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Abstract: The evaluation of baroreflex sensitivity (BRS) has proven to be critical for medical ap-
plications. The use of α indices by spectral methods has been the most popular approach to BRS
estimation. Recently, an algorithm termed Gaussian average filtering decomposition (GAFD) has
been proposed to serve the same purpose. GAFD adopts a three-layer tree structure similar to
wavelet decomposition but is only constructed by Gaussian windows in different cutoff frequency.
Its computation is more efficient than that of conventional spectral methods, and there is no need to
specify any parameter. This research presents a novel approach, referred to as modulated Gaussian
filter (modGauss) for BRS estimation. It has a more simplified structure than GAFD using only
two bandpass filters of dedicated passbands, so that the three-level structure in GAFD is avoided.
This strategy makes modGauss more efficient than GAFD in computation, while the advantages of
GAFD are preserved. Both GAFD and modGauss are conducted extensively in the time domain,
yet can achieve similar results to conventional spectral methods. In computational simulations, the
EuroBavar dataset was used to assess the performance of the novel algorithm. The BRS values were
calculated by four other methods (three spectral approaches and GAFD) for performance comparison.
From a comparison using the Wilcoxon rank sum test, it was found that there was no statistically
significant dissimilarity; instead, very good agreement using the intraclass correlation coefficient
(ICC) was observed. The modGauss algorithm was also found to be the fastest in computation time
and suitable for the long-term estimation of BRS. The novel algorithm, as described in this report, can
be applied in medical equipment for real-time estimation of BRS in clinical settings.

Keywords: modulated Gaussian filter (modGauss); α index; Gaussian average filtering decomposi-
tion (GAFD); baroreflex sensitivity (BRS); autoregressive (AR); wavelet; Welch’s periodogram

1. Introduction

Baroreflex can be defined as a homeostatic process that controls blood pressure via
the autonomic nervous system (ANS) negative feedback loop by modulating the total
peripheral resistance and the heart rate (HR) [1]. The most common indicator used to assess
the effect of baroreflex on heartbeat interval control is the baroreflex sensitivity (BRS) [2]. It
has been suggested in the literature that BRS is a critical evaluation index in clinical settings.
One study [3] showed that patients suffering from essential hypertension tended to have
a lower BRS compared to normal subjects. A lower BRS was also found to be a direct
indicator of the risk of sudden cardiac death after myocardial infarction [4]. In addition,
BRS is considered to be a potential marker in the early detection of autonomic dysfunction
in diabetic mellitus patients [5]. Patients with neurodegenerative disease are found to have
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declined BRS [6]. The estimation of BRS value has also been utilized for the diagnosis of
brain stem death [7]. Furthermore, obstructive sleep apnea syndrome (OSAS) patients
are found to have a significant decrease in BRS value during sleep. These observations
are helpful in clarifying the cardiovascular pathophysiology of patients with OSAS [8]. A
decreased BRS has also been observed in patients with acute intracerebral hemorrhage.
This suggests that BRS could be a possible therapeutic marker for ischemic stroke [9]. The
estimation of BRS is considered to be valuable for the clinical prognosis and diagnosis of
various cardiovascular conditions, including heart failure and myocardial infarction [10]. It
has been confirmed that BRS is a more reliable marker for the evaluation of functional status
during the performance of physical and psychological tasks [11] compared to commonly
used indices such as heart rate variability (HRV) [12], cardiac output (CO) [13] and blood
pressure variability (BPV) [14]. BPV is a phenomenon characterizing the changes in blood
pressure levels. It is the result of a rhythmical cardiac activity similar to HRV [15].

Baroreflex dysfunction has been shown to be strongly correlated with impaired car-
diovascular performance, excess postoperative morbidity, and delays in hospital release
for high-risk surgical patients [16]. Patients with chronic kidney disease (CKD) have been
found to possess a reduced BRS and stiffer arteries, while peritoneal dialysis patients were
observed to be worse than those in a non-dialysis group [17]. In addition, a decreased BRS
is independently associated with post-stroke condition [18]. Growing evidence indicates
that baroreflex pathways also project to key regions of the central nervous system (CNS)
that regulate somatosensory and CNS arousal. These projections regulate pain perception,
sleep, consciousness and cognition. This suggests that BRS estimation may be helpful in
the evaluation of pain perception, sleep quality, consciousness level and cognitive func-
tion [19,20]. Only some representative, but not exhaustive, applications of BRS estimation
in clinical settings are described above.

