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Abstract: The evaluation of baroreflex sensitivity (BRS) has proven to be critical for medical appli-
cations. The use of α indices by spectral methods has been the most popular approach to BRS esti-
mation. Recently, an algorithm termed Gaussian average filtering decomposition (GAFD) has been 
proposed to serve the same purpose. GAFD adopts a three-layer tree structure similar to wavelet 
decomposition but is only constructed by Gaussian windows in different cutoff frequency. Its com-
putation is more efficient than that of conventional spectral methods, and there is no need to specify 
any parameter. This research presents a novel approach, referred to as modulated Gaussian filter 
(modGauss) for BRS estimation. It has a more simplified structure than GAFD using only two band-
pass filters of dedicated passbands, so that the three-level structure in GAFD is avoided. This strat-
egy makes modGauss more efficient than GAFD in computation, while the advantages of GAFD 
are preserved. Both GAFD and modGauss are conducted extensively in the time domain, yet can 
achieve similar results to conventional spectral methods. In computational simulations, the Euro-
Bavar dataset was used to assess the performance of the novel algorithm. The BRS values were 
calculated by four other methods (three spectral approaches and GAFD) for performance compari-
son. From a comparison using the Wilcoxon rank sum test, it was found that there was no statisti-
cally significant dissimilarity; instead, very good agreement using the intraclass correlation coeffi-
cient (ICC) was observed. The modGauss algorithm was also found to be the fastest in computation 
time and suitable for the long-term estimation of BRS. The novel algorithm, as described in this 
report, can be applied in medical equipment for real-time estimation of BRS in clinical settings. 

Keywords: modulated Gaussian filter (modGauss); α index; Gaussian average filtering decomposi-
tion (GAFD); baroreflex sensitivity (BRS); autoregressive (AR); wavelet; Welch’s periodogram 
 

1. Introduction 
Baroreflex can be defined as a homeostatic process that controls blood pressure via 

the autonomic nervous system (ANS) negative feedback loop by modulating the total pe-
ripheral resistance and the heart rate (HR) [1]. The most common indicator used to assess 
the effect of baroreflex on heartbeat interval control is the baroreflex sensitivity (BRS)[2]. 
It has been suggested in the literature that BRS is a critical evaluation index in clinical 
settings. One study [3] showed that patients suffering from essential hypertension tended 
to have a lower BRS compared to normal subjects. A lower BRS was also found to be a 
direct indicator of the risk of sudden cardiac death after myocardial infarction [4]. In ad-
dition, BRS is considered to be a potential marker in the early detection of autonomic 
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dysfunction in diabetic mellitus patients [5]. Patients with neurodegenerative disease are 
found to have declined BRS [6]. The estimation of BRS value has also been utilized for the 
diagnosis of brain stem death [7]. Furthermore, obstructive sleep apnea syndrome (OSAS) 
patients are found to have a significant decrease in BRS value during sleep. These obser-
vations are helpful in clarifying the cardiovascular pathophysiology of patients with 
OSAS [8]. A decreased BRS has also been observed in patients with acute intracerebral 
hemorrhage. This suggests that BRS could be a possible therapeutic marker for ischemic 
stroke [9]. The estimation of BRS is considered to be valuable for the clinical prognosis 
and diagnosis of various cardiovascular conditions, including heart failure and myocar-
dial infarction [10]. It has been confirmed that BRS is a more reliable marker for the eval-
uation of functional status during the performance of physical and psychological tasks 
[11] compared to commonly used indices such as heart rate variability (HRV) [12], cardiac 
output (CO) [13] and blood pressure variability (BPV) [14]. BPV is a phenomenon charac-
terizing the changes in blood pressure levels. It is the result of a rhythmical cardiac activity 
similar to HRV [15]. 

Baroreflex dysfunction has been shown to be strongly correlated with impaired car-
diovascular performance, excess postoperative morbidity, and delays in hospital release 
for high-risk surgical patients [16]. Patients with chronic kidney disease (CKD) have been 
found to possess a reduced BRS and stiffer arteries, while peritoneal dialysis patients were 
observed to be worse than those in a non-dialysis group [17]. In addition, a decreased BRS 
is independently associated with post-stroke condition [18]. Growing evidence indicates 
that baroreflex pathways also project to key regions of the central nervous system (CNS) 
that regulate somatosensory and CNS arousal. These projections regulate pain perception, 
sleep, consciousness and cognition. This suggests that BRS estimation may be helpful in 
the evaluation of pain perception, sleep quality, consciousness level and cognitive func-
tion [19,20]. Only some representative, but not exhaustive, applications of BRS estimation 
in clinical settings are described above.  

Some conventional methods have been reported for BRS estimation, which include 
the neck chamber technique [21], injection of drugs [22,23], the Valsalva maneuver [24], 
or postural change [25] to stimulate systolic blood pressure (SBP) variations and monitor 
related variations on inter-beat interval (IBI). The above-mentioned approaches are sub-
ject to certain constraints in clinical settings. For the neck-chamber approach, the stimulus 
is limited to the baroreceptors in the carotid sinus. Regarding the drug-induced method, 
various drugs influence the baroreceptor in different ways and could have side-effects on 
different physiological systems. For certain patients, the Valsalva maneuver is not possi-
ble. Moreover, a dedicated test bed with a controllable tilt angle is usually required for the 
postural change approach such that the stimulus level in all experiments can be kept con-
sistent. Several approaches have been suggested to overcome the above constraints. These 
approaches mainly focus on computing algorithms and can be categorized as spontaneous 
sequence methods (in the time domain) [26], spectral methods (in the frequency domain) 
[27,28] and cross-wavelet methods (in the time-frequency domain) [29]. Of these, the 
cross-wavelet approach is comparatively novel and can track BRS changes in the time as 
well as the frequency domains. However, it has the highest computing workload. Alt-
hough the spontaneous sequence methods are the most commonly used, it is important 
to note that this methodology has shown some inherent bias in the estimation of BRS es-
timation, even during the resting state [30,31]. With respect to spectral methods, these 
enable the extraction of information about the sympathetic and parasympathetic nervous 
system activities individually [32]. This type of approach has been implemented in multi-
ple commercial software packages, including Ponemah® Software (Data Sciences Interna-
tional, St. Paul, USA), nevrokard® BRS (Nevrokard Kiauta, Izola, Slovenia) and HemoLab 
Software (Harald Stauss Scientific, Dunuggan, USA).  

