matrix set RTi ,i ∈ [1, N′].
We processed all matrices in RTi using (17) and obtained a covariance matrix Rxr to estimate
the target angles.

In order to further improve the utilization of covariance matrix information and
improve the accuracy and resolution of angle estimations, we chose all the rows in Rx,
processed the information in the M′N′ rows, and took the average to obtain a covariance
matrix Rxx that estimated the spatial spectral information:

Rxx =
M′N′

∑
r=1

1
M′N′

Rxr (23)

In terms of the spatial spectrum estimation algorithm, we chose the RD-MUSIC algo-
rithm [32]. The RD-MUSIC algorithm not only avoids the high complexity of the 2D-MUSIC
algorithm, but also has a better performance compared with the ESPRIT algorithm [33].
Moreover, the RD-MUSIC algorithm can automatically match the DOD and DOA without
additional angle pairing.

The spatial spectrum estimation function is given by:

f =
1

A1
HEnEH

n A1
(24)
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where A1 = at
′(ϕ)⊗ ar

′(θ),En represent the signal subspace of Rxx. Equation (24) is also
expressed as:

f =
1

ar ′(θ)
HV(ϕ)ar ′(θ)

(25)

According to [29], the DOA and DOD of the kth target can be given by:

θ̂k = argmin
1

eT
1 V(ϕk)

−1e1
= argmax(eT

1 V(ϕk)
−1e1) (26)

ϕ̂k = argmin
1

eT
1 V(θk)

−1e1
= argmax(eT

1 V(θk)
−1e1) (27)

where e1 = [1, 0, . . . , 0]T.
The method steps proposed in this section are represented in Algorithm 1.

Algorithm 1: The steps of algorithm are as follows:

Input: received signal: x(t), t = 1,2, . . . , L;
Output:

{
ϕ̂k, θ̂k

}
, k = 1, 2, . . . , K;

Step:
1: Build the covariance matrix Rx based on interpolating

virtual sensors as in (16);
2: Perform smooth reconstructions of the Toeplitz matrix for any row of Rx to obtain matrix

set Ri;
3: Recover the zero elements in Ri through convex

optimization to obtain ideal matrix set RTi as in (22);
4: Smooth RTi again to form a covariance matrix and

perform average to obtain Rxx as in (23);
5: Estimate

{
ϕ̂k, θ̂k

}
with RD-MUSIC;

4. Simulation Results and Analysis

Assuming that the experiment was carried out under the condition of ideal white
noise, and the estimated targets were all coherent signals, M1 = M2 = 3 and N1 = N2 = 5.
The positions of the transmitting array and the receiving array sensors are both
{0, 3d, 5d, 6d, 9d, 10d, 12d}, the number of transmitting array and receiving array subar-
rays sensors were all 7, and the value of µ was 0.025.

This section proved the effectiveness of the algorithm proposed in this paper by
comparing the degrees of freedom performance, spatial spectrum performance, angular
resolution performance, and root-mean-square error (RMSE) of different algorithms under
the condition of the same physical sensors. The existing methods for estimating coherent
targets’ DOD and DOA are all based the uniform linear array, so we chose a low-rank matrix
reconstruction (LMR) algorithm in this study, and used the transmit/receive diversity
smoothing (TRDS) algorithm in [34,35], the asymmetric spatial difference smoothing (ASDS)
algorithm in [36], and a traditional spatial smoothing (SMS) algorithm for comparison.

4.1. Number of Estimated Targets

In this part, we assumed that the number of snapshots was 200 and the signal-to-noise
ratio (SNR) was 10 dB. There were 10 fully coherent targets in the airspace, and their
positions were distributed over the range [−60◦, 75◦], where the DODs and DOAs were all
located at [−60◦, −45◦, −30◦, −15◦, 0◦, 15◦, 30◦, 45◦, 60◦, 75◦].

Figure 3 shows the spatial spectrum contour of the DOD and DOA joint estimation
for coherent targets. The red circles denote the true angles of 10 targets, and the spectral
peak contour denotes the estimated angles of 10 targets. The four figures in Figure 3 are
as follows: (a) LMR algorithm; (b) SMS algorithm; (c) ASDS algorithm; and (d) TRDS
algorithm. Figure 3a shows the spectral peak contour completely overlapped by the red
circles, so we could clearly estimate 10 targets using the LMR algorithm. However, the
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spatial peaks overlap each other in the other figures, and it was difficult to estimate all
target numbers using another algorithm. So, the simulation results in this part proved the
effectiveness of the LMR algorithm in the performance of the degrees of freedom.
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4.2. Spatial Spectrum Estimation

In this part, we assumed that the number of snapshots was 200 and the SNR was
10 dB. The DODs of targets were {50◦, 5◦, 15◦, 25◦, 45◦, 25◦}, the DOAs of targets were
{15◦, 20◦, 50◦, 10◦, 35◦, 35◦}, and the estimated targets were six fully coherent signals.