Some conventional methods have been reported for BRS estimation, which include
the neck chamber technique [21], injection of drugs [22,23], the Valsalva maneuver [24],
or postural change [25] to stimulate systolic blood pressure (SBP) variations and monitor
related variations on inter-beat interval (IBI). The above-mentioned approaches are subject
to certain constraints in clinical settings. For the neck-chamber approach, the stimulus
is limited to the baroreceptors in the carotid sinus. Regarding the drug-induced method,
various drugs influence the baroreceptor in different ways and could have side-effects
on different physiological systems. For certain patients, the Valsalva maneuver is not
possible. Moreover, a dedicated test bed with a controllable tilt angle is usually required
for the postural change approach such that the stimulus level in all experiments can be
kept consistent. Several approaches have been suggested to overcome the above con-
straints. These approaches mainly focus on computing algorithms and can be categorized
as spontaneous sequence methods (in the time domain) [26], spectral methods (in the
frequency domain) [27,28] and cross-wavelet methods (in the time-frequency domain) [29].
Of these, the cross-wavelet approach is comparatively novel and can track BRS changes
in the time as well as the frequency domains. However, it has the highest computing
workload. Although the spontaneous sequence methods are the most commonly used, it is
important to note that this methodology has shown some inherent bias in the estimation
of BRS estimation, even during the resting state [30,31]. With respect to spectral methods,
these enable the extraction of information about the sympathetic and parasympathetic
nervous system activities individually [32]. This type of approach has been implemented
in multiple commercial software packages, including Ponemah® Software (Data Sciences
International, St. Paul, USA), nevrokard® BRS (Nevrokard Kiauta, Izola, Slovenia) and
HemoLab Software (Harald Stauss Scientific, Dunuggan, USA).

Recently, our team proposed a method termed Gaussian averaging filtering decompo-
sition (GAFD) [33] to evaluate BRS, whereby the computation is conducted wholly in the
time domain, but the results obtained are consistent with those obtained via conventional
spectral techniques. GAFD is based on a three-layer tree structure that is similar to wavelet
decomposition but only includes the Gaussian windows in different cutoff frequency. Its
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computation is more efficient than for conventional spectral methods, and, most impor-
tantly, there is no need to specify any parameter. The present paper introduces a new
method, called modulated Gaussian filter (abbreviated as modGauss in this article) for BRS
estimation. It is constructed with a more simplified structure than GAFD using only two
bandpass filters of dedicated passbands to separately decompose the evenly resampled
SBP and IBI sequences into two dedicated bands. This novel strategy makes modGauss
more efficient than GAFD in the computation, yet the advantages of GAFD are preserved.

The article is divided into the following sections: The proposed modGauss algorithm
for BRS estimation is introduced in Section 2. This section also discusses the materials,
conventional frequency-domain approaches, the GAFD algorithm for BRS estimation (in
brief) and the statistical experiments performed in this study. The results of the analysis
are provided in Section 3 along with corresponding discussion presented in Section 4. The
conclusions of the article are summarized in Section 5.

2. Methods and Materials

This section is divided into five subsections. In the first subsection, the proposed
algorithm is introduced. The following subsection briefly describes conventional spectral
methods for BRS estimation. The estimation of BRS by the GAFD algorithm is concisely
described in the third subsection. The fourth subsection describes the materials (including
the signal resource and the computing environment) that were used for the computational
experiments in this paper. The statistical testing methodologies used for comparing our
developed algorithm with other methods are described in the final subsection.

2.1. BRS Estimation by modGauss

The bandpass filters for the proposed method are constructed from the amplitude
modulation on the Gaussian window. The Gaussian window of length (2M + 1) centralized
at m = 0 is set as follows [34]

w[m] =
β

M ·
√

2π
e−

1
2 (β· m

M )2
, f or −M ≤ m ≤ M, (1)

in which β stands for the scalar inversely related to the standard deviation of the Gaussian
distribution. Under the condition β > 2.5 [34], the truncated points of the Gaussian window
are small enough to be omitted, and the associated discrete Fourier transform (DFT) is, in
approximation, equal to

W(ω) ≈ e−
1
2 ·(

M
β ·ω)

2

, f or − π < ω ≤ π. (2)

From Equation (2), the spectrum of the Gaussian window substantially represents a
non-causal lowpass filter (LPF) centered at ω = 0 rad with no phase offset. To ensure that
the energy remains unchanged, the Gaussian window have to be normalized as follows.