Recently, our team proposed a method termed Gaussian averaging filtering decom-
position (GAFD) [33] to evaluate BRS, whereby the computation is conducted wholly in 
the time domain, but the results obtained are consistent with those obtained via 
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conventional spectral techniques. GAFD is based on a three-layer tree structure that is 
similar to wavelet decomposition but only includes the Gaussian windows in different 
cutoff frequency. Its computation is more efficient than for conventional spectral methods, 
and, most importantly, there is no need to specify any parameter. The present paper in-
troduces a new method, called modulated Gaussian filter (abbreviated as modGauss in 
this article) for BRS estimation. It is constructed with a more simplified structure than 
GAFD using only two bandpass filters of dedicated passbands to separately decompose 
the evenly resampled SBP and IBI sequences into two dedicated bands. This novel strat-
egy makes modGauss more efficient than GAFD in the computation, yet the advantages 
of GAFD are preserved.  

The article is divided into the following sections: The proposed modGauss algorithm 
for BRS estimation is introduced in Section 2. This section also discusses the materials, 
conventional frequency-domain approaches, the GAFD algorithm for BRS estimation (in 
brief) and the statistical experiments performed in this study. The results of the analysis 
are provided in Section 3 along with corresponding discussion presented in Section 4. The 
conclusions of the article are summarized in Section 5. 

2. Methods and Materials 
This section is divided into five subsections. In the first subsection, the proposed al-

gorithm is introduced. The following subsection briefly describes conventional spectral 
methods for BRS estimation. The estimation of BRS by the GAFD algorithm is concisely 
described in the third subsection. The fourth subsection describes the materials (including 
the signal resource and the computing environment) that were used for the computational 
experiments in this paper. The statistical testing methodologies used for comparing our 
developed algorithm with other methods are described in the final subsection. 

2.1. BRS Estimation by modGauss  
The bandpass filters for the proposed method are constructed from the amplitude 

modulation on the Gaussian window. The Gaussian window of length ሺ2𝑀 + 1ሻ central-
ized at 𝑚 = 0 is set as follows [34]  𝑤[𝑚ሿ = 𝛽𝑀 ⋅ √2π 𝑒ିଵଶቀఉ⋅௠ெቁమ, for − 𝑀 ≤ 𝑚 ≤ 𝑀, (1) 

in which 𝛽 stands for the scalar inversely related to the standard deviation of the Gauss-
ian distribution. Under the condition 𝛽 > 2.5 [34], the truncated points of the Gaussian 
window are small enough to be omitted, and the associated discrete Fourier transform 
(DFT) is, in approximation, equal to  𝑊ሺ𝜔ሻ ≈ 𝑒ିଵଶ⋅൬ெఉ ⋅ఠ൰మ, for − 𝜋 < 𝜔 ≤ 𝜋. (2) 

From Equation (2), the spectrum of the Gaussian window substantially represents a 
non-causal lowpass filter (LPF) centered at 𝜔 = 0 rad with no phase offset. To ensure 
that the energy remains unchanged, the Gaussian window have to be normalized as fol-
lows.  𝑤௔[𝑚ሿ = 𝑤[𝑚ሿ∑ 𝑤[𝑖ሿெ௜ୀିெ , for − 𝑀 ≤ 𝑚 ≤ 𝑀, (3) 

where 𝑤[⋅ሿ is specified in Equation (1). One important issue of concerned with respect to 
the Gaussian window is the selection of 𝛽. Assume the −6 dB cutoff (where the decay is 
one half of the highest amplitude) is adopted and the −6 dB cutoff frequencies are located 
at 𝜔 = ±𝜔ௗ rad, then we have 𝑊ሺ±𝜔ௗሻ = 0.5 in Equation (2). By some algebraic manip-
ulations, we have  𝛽 = ெ⋅ఠ೏ඥଶ⋅௟௡ሺଶሻ,  (4) 
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where 𝜔ௗ = 2𝜋 ⋅ 𝑓ௗ/𝑓௦ , 𝑓ௗ  is the −6  dB cutoff frequency and 𝑓௦  is the sampling fre-
quency of the signal to be analyzed. Both 𝑓ௗ and 𝑓௦ are in units of Hz. The bandpass filter 
in modGauss is acquired from the modulated Gaussian window 𝑤௔[⋅ሿ. Assume the result-
ing spectrum retains almost the same shape as the unmodulated spectrum. Let the carrier 
frequency in amplitude modulation be denoted as 𝑓௖ (in unit Hz), then the carrier signal 
can be generated by  𝑐௥[𝑚ሿ = 𝑐𝑜𝑠 ൬2𝜋 ⋅ 𝑓௖𝑓௦ ⋅ 𝑚൰ , for − 𝑀 ≤ 𝑚 ≤ 𝑀. (5) 

The modGauss filter can then be derived as  𝑤௚[𝑚ሿ = 𝑤௔[𝑚ሿ ⋅ 𝑐௥[𝑚ሿ, for − 𝑀 ≤ 𝑚 ≤ 𝑀.  (6)

The spectrum of 𝑤௚[⋅ሿ is the shifted version of 𝑊ሺ𝜔ሻ which is rescaled in amplitude 
and is now centered around 𝜔 = +2𝜋 ⋅ 𝑓௖/𝑓௦  and −2𝜋 ⋅ 𝑓௖/𝑓௦  rad. If the scale 𝛽  is se-
lected properly, the split spectra will have no evident overlap. In this case, the generated 𝑤௚[⋅ሿ shown in Equation (6) is, in essence, a non-causal bandpass filter with the passband 
ranging from 𝑓௖ − 𝑓ௗ to 𝑓௖ + 𝑓ௗ Hz.  

Assume the signal to be analyzed is denoted as 𝑥[𝑛ሿ, with 0 ≤ 𝑛 ≤ 𝑁 − 1. Because 
the modGauss filter is non-causal, the analyzed signal 𝑥[⋅ሿ requires to be extended out-
side the endpoints. In this study, the extension is performed by the following formula  

𝑥௘[𝑛ሿ = ቐ 2 ⋅ 𝑥[0ሿ − 𝑥[−𝑛ሿ,  for − 𝑀 ≤ 𝑛 ≤ −1 𝑥[𝑛ሿ,  for 0 ≤ 𝑛 ≤ 𝑁 − 1 2 ⋅ 𝑥[𝑁 − 1ሿ − 𝑥[2 ⋅ 𝑁 − 𝑛 − 2ሿ,  for 𝑁 ≤ 𝑛 ≤ 𝑁 + 𝑀 − 1. (7) 

After the signal extension, the filtering operation is conducted as follows  𝑦[𝑛ሿ = 2 ⋅ ∑ 𝑤௚[𝑚ሿெ௠ୀିெ ⋅ 𝑥௘[𝑚 + 𝑛ሿ, for 0 ≤ 𝑛 ≤ 𝑁 − 1. (8)

The derived 𝑦[⋅ሿ is the bandpass-filtered components buried in signal 𝑥[⋅ሿ.  
Another issue of concern for the modGauss filter is the determination of passband 

frequency range. In the spectral methods for human BRS estimation, the commonly 
adopted low-frequency (LF) band is within 0.04–0.15 Hz and the high-frequency (HF) 
band is located in the range 0.15–0.4 Hz [32]. In this condition, the center of the dedicated 
frequency range is selected to be the carrier frequency 𝑓௖, which is 0.095 Hz for the LF 
band and 0.275 Hz for the HF band, respectively. The deviated frequency from the center 
was previously denoted as 𝑓ௗ. It is assumed that the −6 dB cutoff frequencies are located 
at the endpoints of both bands in modGauss filters. In this case, the value of 𝑓ௗ is equal 
to the deviation from 𝑓௖ to the end frequency. Therefore, it is 0.055 Hz for the LF band 
and 0.125 Hz for the HF band. With selection of the 𝑓௖  and 𝑓ௗ  values referred to, the 
proposed method is constructed from two modGauss filters, one for the LF band and the 
other for the HF band. The filtering operation is based on Equation (8), which is conducted 
fully in the time domain but can derive the frequency-domain information in the same 
way as for other spectral methods.  