Figure 4 shows the spatial spectrum of the DOD and DOA joint estimation for the
coherent targets. The red lines denote the true angles of six targets, and the spectral peak
denotes the estimated angles of six targets. The four figures in Figure 4 are as follows:
(a) LMR algorithm; (b) SMS algorithm; (c) ASDS algorithm; and (d) TRDS algorithm.
Figure 4a shows that the spatial spectral peaks completely overlapped with the red line,
so we could use the LMR algorithm to obtain a clear spatial spectral peak map. However,
the spatial spectral peaks of other figures had difficulty corresponding to the red line, and
some spatial spectral peaks even overlap each other in Figure 4b. Thus, the simulation
results in this part proved the effectiveness of the LMR algorithm in the performance of the
spatial spectral estimation.
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4.3. Angular Resolution

In this part, we assumed that the number of snapshots was 200 and the SNR was
10 dB. The DODs and DOAs of targets were (θ1, ϕ1) = (4.5◦, 4.5◦), (θ2, ϕ2) = (7◦, 7◦); and
the estimated targets were two fully coherent signals.

Figure 5 shows the spatial spectral peaks of two adjacent targets, and also reveals the
performance in angular resolution of the four algorithms. The red lines denote the true
angles of two targets, and the spectral peak denotes the estimated angles of two targets.
Under the condition of high SNR, we could use the LMR algorithm to estimate two adjacent
targets, and there is no overlap between normalized spectral peaks in Figure 5a. We could
use the TRDS algorithm and the ASDS algorithm to distinguish that there were two targets,
but the resolution performance was poor. However, the spatial spectral peaks obtained
using the SMS algorithm had some overlapping phenomena, so it was impossible to
distinguish the existence of two targets, and the angular resolution performance was not as
good as that of the other algorithms. Thus, the simulation results of this part proved the
effectiveness of the LMR algorithm in the performance of angular resolution.
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4.4. Root-Mean-Square Error (RMSE)

We compared the RMSEs of different algorithms. The RMSE is a common standard
that reflects the accuracy of angle estimation, and the average RMSE is defined by:

RMSE =

√√√√ 1
2×QK

Q

∑
i=1

K

∑
k=1

[(ϕ̂i
k − ϕk)

2
+ (θ̂i

k − θk)
2
] (28)

where Q denotes the number of Monte Carlo simulation times, K denotes the number of
targets, and (ϕ̂i

k, θ̂i
k) denotes the estimated DOD and DOA of the kth target for the i-th

Monte Carlo simulation (i = 1,2, . . . , Q).
We assumed that there were three targets in space, all of which were fully coher-

ent signals, and their DODs and DOAs were (θ1, ϕ1) = (14◦, 18◦), (θ2, ϕ2) = (27◦, 35◦),
(θ3, ϕ3) = (36◦, 47◦), and ; Q = 200. Figure 6 shows the relationship of the RMSE with the
SNR and number of snapshots. The comparative algorithms used in this part were an LMR
algorithm based on a coprime array, an SMS algorithm based on a coprime array, a TRDS
algorithm based on a uniform linear array, an ASDS algorithm based on a uniform linear
array, and an SMS algorithm based on a uniform linear array.
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Figure 6a depicts the variation in the RMSE curve with the SNR, where the number
of snapshots was set as 200. The LMR algorithm based on a coprime array had a higher
estimation accuracy than the other algorithms under the condition of a high SNR, but its
estimation performance was not satisfactory in low SNR conditions. Figure 6b depicts
the variation in the RMSE curve with the number of snapshots, where the SNR was set
as 10. The LMR algorithm had a high estimation accuracy with a different number of
snapshots. In order to demonstrate the advantage of the proposed method for estimating
coherent targets, we compared it to the SMS algorithm based on a coprime array, as shown
in Figure 6. We found that using the SMS algorithm based on a coprime array resulted in a
poor estimation performance, which proved it could not estimate coherent signals.

4.5. Time Complexity

According to the previous simulation, the LMR algorithm proposed in this paper was
better than other algorithms in terms of the number of estimated targets, angular resolution,
and estimation accuracy. Due to the addition of a convex optimization algorithm, the
complexity of the LMR algorithm was higher than that of the other algorithms. In terms of
time complexity, when 200 Monte Carlo simulation experiments were performed, Figure 7
represents a comparison of the time complexity of different algorithms with the different
number of snapshots. As presented in Figure 7, the simulation showed that the LMR
algorithm could achieve the effect of enhancing the performance of angle estimation by
adding a small amount of computation.
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5. Conclusions

We proposed a joint DOD and DOA estimation method of bistatic coprime array
MIMO radar for coherent targets based on low-rank matrix reconstruction. The method
solved the problem regarding bistatic MIMO radar based on coprime arrays being unable to
estimate coherent signals, and used fewer physical sensors to achieve a better performance
in the estimation. The simulation results showed that the method performed better than
the existing methods in terms of the degrees of freedom performance, spatial spectrum
performance, angular resolution performance, and RMSE. However, the disadvantage of
this method was that it performed poorly under the condition of a low SNR due to the
limitations of the convex optimization algorithm.
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