wa[m] =
w[m]

∑M
i=−M w[i]

, f or −M ≤ m ≤ M, (3)

where w[·] is specified in Equation (1). One important issue of concerned with respect to
the Gaussian window is the selection of β. Assume the −6 dB cutoff (where the decay
is one half of the highest amplitude) is adopted and the −6 dB cutoff frequencies are
located at ω = ±ωd rad, then we have W(±ωd) = 0.5 in Equation (2). By some algebraic
manipulations, we have

β =
M ·ωd√
2 · ln(2)

, (4)

where ωd = 2π · fd/ fs, fd is the −6 dB cutoff frequency and fs is the sampling frequency
of the signal to be analyzed. Both fd and fs are in units of Hz. The bandpass filter in
modGauss is acquired from the modulated Gaussian window wa[·]. Assume the resulting
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spectrum retains almost the same shape as the unmodulated spectrum. Let the carrier
frequency in amplitude modulation be denoted as fc (in unit Hz), then the carrier signal
can be generated by

cr[m] = cos
(

2π · fc

fs
·m
)

, f or −M ≤ m ≤ M. (5)

The modGauss filter can then be derived as

wg[m] = wa[m] · cr[m], f or −M ≤ m ≤ M. (6)

The spectrum of wg[·] is the shifted version of W(ω) which is rescaled in amplitude
and is now centered around ω = +2π · fc/ fs and −2π · fc/ fs rad. If the scale β is selected
properly, the split spectra will have no evident overlap. In this case, the generated wg[·]
shown in Equation (6) is, in essence, a non-causal bandpass filter with the passband ranging
from fc − fd to fc + fd Hz.

Assume the signal to be analyzed is denoted as x[n], with 0 ≤ n ≤ N − 1. Because the
modGauss filter is non-causal, the analyzed signal x[·] requires to be extended outside the
endpoints. In this study, the extension is performed by the following formula

xe[n] =


2 · x[0]− x[−n], f or−M ≤ n ≤ −1

x[n], f or 0 ≤ n ≤ N − 1
2 · x[N − 1]− x[2 · N − n− 2], f or N ≤ n ≤ N + M− 1

. (7)

After the signal extension, the filtering operation is conducted as follows

y[n] = 2 ·∑M
m=−M wg[m] · xe[m + n], f or 0 ≤ n ≤ N − 1. (8)

The derived y[·] is the bandpass-filtered components buried in signal x[·].
Another issue of concern for the modGauss filter is the determination of passband

frequency range. In the spectral methods for human BRS estimation, the commonly adopted
low-frequency (LF) band is within 0.04–0.15 Hz and the high-frequency (HF) band is located
in the range 0.15–0.4 Hz [32]. In this condition, the center of the dedicated frequency range
is selected to be the carrier frequency fc, which is 0.095 Hz for the LF band and 0.275 Hz for
the HF band, respectively. The deviated frequency from the center was previously denoted
as fd. It is assumed that the −6 dB cutoff frequencies are located at the endpoints of both
bands in modGauss filters. In this case, the value of fd is equal to the deviation from fc to
the end frequency. Therefore, it is 0.055 Hz for the LF band and 0.125 Hz for the HF band.
With selection of the fc and fd values referred to, the proposed method is constructed from
two modGauss filters, one for the LF band and the other for the HF band. The filtering
operation is based on Equation (8), which is conducted fully in the time domain but can
derive the frequency-domain information in the same way as for other spectral methods.

The final issue for the modGauss filter requiring consideration is the filter length,
which is determined by the parameter M. Because the components buried in the raw signal
are closely related to the number of extremes (including both the local maxima and the
local minima) appearing in the signal, the proposed method adopts an approach suggested
by [35] according to the following formula

M = 2 ·
⌊

κ · N
Ne

⌋
, (9)

where κ is a scalar parameter ranging from 1.1 to 3, Ne denotes the number of extremes, N
represents the signal length and b·c refers to the operator rounding the value to the closest
integer toward −∞. To select the feasible value of κ, the estimation of the BRS value is
performed with different κ values (1,1, 2 and 3); the results are shown in Figure 1. It can
be observed that the results are identical for each of the values of κ. The value 2 is in the
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middle of the selection range and is an integer, which means it can save storage space and
offer fast computation in embedded applications. For these reasons, a constant value of 2 is
selected for the parameter κ.
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Figure 1. BRS analysis with different values of κ (1.1, 2 and 3). It can be observed that the BRS value
is identical for each value of κ. In this study, κ is constantly set to 2. The data points beyond the
whiskers are marked by red + symbol.