The final issue for the modGauss filter requiring consideration is the filter length, 
which is determined by the parameter 𝑀. Because the components buried in the raw sig-
nal are closely related to the number of extremes (including both the local maxima and 
the local minima) appearing in the signal, the proposed method adopts an approach sug-
gested by [35] according to the following formula  𝑀 = 2 ⋅ ඌ𝜅 ⋅ 𝑁𝑁௘ඐ, (9) 

where 𝜅 is a scalar parameter ranging from 1.1 to 3, 𝑁௘ denotes the number of extremes, 𝑁 represents the signal length and ⌊⋅⌋ refers to the operator rounding the value to the 
closest integer toward −∞. To select the feasible value of 𝜅, the estimation of the BRS value 
is performed with different 𝜅 values (1,1, 2 and 3); the results are shown in Figure 1. It 
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can be observed that the results are identical for each of the values of 𝜅. The value 2 is in 
the middle of the selection range and is an integer, which means it can save storage space 
and offer fast computation in embedded applications. For these reasons, a constant value 
of 2 is selected for the parameter 𝜅. 

 
Figure 1. BRS analysis with different values of 𝜅 (1.1, 2 and 3). It can be observed that the BRS value 
is identical for each value of 𝜅. In this study, 𝜅 is constantly set to 2. The data points beyond the 
whiskers are marked by red + symbol.  

In addition, the second derivative test [36] is chosen for detecting the extremes. That 
is, the points whose first derivative is zero, and for which the second derivative is less 
than or greater than zero, are categorized as the local extremes. To prevent obtaining an 
implausible value of 𝑀, the limit of the extreme numbers is defined using the equation 
below  𝑁௘೅ಹ = ቜଶ⋅఑⋅ேమಿ ିଵ ቝ,  (10) 

in which ⌈⋅⌉ refers to the operator, rounding the value to the closest integer toward +∞. 
Signal processing is performed when the number of extremes detected 𝑁௘ is greater than 𝑁௘೅ಹ.  

To facilitate readers’ understanding of the proposed method, the modGauss filter 
generation procedure for both the LF and HF bands is illustrated in Figure 2 from the time 
domain perspective.  

In this figure, the generation of both modGauss filters is based on Equations (1), (3)–
(6) with 𝑀 = 50, 𝑓௦ = 4 Hz, 𝑓௖ = 0.095 Hz (for the LF band) and 0.275 Hz (for the HF 
band), and 𝑓ௗ = 0.055 Hz (for the LF band) and 0.125 Hz (for the HF band). The corre-
sponding modGauss filters from the frequency-domain perspective are shown in Figure 
3, where the parameters are the same as those for Figure 2. It can be observed that the 
generated modGauss filters are bell-shaped bandpass filters centered at 0.095 and 0.275 
Hz with the −6 dB cutoff frequencies corresponding to the frequency ranges of the LF 
and HF bands, respectively.  
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Figure 2. Generation procedure for the modGauss filters in LF and HF bands (from time-domain 
perspective). 

As shown in Figure 3, it can be observed that both the modGauss filters are symmet-
rical with a center at index 0, and the computation of Equation (8) is inherently the con-
volution sum of 𝑤௚[⋅ሿ and 𝑥௘[⋅ሿ. From the frequency-domain perspective, this is a direct 
multiplication of the frequency response of 𝑤௚[⋅ሿ and the spectrum of 𝑥௘[⋅ሿ, and only the 
components within the dedicated frequency ranges are reserved.  

In this study, the SBP sequence expressed in mmHg, and its respective IBI sequence 
expressed in ms, are resampled using a 4 Hz sampling rate by cubic spline interpolation 
for BRS estimation. This is the primary reason why the parameter 𝑓௦ is set to 4 Hz in 
Figures 2 and 3. Let the separated LF and HF component of the interpolated SBP sequence 
be designated as 𝑥ௌ஻௉,௅ி[𝑛ሿ and  𝑥ௌ஻௉,ுி[𝑛ሿ, for 0 ≤ 𝑛 ≤ 𝑁 − 1. The LF and HF band en-
ergies of SBP sequence are derived by  ቊ 𝐸ௌ஻௉,௅ி = ∑ 𝑥ௌ஻௉,௅ிଶ [𝑛ሿேିଵ௡ୀ଴𝐸ௌ஻௉,ுி = ∑ 𝑥ௌ஻௉,ுிଶ [𝑛ሿேିଵ௡ୀ଴ . (11) 

Let 𝑥ூ஻ூ,௅ி[𝑛ሿ and 𝑥ூ஻ூ,ுி[𝑛ሿ, with 0 ≤ 𝑛 ≤ 𝑁 − 1, denote the extracted LF and HF 
components for the interpolated IBI sequence. The LF and HF band energies for IBI se-
quence are acquired by  ቊ 𝐸ூ஻ூ,௅ி = ∑ 𝑥ூ஻ூ,௅ிଶ [𝑛ሿேିଵ௡ୀ଴𝐸ூ஻ூ,ுி = ∑ 𝑥ூ஻ூ,ுிଶ [𝑛ሿேିଵ௡ୀ଴ . (12) 

The BRS is then estimated using the so-called 𝛼 index [37] in the LF band and the 
HF band, as well as in the averaged form, by  
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⎩⎪⎨
⎪⎧ 𝛼௅ி = ට ா಺ಳ಺,ಽಷாೄಳು,ಽಷ𝛼ுி = ට ா಺ಳ಺,ಹಷாೄಳು,ಹಷ𝛼 = ఈಽಷାఈಹಷଶ

,  (13) 

where the expression unit of all indices is ms/mmHg. 

 
Figure 3. Generation procedure for the modGauss filters in LF and HF bands (from frequency-do-
main perspective). 

The computation procedure of our method is outlined in the following steps. 
Step 1: The SBP sequence, expressed in mmHg, as well as its respective IBI sequence 

expressed in ms, are evenly resampled by 𝑓௦ Hz, which is a 4-Hz cubic spline interpola-
tion in this study.  