In addition, the second derivative test [36] is chosen for detecting the extremes. That is,
the points whose first derivative is zero, and for which the second derivative is less than or
greater than zero, are categorized as the local extremes. To prevent obtaining an implausible
value of M, the limit of the extreme numbers is defined using the equation below

NeTH =

⌈
2 · κ · N

N
2 − 1

⌉
, (10)

in which d·e refers to the operator, rounding the value to the closest integer toward +∞. Sig-
nal processing is performed when the number of extremes detected Ne is greater than NeTH .

To facilitate readers’ understanding of the proposed method, the modGauss filter
generation procedure for both the LF and HF bands is illustrated in Figure 2 from the time
domain perspective.

In this figure, the generation of both modGauss filters is based on Equations (1), (3)–(6)
with M = 50, fs = 4 Hz, fc = 0.095 Hz (for the LF band) and 0.275 Hz (for the HF band),
and fd = 0.055 Hz (for the LF band) and 0.125 Hz (for the HF band). The corresponding
modGauss filters from the frequency-domain perspective are shown in Figure 3, where
the parameters are the same as those for Figure 2. It can be observed that the generated
modGauss filters are bell-shaped bandpass filters centered at 0.095 and 0.275 Hz with
the −6 dB cutoff frequencies corresponding to the frequency ranges of the LF and HF
bands, respectively.
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As shown in Figure 3, it can be observed that both the modGauss filters are sym-
metrical with a center at index 0, and the computation of Equation (8) is inherently the
convolution sum of wg[·] and xe[·]. From the frequency-domain perspective, this is a direct
multiplication of the frequency response of wg[·] and the spectrum of xe[·], and only the
components within the dedicated frequency ranges are reserved.

In this study, the SBP sequence expressed in mmHg, and its respective IBI sequence
expressed in ms, are resampled using a 4 Hz sampling rate by cubic spline interpolation
for BRS estimation. This is the primary reason why the parameter fs is set to 4 Hz in
Figures 2 and 3. Let the separated LF and HF component of the interpolated SBP sequence
be designated as xSBP,LF[n] and xSBP,HF[n], for 0 ≤ n ≤ N − 1. The LF and HF band
energies of SBP sequence are derived by{

ESBP,LF = ∑N−1
n=0 x2

SBP,LF[n]
ESBP,HF = ∑N−1

n=0 x2
SBP,HF[n]

. (11)

Let xIBI,LF[n] and xIBI,HF[n], with 0 ≤ n ≤ N − 1, denote the extracted LF and HF
components for the interpolated IBI sequence. The LF and HF band energies for IBI
sequence are acquired by {

EIBI,LF = ∑N−1
n=0 x2

IBI,LF[n]
EIBI,HF = ∑N−1

n=0 x2
IBI,HF[n]

. (12)

The BRS is then estimated using the so-called α index [37] in the LF band and the HF
band, as well as in the averaged form, by

αLF =
√

EIBI,LF
ESBP,LF

αHF =
√

EIBI,HF
ESBP,HF

α = αLF+αHF
2

, (13)

where the expression unit of all indices is ms/mmHg.
The computation procedure of our method is outlined in the following steps.
Step 1: The SBP sequence, expressed in mmHg, as well as its respective IBI sequence

expressed in ms, are evenly resampled by fs Hz, which is a 4-Hz cubic spline interpolation
in this study.

Step 2: Find the number of extremes for both the interpolated sequences. Then,
determine the parameters M and β according to Equation (9) and Equation (4), respectively.
In this study, the second derivative test [36] is applied for detection of extremes. In addition,
the value of fd is 0.055 Hz for the LF band and 0.125 Hz for the HF band. If the number of
extremes is less than NeTH , which is derived according to Equation (10), this implies the
interpolated sequence is nearly a monotonic trend wave and the energies in both the LF
and HF bands can be considered to be zero. The BRS estimation is only conducted once the
number of detected extremes is greater than NeTH .

Step 3: Generate the carrier signals for both the LF and HF bands according to
Equation (5), where the value of fc is 0.095 Hz for the LF band and for the HF band
is 0.275 Hz.

Step 4: Extend the interpolated SBP and IBI sequences beyond the endpoints according
to Equation (7), and then conduct the filtering process according to Equation (8) for both
the LF and HF bands separately.

Step 5: Derive the energies of the interpolated SBP and IBI sequences in both the LF
and HF bands according to Equation (11) and Equation (12), respectively. Finally, the BRS
values are estimated according to Equation (13).

2.2. BRS Estimation with Spectral Methods

Three conventional spectral approaches are adopted for performance comparison in
this study. One is the Welch’s periodogram [38], whereas the others are the autoregressive
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(AR) spectrum estimation [39] and the wavelet [40]. The SBP, as well as the IBI sequences,
should be resampled uniformly by fs Hz, which is a 4-Hz cubic spline interpolation in this
study, before conducting the spectral analysis.

For the Welch’s periodogram, the parameters of the 512-point Hanning window and
512-point fast Fourier transform (FFT), along with 50% overlap among adjacent windows,
are selected for performance comparison. The energies of the LF band and the HF band
are deduced by direct addition of the periodograms in the respective frequency range. Let
the derived energies in LF and HF bands for the interpolated SBP and IBI sequences be
represented by ESBP,LF, ESBP,HF, EIBI,LF and EIBI,HF, respectively. The BRS values are then
estimated by Equation (13).

Another commonly used method for spectrum analysis is the AR model [39]. It
consists of an all-pole approach whose transfer function is given by

H(z) =
σ

1 + ∑P
i=1 ai · z−i

=
σ

∏P
i=1(1− pi · z−1)

′ . (14)

where σ is the scalar related to the estimation error, ai (1 ≤ i ≤ P) are the AR coefficients
and pi (1 ≤ i ≤ P) denote the poles of the model. The order of the AR model is represented
by the parameter P. The AR model of fixed order 25 is selected for both the IBI sequences
and an interpolated SBP, and Burg’s maximum extropy method is used to derive the
estimation error σ as well as the AR coefficients. This method has the advantage of high
resolution, even for short data records, and model stability [41]. The poles of the model, pi
(1 ≤ i ≤ P), can be derived directly by factorization after the AR coefficients ai (1 ≤ i ≤ P)
have been acquired. The resulting spectrum obtained from the acquired AR model is
defined as

PAR( f ) =
σ2∣∣∣∣∏P

i=1

(
1− pi · e

−j·2π· f
fs

)∣∣∣∣2
. (15)

Let Pd( fk) denote the energy contributed from the dominant pole pk (the pole closest
to the unit circle) corresponding to the frequency fk (in unit Hz) for a certain band of the
AR spectrum, then Pd( fk) can be derived as follow [42].

Pd( fk) =
σ2∣∣∣∣pk ·∏P

i=1,i 6=k

(
pk − ej2π· fi

fs

)
·∏P

i=1

(
1
pk
− e−j2π· fi

fs

)∣∣∣∣ , (16)

where fi represents the corresponding frequency (in unit Hz) of the pole pi (1 ≤ i ≤ P).
The values of Pd( fk) are estimated from the dominant poles appearing within the HF band
(0.15–0.4 Hz) and the LF band (0.04–0.15 Hz) for the IBI and SBP spectrum. The acquired
Pd( fk) values for the SBP and IBI spectra from the LF and HF bands are used to represent
the energies ESBP,LF, ESBP,HF, EIBI,LF and EIBI,HF for BRS estimation. In a similar way
to the approach using Welch’s periodogram, the BRS values are estimated according to
Equation (13).

The advantage of spectral analysis by the scalogram of complex Morlet wavelet is the
ability to focus on analysis within the dedicated frequency range with a selected frequency
resolution [40]. In this study, the frequency resolution is selected to be 0.005 Hz. After
having acquired the scalogram under pre-determined scales (which are the scaled reciprocal
of frequencies) in different time segment, the averaged spectrum is then time-averaged
along each frequency. The energy within the HF band (0.15–0.4 Hz) and the LF band
(0.04–0.15 Hz) for the SBP and IBI can then be estimated by Equation (13).

2.3. BRS Estimation by GAFD

GAFD [33] is a novel approach for BRS estimation which adopts a three-level structure
similar to wavelet decomposition but using Gaussian lowpass filters of three different
cutoff frequencies (which are 0.04, 0.15 and 0.4 Hz, respectively). The SBP sequence
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in mmHg and its associated IBI sequences in ms were resampled evenly in 4 Hz by
cubic spline interpolation. Before the signal decomposition, the Gaussian lowpass fil-
ters for GAFD are based on Equation (3), and the signal must also be extended out of
the endpoints according to Equation (7). The parameters M and β are determined by
Equations (9) and (4), with the values of fd being 0.04, 0.15, and 0.4 Hz, respectively, for
GAFD. The filtering operation is conducted by Equation (8), with the filter wg[·] being
replaced by wa[·], as shown in Equation (3). In the following content, the symbol x[·] is
used to represent the resampled SBP or IBI sequences. The procedure for BRS estimation
by GAFD is briefly summarized below. A detailed introduction is provided in [33].