Step 2: Find the number of extremes for both the interpolated sequences. Then, de-
termine the parameters 𝑀 and 𝛽 according to Equation (9) and Equation (4), respec-
tively. In this study, the second derivative test [36] is applied for detection of extremes. In 
addition, the value of 𝑓ௗ is 0.055 Hz for the LF band and 0.125 Hz for the HF band. If the 
number of extremes is less than 𝑁௘೅ಹ , which is derived according to Equation (10), this 
implies the interpolated sequence is nearly a monotonic trend wave and the energies in 
both the LF and HF bands can be considered to be zero. The BRS estimation is only con-
ducted once the number of detected extremes is greater than 𝑁௘೅ಹ .  

Step 3: Generate the carrier signals for both the LF and HF bands according to Equa-
tion (5), where the value of 𝑓௖ is 0.095 Hz for the LF band and for the HF band is 0.275 
Hz.  

Step 4: Extend the interpolated SBP and IBI sequences beyond the endpoints accord-
ing to Equation (7), and then conduct the filtering process according to Equation (8) for 
both the LF and HF bands separately.  
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Step 5: Derive the energies of the interpolated SBP and IBI sequences in both the LF 
and HF bands according to Equation (11) and Equation (12), respectively. Finally, the BRS 
values are estimated according to Equation (13). 

2.2. BRS Estimation with Spectral Methods 
Three conventional spectral approaches are adopted for performance comparison in 

this study. One is the Welch’s periodogram [38], whereas the others are the autoregressive 
(AR) spectrum estimation [39] and the wavelet [40]. The SBP, as well as the IBI sequences, 
should be resampled uniformly by 𝑓௦ Hz, which is a 4-Hz cubic spline interpolation in 
this study, before conducting the spectral analysis.  

For the Welch’s periodogram, the parameters of the 512-point Hanning window and 
512-point fast Fourier transform (FFT), along with 50% overlap among adjacent windows, 
are selected for performance comparison. The energies of the LF band and the HF band 
are deduced by direct addition of the periodograms in the respective frequency range. Let 
the derived energies in LF and HF bands for the interpolated SBP and IBI sequences be 
represented by 𝐸ௌ஻௉,௅ி , 𝐸ௌ஻௉,ுி , 𝐸ூ஻ூ,௅ி  and 𝐸ூ஻ூ,ுி , respectively. The BRS values are 
then estimated by Equation (13).  

Another commonly used method for spectrum analysis is the AR model [39]. It con-
sists of an all-pole approach whose transfer function is given by  𝐻ሺ𝑧ሻ = ఙଵା∑ ௔೔⋅௭ష೔ು೔సభ = ఙ∏ ሺଵି௣೔⋅௭షభሻು೔సభ ,  (14) 

where 𝜎 is the scalar related to the estimation error, 𝑎௜ (1 ≤ 𝑖 ≤ 𝑃) are the AR coeffi-
cients and 𝑝௜ (1 ≤ 𝑖 ≤ 𝑃) denote the poles of the model. The order of the AR model is 
represented by the parameter 𝑃. The AR model of fixed order 25 is selected for both the 
IBI sequences and an interpolated SBP, and Burg’s maximum extropy method is used to 
derive the estimation error 𝜎 as well as the AR coefficients. This method has the ad-
vantage of high resolution, even for short data records, and model stability [41]. The poles 
of the model, 𝑝௜ (1 ≤ 𝑖 ≤ 𝑃), can be derived directly by factorization after the AR coeffi-
cients 𝑎௜ (1 ≤ 𝑖 ≤ 𝑃) have been acquired. The resulting spectrum obtained from the ac-
quired AR model is defined as  𝑃஺ோሺ𝑓ሻ = ఙమ

อ∏ ൭ଵି௣೔⋅௘షೕ⋅మഏ⋅ ೑೑ೞ൱ು೔సభ อమ. 
(15) 

Let 𝑃ௗሺ𝑓௞ሻ denote the energy contributed from the dominant pole 𝑝௞ (the pole clos-
est to the unit circle) corresponding to the frequency 𝑓௞ (in unit Hz) for a certain band of 
the AR spectrum, then 𝑃ௗሺ𝑓௞ሻ can be derived as follow [42].  𝑃ௗሺ𝑓௞ሻ = 𝜎ଶቤ𝑝௞ ⋅ ∏ ቆ𝑝௞ − 𝑒௝ଶగ⋅௙೔௙ೞ ቇ௉௜ୀଵ,௜ஷ௞ ⋅ ∏ ቆ 1𝑝௞ − 𝑒ି௝ଶగ⋅௙೔௙ೞ ቇ௉௜ୀଵ ቤ, (16) 

where 𝑓௜ represents the corresponding frequency (in unit Hz) of the pole 𝑝௜ (1 ≤ 𝑖 ≤ 𝑃). 
The values of 𝑃ௗሺ𝑓௞ሻ are estimated from the dominant poles appearing within the HF 
band (0.15–0.4 Hz) and the LF band (0.04–0.15 Hz) for the IBI and SBP spectrum. The ac-
quired 𝑃ௗሺ𝑓௞ሻ values for the SBP and IBI spectra from the LF and HF bands are used to 
represent the energies 𝐸ௌ஻௉,௅ி, 𝐸ௌ஻௉,ுி, 𝐸ூ஻ூ,௅ி and 𝐸ூ஻ூ,ுி for BRS estimation. In a similar 
way to the approach using Welch’s periodogram, the BRS values are estimated according 
to Equation (13).  

The advantage of spectral analysis by the scalogram of complex Morlet wavelet is the 
ability to focus on analysis within the dedicated frequency range with a selected frequency 
resolution [40]. In this study, the frequency resolution is selected to be 0.005 Hz. After 
having acquired the scalogram under pre-determined scales (which are the scaled recip-
rocal of frequencies) in different time segment, the averaged spectrum is then time-
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averaged along each frequency. The energy within the HF band (0.15–0.4 Hz) and the LF 
band (0.04–0.15 Hz) for the SBP and IBI can then be estimated by Equation (13).  

2.3. BRS Estimation by GAFD 
GAFD [33] is a novel approach for BRS estimation which adopts a three-level struc-

ture similar to wavelet decomposition but using Gaussian lowpass filters of three different 
cutoff frequencies (which are 0.04, 0.15 and 0.4 Hz, respectively). The SBP sequence in 
mmHg and its associated IBI sequences in ms were resampled evenly in 4 Hz by cubic 
spline interpolation. Before the signal decomposition, the Gaussian lowpass filters for 
GAFD are based on Equation (3), and the signal must also be extended out of the end-
points according to Equation (7). The parameters 𝑀 and 𝛽 are determined by Equation 
(9) and Equation (4), with the values of 𝑓ௗ being 0.04, 0.15, and 0.4 Hz, respectively, for 
GAFD. The filtering operation is conducted by Equation (8), with the filter 𝑤௚[⋅ሿ being 
replaced by 𝑤௔[⋅ሿ, as shown in Equation (3). In the following content, the symbol 𝑥[⋅ሿ is 
used to represent the resampled SBP or IBI sequences. The procedure for BRS estimation 
by GAFD is briefly summarized below. A detailed introduction is provided in [33].  