Step 1: Perform the lowpass filtering to divide the sequences x[·] to components of
above 0.4 Hz and below 0.4 Hz. Let the components below 0.4 Hz be referred to as x04[·].

Step 2: Conduct the lowpass filtering on x04[·] to divide the sequences to components
above 0.15 Hz and below 0.15 Hz. Let the components below 0.15 Hz be referred to as
x015[·]. The components above 0.15 Hz represent the HF components for the estimation of
BRS and are designated as xHF[·]. Let the HF components for IBI and SBP sequences be
denoted by xIBI,HF[·] and xSBP,HF[·]. The HF band energies can therefore be calculated by
squared summation, as shown in Equations (11) and (12).

Step 3: Perform the lowpass filtering on x015[·] to divide the sequences to components
above 0.04 Hz and below 0.04 Hz. The components below 0.04 Hz represent the LF
components for the estimation of BRS and are designated as xLF[·]. Let the LF components
for IBI and SBP sequences be expressed by xIBI,LF[·] and xSBP,LF[·]. In a similar way to the
HF band, the LF band energies can also be calculated by squared summation, as shown in
Equations (11) and (12).

Step 4: Lastly, the values of BRS are approximated with the α index in the LF band
and the HF band, along with the averaged form, independently, as shown in Equation (13).

The MATLAB codes for the BRS estimation by spectral approaches and GAFD referred
to in this article can be found on the website: https://figshare.com/articles/software/
Sample_codes_for_the_assessment_of_baroreflex_sensitivity_BRS_/12820430 (accessed on
10 June 2022).

2.4. Materials

For the purpose of this research, both beat-by-beat SBP and IBI sequences were ob-
tained from the EuroBavar dataset [43]. The dataset, which has been used in previous
studies [33,44,45] to compare the performance of different methods used for BRS estimation,
can be downloaded online. The EuroBavar dataset contains 46 recording files acquired from
21 subjects composed of 4 males and 17 females. The participating subjects are organized
as follow:

• 12 normotensive outpatients, including two patients who were treated for hyperc-
holesterolemia, one diabetic patient with no cardiac neuropathy and one woman who
was three months pregnant,

• two patients who were treated for hypertension,
• one non-treated hypertensive patient,
• two patients suffering from cardiac autonomic failure (one with heart transplantation

and one patient with diabetic neuropathy)
• four healthy volunteers.

ECG signals (Cardiocap™ II, Datex-Ohmeda, Helsinki, Finland) and continuous non-
invasive blood pressure (Finapres®, Finapres Medical Systems, Enschede, The Netherlands)
were recorded on all subjects at a sampling frequency of 500 Hz by 16-bit analog-to-digital
conversion resolution in the standing position (files marked with the penultimate letter
“S”) and supine position (files marked with the penultimate letter “L”) in a silent room
according to a uniform procedure. Informed consent was obtained for all participants prior
to collecting the EuroBavar dataset. Furthermore, the ECG and blood pressure signals from
this dataset are available as waveforms (files with the ending letter “C”) and beat-by-beat

https://figshare.com/articles/software/Sample_codes_for_the_assessment_of_baroreflex_sensitivity_BRS_/12820430
https://figshare.com/articles/software/Sample_codes_for_the_assessment_of_baroreflex_sensitivity_BRS_/12820430
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sequences (files with the ending letter “B”). For all the computer experiments of the study,
the beat-by-beat SBP, along with the IBI sequences, were adopted.

All the statistical analyses and computational experiments in this study were per-
formed on a MacBook Pro (mid 2015, with 2.5 GHz Intel Core i7 and 16 GB 1600 MHz
DDR3 memory, Apple Inc., Cupertino, CA, USA) using MATLAB® (2020b, MathWorks,
Inc., Natick, MA, USA).