Step 1: Perform the lowpass filtering to divide the sequences 𝑥[⋅ሿ to components of 
above 0.4 Hz and below 0.4 Hz. Let the components below 0.4 Hz be referred to as 𝑥଴ସ[⋅ሿ.  

Step 2: Conduct the lowpass filtering on 𝑥଴ସ[⋅ሿ to divide the sequences to compo-
nents above 0.15 Hz and below 0.15 Hz. Let the components below 0.15 Hz be referred to 
as 𝑥଴ଵହ[⋅]. The components above 0.15 Hz represent the HF components for the estimation 
of BRS and are designated as 𝑥ுி[⋅ሿ. Let the HF components for IBI and SBP sequences be 
denoted by 𝑥ூ஻ூ,ுி[⋅ሿ and 𝑥ௌ஻௉,ுி[⋅ሿ. The HF band energies can therefore be calculated by 
squared summation, as shown in Equations (11) and (12).  

Step 3: Perform the lowpass filtering on 𝑥଴ଵହ[⋅ሿ to divide the sequences to compo-
nents above 0.04 Hz and below 0.04 Hz. The components below 0.04 Hz represent the LF 
components for the estimation of BRS and are designated as 𝑥௅ி[⋅ሿ. Let the LF components 
for IBI and SBP sequences be expressed by 𝑥ூ஻ூ,௅ி[⋅ሿ and 𝑥ௌ஻௉,௅ி[⋅ሿ. In a similar way to the 
HF band, the LF band energies can also be calculated by squared summation, as shown in 
Equations (11) and (12).  

Step 4: Lastly, the values of BRS are approximated with the 𝛼 index in the LF band 
and the HF band, along with the averaged form, independently, as shown in Equation 
(13). 

The MATLAB codes for the BRS estimation by spectral approaches and GAFD re-
ferred to in this article can be found on the website: https://figshare.com/articles/soft-
ware/Sample_codes_for_the_assessment_of_baroreflex_sensitivity_BRS_/12820430 (ac-
cessed on 10 June 2022). 

2.4. Materials  
For the purpose of this research, both beat-by-beat SBP and IBI sequences were ob-

tained from the EuroBavar dataset [43]. The dataset, which has been used in previous 
studies [33,44,45] to compare the performance of different methods used for BRS estima-
tion, can be downloaded online. The EuroBavar dataset contains 46 recording files ac-
quired from 21 subjects composed of 4 males and 17 females. The participating subjects 
are organized as follow: 
• 12 normotensive outpatients, including two patients who were treated for hypercho-

lesterolemia, one diabetic patient with no cardiac neuropathy and one woman who 
was three months pregnant,  

• two patients who were treated for hypertension,  
• one non-treated hypertensive patient,  
• two patients suffering from cardiac autonomic failure (one with heart transplantation 

and one patient with diabetic neuropathy) 
• four healthy volunteers.  
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ECG signals (Cardiocap™ II, Datex-Ohmeda, Helsinki, Finland) and continuous non-
invasive blood pressure (Finapres®, Finapres Medical Systems, Enschede, The Nether-
lands) were recorded on all subjects at a sampling frequency of 500 Hz by 16-bit analog-
to-digital conversion resolution in the standing position (files marked with the penulti-
mate letter “S”) and supine position (files marked with the penultimate letter “L”) in a 
silent room according to a uniform procedure. Informed consent was obtained for all par-
ticipants prior to collecting the EuroBavar dataset. Furthermore, the ECG and blood pres-
sure signals from this dataset are available as waveforms (files with the ending letter “C”) 
and beat-by-beat sequences (files with the ending letter “B”). For all the computer exper-
iments of the study, the beat-by-beat SBP, along with the IBI sequences, were adopted.  

All the statistical analyses and computational experiments in this study were per-
formed on a MacBook Pro (mid 2015, with 2.5 GHz Intel Core i7 and 16 GB 1600 MHz 
DDR3 memory, Apple Inc., Cupertino, CA, USA) using MATLAB® (2020b, MathWorks, 
Inc., Natick, MA, USA). 

2.5. Statistical Analysis  
The values of the BRS values were derived from Equation (13) by Welch’s periodo-

gram, then by GAFD and finally by modGauss. Various statistical tests were applied to 
assess the effectiveness of the suggested modGauss method. Firstly, the Shapiro–Wilk 
normality test [46] was performed to check if the BRS values in the whole dataset, as well 
as in the dataset for the supine and standing positions, were normally distributed or not. 
We then used non-parametric statistical methods for testing; the Wilcoxon signed-rank 
test [47] was used to assess if there was a statistical difference in the BRS values between 
the standing and supine positions for each approach. The Wilcoxon rank sum test [48] was 
employed to assess whether any statistical difference existed between the modGauss 
method and the other four methodologies. Lastly, to assess the level of correlation be-
tween modGauss and the others methodologies, the intraclass correlation coefficient 
(ICC) [49,50] was determined. A MATLAB algorithm, developed by Salarian [51] and 
based on [49], was adopted for the estimation of the 95% confident intervals (CI) and the 
ICC. Six different types of ICC computation can be used for the ICC analysis; however, in 
the context of this study, the ICC for a two-way mixed approach and single score (type 
“A-1” in the code) was chosen for the computation of the ICC; the lower and upper 
bounds of the ICC were calculated assuming a significance level of 0.05. 

3. Results 
3.1. Experimental Results in Time Domain and Frequency Domain 

This article proposes a new method called modGauss for the estimation of BRS using 𝛼 indices according to Equation (13). Figures 2 and 3 have previously demonstrated the 
generation procedure of modGauss filters from time- and frequency-domain perspectives, 
respectively. To demonstrate the effect of the modGauss filters, the decomposed results 
for one data record in the EuroBavar dataset (the record numbered B002LB) are shown in 
Figures 4 and 5 (for the resampled SBP sequence); Figure 4 presents the results from a 
time-domain perspective, while Figure 5 shows the corresponding results from a fre-
quency-domain perspective. 
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Figure 4. Derived results for the interpolated SBP sequence in both the LF and HF band. Results 
from time-domain perspective with the B002LB data of EuroBavar dataset as example. 

 
Figure 5. Derived results for the interpolated SBP sequence in both the LF and HF band. Results 
from frequency-domain perspective with the B002LB data of EuroBavar dataset as example. 

The decomposed results for one data record of the EuroBavar dataset (B002LB) are 
presented in Figures 6 and 7 (for the resampled IBI sequence). Figure 6 shows the results 
in the time domain, while Figure 7 describes the corresponding results in the frequency 
domain. 
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Figure 6. Derived results for the interpolated IBI sequence in LF band and HF band (from time-
domain perspective, with the data record B002LB of the EuroBavar dataset as an example). 

 
Figure 7. Derived results for the interpolated IBI sequence in LF band and HF band (from frequency-
domain perspective, with the data record B002LB of the EuroBavar dataset as an example).  

The Welch’s periodogram (with 512-point FFT, 512-point Hanning window and a 
50% overlap between the neighboring windows) was used to acquire the spectra for the 
resampled sequences and the decomposed signals in Figures 5 and 7. For the figures in 
the time domain, it can be observed that the raw signals were separated into the lower-



Sensors 2022, 22, 4618 13 of 21 
 

 

frequency components and the higher-frequency components (refer to Figures 4 and 6). 
However, it is very evident that the spectra of the lower-frequency and higher-frequency 
components have been separated to the discrete ranges of 0.04–0.15 Hz and 0.15–0.4 Hz 
by the modGauss filters from the corresponding frequency-domain perspective (as shown 
in Figures 5 and 7). 

3.2. Performance Evaluation of the modGauss 
To evaluate the performance and effectiveness of our proposed method, four other 

approaches—GAFD, AR spectrum, Welch’s periodogram and wavelet—were chosen for 
performance comparison. The present study used the EuroBavar dataset to confirm the 
applicability of the newly suggested approach. Although this dataset has been used in 
other studies [33,44,45], it is important to note that few studies have shown all the derived 
BRS values for each data record in the dataset. Figure 8 represents the BRS value for each 
of the methods discussed in this study. It can be observed that the median BRS value was 
almost identical for each of the five methods, which indicates that the proposed mod-
Gauss algorithm is comparable to the other methodologies for BRS estimation.  

 
Figure 8. Estimation of the BRS values by five different methods including modGauss, GAFD, AR 
spectrum, Welch’s periodogram and wavelet. The data points beyond the whiskers are marked by 
red + symbol. 

After estimation of the BRS values for each of the methods, detailed statistical values 
were obtained using different tests, including the Shapiro–Wilk normality test, the Wil-
coxon signed-rank test, the Wilcoxon rank sum test and the intraclass correlation coeffi-
cient (ICC). First, the Shapiro–Wilk normal test [46] was applied to assess if the BRS values 
for the whole dataset, as well as for the datasets for supine and standing position, were 
normally distributed. In Table 1 below, the test results for the five methods, including 
modGauss, GAFD, AR, Welch and Wavelet in different conditions (whole dataset, supine 
and standing position) are presented.  
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Table 1. Summary of the test results for each of the five methods following the Shapiro–Wilk nor-
mality test. 

Condition modGauss GAFD AR Welch Wavelet 𝛼 (Whole) 6.52 × 10ି଼ 4.81 × 10ି଼ 1.65 × 10ି଻ 1.49 × 10ି଻ 6.01 × 10ି଼ 𝛼 (Supine) 3.37 × 10ିହ 2.13 × 10ିହ 8.18 × 10ିହ 7.51 × 10ିହ 3.38 × 10ିହ 𝛼 (Standing) 5.30 × 10ିଷ 1.03 × 10ିଶ 2.35 × 10ିଶ 5.55 × 10ିଷ 7.01 × 10ିଷ 𝛼௅ி (Whole) 7.95 × 10ିଽ 7.28 × 10ିଽ 6.85 × 10ିଽ 9.05 × 10ିଽ 3.24 × 10ିଵ଴ 𝛼௅ி (Supine) 2.77 × 10ି଺ 1.97 × 10ି଺ 2.21 × 10ି଺ 2.82 × 10ି଺ 3.25 × 10ି଻ 𝛼௅ி (Standing) 1.12 × 10ିଶ 1.60 × 10ିଶ 9.84 × 10ିଷ 1.26 × 10ିଶ 1.58 × 10ିଶ 𝛼ுி (Whole) 8.85 × 10ି଻ 2.99 × 10ି଻ 1.18 × 10ି଺ 1.15 × 10ି଺ 7.77 × 10ି଺ 𝛼ுி (Supine) 3.58 × 10ିସ 2.11 × 10ିସ 9.86 × 10ିସ 8.33 × 10ିସ 4.71 × 10ିଷ 𝛼ுி (Standing) 2.10 × 10ିଷ 3.13 × 10ିଷ 1.19 × 10ିଶ 1.92 × 10ିଷ 1.56 × 10ିଷ 
Legend: modGauss: using modulated Gaussian filter; GAFD: using Gaussian average filtering de-
composition; AR: by autoregressive (AR) power spectral density (PSD); Welch: using Welch’s peri-
odogram; Wavelet: by the scalogram using complex Morlet wavelet; 𝛼 (Test Condition): the p value 
of BRS 𝛼 index under different “Test Condition”; 𝛼௅ி (Test Condition): the p value of BRS 𝛼 index 
in LF band under different “Test Condition”; 𝛼ுி (Test Condition): the p value of BRS 𝛼 index in 
HF band under different “Test Condition”; Test Condition: “Whole” refers to the analysis of the 
entire dataset; “Supine” stands for the analysis of the data in supine position; “Standing” stands for 
the analysis of the data in standing position. 

It was observed that all the p values were smaller than 0.05, indicating that there was 
no Gaussian distribution of BRS values for each test. Based on this, the non-parametric 
Wilcoxon signed-rank test [47] was utilized to assess if there was a statistical difference in 
the BRS values between the standing and supine positions for each of the four methods. 
The experimental results for this test are shown in Table 2.  

Table 2. Summary of the test results for each of the five methods following the Wilcoxon signed-
rank test. 

Index modGauss GAFD AR Welch Wavelet 𝛼  3.52 × 10ିହ 4.02 × 10ିହ 6.75 × 10ିହ 3.52 × 10ିହ 3.08 × 10ିହ 𝛼௅ி  2.06 × 10ିସ 1.73 × 10ିଷ 5.88 × 10ିସ 2.06 × 10ିସ 3.72 × 10ିସ 𝛼ுி  4.02 × 10ିହ 5.22 × 10ିହ 1.43 × 10ିସ 5.94 × 10ିହ 3.52 × 10ିହ 
Legend: modGauss: using modulated Gaussian filter; GAFD: using Gaussian average filtering de-
composition; AR: by autoregressive (AR) power spectral density (PSD); Welch: using Welch’s peri-
odogram; Wavelet: by the scalogram using complex Morlet wavelet; α: represents the BRS α index. 
The BRS 𝛼 index p values for supine versus standing cases are reported on the same row in each 
method. 𝛼௅ி: represents the BRS α index in LF band. The BRS 𝛼 index p values in LF band for 
supine versus standing cases are reported on the same row in each method. 𝛼ுி: represents the BRS 
α index in HF band. The BRS 𝛼 index p values in HF band for supine versus standing cases reported 
on the same row in each method. 