2.5. Statistical Analysis

The values of the BRS values were derived from Equation (13) by Welch’s periodogram,
then by GAFD and finally by modGauss. Various statistical tests were applied to assess
the effectiveness of the suggested modGauss method. Firstly, the Shapiro–Wilk normality
test [46] was performed to check if the BRS values in the whole dataset, as well as in the
dataset for the supine and standing positions, were normally distributed or not. We then
used non-parametric statistical methods for testing; the Wilcoxon signed-rank test [47] was
used to assess if there was a statistical difference in the BRS values between the standing
and supine positions for each approach. The Wilcoxon rank sum test [48] was employed to
assess whether any statistical difference existed between the modGauss method and the
other four methodologies. Lastly, to assess the level of correlation between modGauss and
the others methodologies, the intraclass correlation coefficient (ICC) [49,50] was determined.
A MATLAB algorithm, developed by Salarian [51] and based on [49], was adopted for
the estimation of the 95% confident intervals (CI) and the ICC. Six different types of ICC
computation can be used for the ICC analysis; however, in the context of this study, the
ICC for a two-way mixed approach and single score (type “A-1” in the code) was chosen
for the computation of the ICC; the lower and upper bounds of the ICC were calculated
assuming a significance level of 0.05.

3. Results
3.1. Experimental Results in Time Domain and Frequency Domain

This article proposes a new method called modGauss for the estimation of BRS using
α indices according to Equation (13). Figures 2 and 3 have previously demonstrated the
generation procedure of modGauss filters from time- and frequency-domain perspectives,
respectively. To demonstrate the effect of the modGauss filters, the decomposed results
for one data record in the EuroBavar dataset (the record numbered B002LB) are shown
in Figures 4 and 5 (for the resampled SBP sequence); Figure 4 presents the results from a
time-domain perspective, while Figure 5 shows the corresponding results from a frequency-
domain perspective.

The decomposed results for one data record of the EuroBavar dataset (B002LB) are pre-
sented in Figures 6 and 7 (for the resampled IBI sequence). Figure 6 shows the results in the
time domain, while Figure 7 describes the corresponding results in the frequency domain.

The Welch’s periodogram (with 512-point FFT, 512-point Hanning window and a
50% overlap between the neighboring windows) was used to acquire the spectra for the
resampled sequences and the decomposed signals in Figures 5 and 7. For the figures in
the time domain, it can be observed that the raw signals were separated into the lower-
frequency components and the higher-frequency components (refer to Figures 4 and 6).
However, it is very evident that the spectra of the lower-frequency and higher-frequency
components have been separated to the discrete ranges of 0.04–0.15 Hz and 0.15–0.4 Hz by
the modGauss filters from the corresponding frequency-domain perspective (as shown in
Figures 5 and 7).
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3.2. Performance Evaluation of the modGauss

To evaluate the performance and effectiveness of our proposed method, four other
approaches—GAFD, AR spectrum, Welch’s periodogram and wavelet—were chosen for
performance comparison. The present study used the EuroBavar dataset to confirm the
applicability of the newly suggested approach. Although this dataset has been used in
other studies [33,44,45], it is important to note that few studies have shown all the derived
BRS values for each data record in the dataset. Figure 8 represents the BRS value for each
of the methods discussed in this study. It can be observed that the median BRS value was
almost identical for each of the five methods, which indicates that the proposed modGauss
algorithm is comparable to the other methodologies for BRS estimation.
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After estimation of the BRS values for each of the methods, detailed statistical values
were obtained using different tests, including the Shapiro–Wilk normality test, the Wilcoxon
signed-rank test, the Wilcoxon rank sum test and the intraclass correlation coefficient (ICC).
First, the Shapiro–Wilk normal test [46] was applied to assess if the BRS values for the
whole dataset, as well as for the datasets for supine and standing position, were normally
distributed. In Table 1 below, the test results for the five methods, including modGauss,
GAFD, AR, Welch and Wavelet in different conditions (whole dataset, supine and standing
position) are presented.

It was observed that all the p values were smaller than 0.05, indicating that there was
no Gaussian distribution of BRS values for each test. Based on this, the non-parametric
Wilcoxon signed-rank test [47] was utilized to assess if there was a statistical difference in
the BRS values between the standing and supine positions for each of the four methods.
The experimental results for this test are shown in Table 2.
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Table 1. Summary of the test results for each of the five methods following the Shapiro–Wilk
normality test.