Since all the p values were lower than 0.05, this implies that there were statistical 
differences in the BRS values for the supine and standing positions for all the five ap-
proaches. Therefore, a further test was needed to determine if there was any statistically 
significant difference between the proposed modGauss and the other four methods for 
BRS estimation. The Wilcoxon rank sum test [48] was then to this end; Table 3 shows the 
comparison results under each condition (supine and standing position, whole dataset).  
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Table 3. Wilcoxon rank sum test results for the proposed modGauss compared to different methods. 

Condition vs. GAFD vs. AR vs. Welch vs. Wavelet 𝛼 (Whole) 0.73 0.90 0.84 0.89 𝛼 (Supine) 0.60 0.74 0.79 0.88 𝛼 (Standing) 0.96 0.91 1.00 0.93 𝛼௅ி (Whole) 0.49 0.70 0.80 0.73 𝛼௅ி (Supine) 0.42 0.64 0.91 0.74 𝛼௅ி (Standing) 0.78 0.84 0.74 0.73 𝛼ுி (Whole) 0.88 0.86 0.81 0.81 𝛼ுி (Supine) 0.78 0.79 0.71 0.86 𝛼ுி (Standing) 0.93 0.98 0.93 0.81 
Legend: modGauss: by modulated Gaussian filter; GAFD: using Gaussian average filtering decom-
position; AR: by autoregressive (AR) power spectral density (PSD); Welch: using Welch’s periodo-
gram; Wavelet: by the scalogram using complex Morlet wavelet; 𝛼 (Test Condition): the p value of 
BRS 𝛼 index under different “Test Condition”; 𝛼௅ி (Test Condition): the p value of BRS 𝛼 index 
in LF band under different “Test Condition”; 𝛼ுி (Test Condition): the p value of BRS 𝛼 index in 
HF band under different “Test Condition”; Test Condition: “Whole” refers to the analysis of the 
entire dataset; “Supine” stands for the analysis of the data in supine position; “Standing” stands for 
the analysis of the data in standing position. 

It was observed that all the p values were higher than 0.05, which implies that there 
was no substantial difference between the modGauss and the other four BRS estimation 
approaches. The ICC [49,50] was used to evaluate the level of correlation between the BRS 
values deriving from modGauss and the other four methodologies. The results of the ICC 
analysis comparing modGauss with the other approaches under different conditions (su-
pine and standing position, whole dataset) are shown in Table 4. The 95% confidence in-
terval (CI) is also provided in this table for each comparison, along with the ICC value. 
Even considering the lowest CI (which is 0.91 for 𝛼௅ி compared between the modGauss 
and GAFD under the supine condition), the obtained results indicated “excellent” agree-
ment (based on the guideline described in [52]) for the estimation of BRS between the 
modGauss and the other four approaches. 

Table 4. Summary of the intraclass correlation coefficient (ICC) results for modGauss compared to 
four different methodologies. 

Condition vs. GAFD vs. AR vs. Welch vs. Wavelet 𝛼 (Whole) 
95% CI 

1.00 0.99 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 𝛼 (Supine) 
95% CI 

0.99 0.99 1.00 1.00 0.96 1.00 0.98 1.00 0.99 1.00 0.99 1.00 𝛼 (Standing) 
95% CI 

1.00 0.99 1.00 1.00 0.99 1.00 0.98 1.00 0.99 1.00 0.99 1.00 𝛼௅ி (Whole) 
95% CI 

0.99 1.00 1.00 1.00 0.96 1.00 0.99 1.00 0.99 1.00 0.99 1.00 𝛼௅ி (Supine) 
95% CI 

0.99 1.00 1.00 1.00 0.91 1.00 0.98 1.00 0.99 1.00 0.99 1.00 𝛼௅ி (Standing) 
95% CI 

0.99 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 𝛼ுி (Whole) 
95% CI 

1.00 0.98 0.99 0.99 0.99 1.00 0.97 0.99 0.98 1.00 0.99 1.00 𝛼ுி (Supine) 
95% CI 

1.00 0.98 0.99 0.99 0.99 1.00 0.96 0.99 0.96 1.00 0.98 1.00 1.00 0.97 0.99 0.99 
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𝛼ுி (Standing) 
95% CI 

0.99 1.00 0.94 0.99 0.98 1.00 0.98 1.00 

Legend: The data presentation in the table above follows the format of ICC (in upper cell) and the 
95% CI of ICC (in lower cell), with CI designating the confidence interval. modGauss: using modu-
lated Gaussian filter; GAFD: using Gaussian average filtering decomposition; AR: by autoregressive 
(AR) power spectral density (PSD); Welch: using Welch’s periodogram; Wavelet: by the scalogram 
using complex Morlet wavelet; 𝛼 (Test Condition): the test results of BRS 𝛼 index under different 
“Test Condition”; 𝛼௅ி (Test Condition): the test results of BRS 𝛼 index in LF band under different 
“Test Condition”; 𝛼ுி (Test Condition): the test results of BRS 𝛼 index in HF band under different 
“Test Condition”; Test Condition: “Whole” refers to the analysis of the entire dataset; “Supine” 
stands for the analysis of the data in supine position; “Standing” stands for the analysis of the data 
in standing position. 

4. Discussion 
The various experiments and tests performed using the proposed modGauss algo-

rithm have shown that the algorithm is highly comparable to other conventional BRS es-
timation methods. More importantly, a major advantage of our proposed modGauss 
method is its simplicity for performing complex computation. As its highly simplified 
structure uses only two dedicated bandpass filters and bypasses the three-level structure 
of the GAFD algorithm [33], this strategy is more computationally efficient than the GAFD 
method while retaining all the advantages of the latter. Another major advantage of the 
proposed modGauss method is its fast computation time. A fast-computational time is an 
important criterion in defining the performance of computational algorithms. In this 
study, a comparative analysis of the proposed modGauss method was performed to eval-
uate the computational time of the algorithm using the EuroBavar dataset. Four different 
methods (GAFD, AR, Welch and Wavelet) were chosen for comparison and the results are 
presented in Table 5. It can be observed from this table that the modGauss algorithm had 
a shorter computational time in the 0.05 quartile, median and 0.95 quartile. The p values 
of the Wilcoxon rank sum one-tailed tests for modGauss versus the other four methods 
were all less than 0.05. This means that the modGauss algorithm was faster in computa-
tion, which makes it more attractive for performing rapid computation for BRS estimation. 
Although the elapsed time for each method was of the order of milli-seconds, it should be 
noted that the values were evaluated under the platform of a mid-2015 MacBook Pro. If 
the computation were conducted in the embedded micro-controller of a medical device, 
the elapsed time might be very different, especially for the spectral methods because of 
their relatively high demand for computational resources.  

Table 5. Summary of the elapsed time tests using the EuroBavar dataset for five different meth-
ods. 

Method modGauss GAFD AR Welch Wavelet 𝑝 value (SW) 4.88 × 10ିଵଵ 3.21 × 10ିଵ଴ 3.22 × 10ିଵଵ 7.46 × 10ିଵଶ 4.10 × 10ିଵଵ 

Elapse time (s) 
0.05 quartile 0.0093 0.0117 0.0129 0.0155 0.0704 

Median  0.0109 0.0128 0.0135 0.0162 0.0746 
0.95 quartile 0.0159 0.0166 0.0347 0.0345 0.1524 𝑝 value (Wilcoxon) 1.0 2.89 × 10ିଵ଴ 1.59 × 10ିଵଶ 1.55 × 10ିଵସ 7.41 × 10ିଵ଻ 

Legend: modGauss: by modulated Gaussian filter; GAFD: using Gaussian average filtering decom-
position; AR: by autoregressive (AR) power spectral density (PSD); Welch: using Welch’s periodo-
gram; Wavelet: by scalogram using complex Morlet wavelet; SW denotes the Shapiro–Wilk normal 
test (0.05 significance level); Wilcoxon represents the Wilcoxon rank sum one-tailed test (0.05 signif-
icance level). 

When selecting a computational algorithm for BRS estimation, a key consideration is 
the ability of the algorithm to perform long-term analysis. In this regard, a comparative 
analysis was performed for long-term BRS estimation between the proposed modGauss 
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and sleep stage, with the results shown in Figure 9. The signal slp45 from the MIT-BIH 
Polysomnographic Database [53] of PhysioNet [54] was adopted for the long-term BRS 
analysis. In this figure, the proposed modGauss algorithm was used to perform an analy-
sis of the BRS estimate for a duration of 6 h. From Figure 9, it can be seen that the BRS 
values generally increased after the awake stages, which implies arousal of the baroreflex 
function when a person is awoken from the sleep stage. With respect to sleep, the increase 
in BRS values and the delay in BRS elevation after waking up are topics which may war-
rant further study.  

 
Figure 9. Long-term BRS analysis by modGauss in comparison with sleep stage (with the sleep 
stages 1–4 being denoted by 01–04, the subject motion by 0M, rapid eye movement sleep by 0R, and 
the awake stage by 0W). 

Moreover, when compared to the other four methods reviewed in this study, the 
long-term analysis of the modGauss algorithm suggest that it performed as well as the 
other methods, as shown in Figure 10. This, combined with the previous observations on 
elapsed time (Table 5), leads to the conclusion that, overall, the modGauss algorithm is 
better and more suitable for the long-term estimation of BRS.  

Although the new modGauss method proposed in this paper has various ad-
vantages, limitations may include the double reflection that is required at the start and 
end points of the filter to perform signal filtering. In practical use, a short waiting time is 
required to assure the signal entirely entering the modGauss filtering window. However, 
if the results obtained in this waiting window can be omitted without influencing the clin-
ical decision, this limitation does not affect the performance of the algorithm because the 
modGauss algorithm only uses convolution, which results in faster computation time, as 
shown in Table 5. The methodologies, such as AR, Welch, and wavelet require more com-
plex computation for model estimation, complex multiplication or to be spread out in the 
time and frequency domains, which causes them to have longer computation times be-
cause of the relatively higher demand on computing resources. The novel modGauss al-
gorithm as discussed in this paper, provides new insights into computational methods for 
BRS estimation. Future development of this work could lead to the incorporation of the 
modGauss algorithm into embedded medical devices for real-time BRS analysis. Real-
time estimation of BRS is important in clinical application as it provides critical infor-
mation for continuous control of patient blood pressure [55,56]. Despite the existence of 
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other methods for real-time BRS estimation [57,58], these methods typically use advanced 
microcontrollers for computation, making them more demanding on resources and more 
expensive. The modGauss, which is a based on a linear convolutional approach, does not 
require significant computational resources or advanced microcontroller systems.  

 
Figure 10. Long-term sleep BRS analysis by five methods including GAFD, AR spectrum, Welch’s 
periodogram and Wavelet. 

For BRS estimation, the phase spectrum is sometimes adopted in spectral approaches 
to depict the timing difference from the sympathetic and vagal nerves in different condi-
tions [29]. In addition, some spectral approaches utilize the threshold of coherence (e.g., 
greater than 0.5) between SBP and IBI spectral estimates to determine the bands used for 
the computation of BRS [45]. The lack of phase and coherence information is another lim-
itation of the presented modGauss algorithm because its computation is conducted thor-
oughly in the time domain. For this issue, correlation analysis between the separated SBP 
and IBI sequences in the LF and HF bands may be helpful to compensate for such con-
straints. Due to the differences in the selected band and in the spectrum analysis method, 
there have been eleven different spectral approaches for BRS estimation proposed [45]. 
Because there has been no gold standard method for BRS estimation until now, this study 
selected three representative spectral analysis methods for performance comparison.  

BRS estimation has been shown to be crucial in clinical settings and the evaluation of 
BRS has been applied in cardiovascular disease (CVD) [3,4,9,10,18], diabetes [5], neuro-
degenerative disease [6], diagnosis of brain stem death [7], OSAS [8], surgery [16], physi-
ological function evaluation while conducting physical and psychological tasks [11], CKD 
[17], and pain perception [19,20]. No dedicated medical device has been available for BRS 
estimation until now. One attractive approach is to embed the BRS estimation algorithm 
in contemporary medical equipment. Accumulated observations from BRS estimation in 
various situations may provide new insights into the role that baroreflex function plays 
in clinical settings. The proposed algorithm is a strong candidate for practical implemen-
tation because of its computational simplicity and efficiency. 

5. Conclusions 
A new algorithm named modGauss, developed for the estimation of BRS values, is 

described in this paper. The proposed method utilizes two bandpass filters of dedicated 
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passbands to separately decompose the evenly resampled SBP and IBI sequences into LF 
and HF bands. Convolution and squared summation are used without the need to specify 
a parameter, thus rendering the developed algorithm highly efficient in computing. The 
EuroBavar dataset was used to perform computational experiments and the BRS estima-
tion results were compared with four different methods, namely the Welch’s periodo-
gram, GAFD, the AR spectrum and wavelet. It was found that the BRS values under dif-
ferent conditions (whole dataset, supine position and standing position) obtained through 
modGauss showed “excellent” concordance compared to the other four methodologies. 
In addition, further tests showed that the proposed modGauss algorithm, which has a 
very simplified structure, had faster computation times compared with the other method-
ologies (Table 5) and was also suitable for the long-term analysis of SRB estimation (Fig-
ures 9 and 10). The proposed algorithm may open new research avenues for the develop-
ment of faster embedded medical devices for clinical applications. 
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