Condition modGauss GAFD AR Welch Wavelet

α (Whole) 6.52× 10−8 4.81× 10−8 1.65× 10−7 1.49× 10−7 6.01× 10−8

α (Supine) 3.37× 10−5 2.13× 10−5 8.18× 10−5 7.51× 10−5 3.38× 10−5

α (Standing) 5.30× 10−3 1.03× 10−2 2.35× 10−2 5.55× 10−3 7.01× 10−3

αLF (Whole) 7.95× 10−9 7.28× 10−9 6.85× 10−9 9.05× 10−9 3.24× 10−10

αLF (Supine) 2.77× 10−6 1.97× 10−6 2.21× 10−6 2.82× 10−6 3.25× 10−7

αLF (Standing) 1.12× 10−2 1.60× 10−2 9.84× 10−3 1.26× 10−2 1.58× 10−2

αHF (Whole) 8.85× 10−7 2.99× 10−7 1.18× 10−6 1.15× 10−6 7.77× 10−6

αHF (Supine) 3.58× 10−4 2.11× 10−4 9.86× 10−4 8.33× 10−4 4.71× 10−3

αHF (Standing) 2.10× 10−3 3.13× 10−3 1.19× 10−2 1.92× 10−3 1.56× 10−3

Legend: modGauss: using modulated Gaussian filter; GAFD: using Gaussian average filtering decomposition;
AR: by autoregressive (AR) power spectral density (PSD); Welch: using Welch’s periodogram; Wavelet: by
the scalogram using complex Morlet wavelet; α (Test Condition): the p value of BRS α index under different
“Test Condition”; αLF (Test Condition): the p value of BRS α index in LF band under different “Test Condition”;
αHF (Test Condition): the p value of BRS α index in HF band under different “Test Condition”; Test Condition:
“Whole” refers to the analysis of the entire dataset; “Supine” stands for the analysis of the data in supine position;
“Standing” stands for the analysis of the data in standing position.

Table 2. Summary of the test results for each of the five methods following the Wilcoxon signed-
rank test.

Index modGauss GAFD AR Welch Wavelet

α 3.52× 10−5 4.02× 10−5 6.75× 10−5 3.52× 10−5 3.08× 10−5

αLF 2.06× 10−4 1.73× 10−3 5.88× 10−4 2.06× 10−4 3.72× 10−4

αHF 4.02× 10−5 5.22× 10−5 1.43× 10−4 5.94× 10−5 3.52× 10−5

Legend: modGauss: using modulated Gaussian filter; GAFD: using Gaussian average filtering decomposition;
AR: by autoregressive (AR) power spectral density (PSD); Welch: using Welch’s periodogram; Wavelet: by the
scalogram using complex Morlet wavelet; α: represents the BRS α index. The BRS α index p values for supine
versus standing cases are reported on the same row in each method. αLF : represents the BRS α index in LF band.
The BRS α index p values in LF band for supine versus standing cases are reported on the same row in each
method. αHF : represents the BRS α index in HF band. The BRS α index p values in HF band for supine versus
standing cases reported on the same row in each method.

Since all the p values were lower than 0.05, this implies that there were statistical dif-
ferences in the BRS values for the supine and standing positions for all the five approaches.
Therefore, a further test was needed to determine if there was any statistically significant
difference between the proposed modGauss and the other four methods for BRS estimation.
The Wilcoxon rank sum test [48] was then to this end; Table 3 shows the comparison results
under each condition (supine and standing position, whole dataset).

Table 3. Wilcoxon rank sum test results for the proposed modGauss compared to different methods.

Condition vs. GAFD vs. AR vs. Welch vs. Wavelet

α (Whole) 0.73 0.90 0.84 0.89
α (Supine) 0.60 0.74 0.79 0.88

α (Standing) 0.96 0.91 1.00 0.93
αLF (Whole) 0.49 0.70 0.80 0.73
αLF (Supine) 0.42 0.64 0.91 0.74

αLF (Standing) 0.78 0.84 0.74 0.73
αHF (Whole) 0.88 0.86 0.81 0.81
αHF (Supine) 0.78 0.79 0.71 0.86

αHF (Standing) 0.93 0.98 0.93 0.81
Legend: modGauss: by modulated Gaussian filter; GAFD: using Gaussian average filtering decomposition; AR: by
autoregressive (AR) power spectral density (PSD); Welch: using Welch’s periodogram; Wavelet: by the scalogram
using complex Morlet wavelet; α (Test Condition): the p value of BRS α index under different “Test Condition”;
αLF (Test Condition): the p value of BRS α index in LF band under different “Test Condition”; αHF (Test Condition):
the p value of BRS α index in HF band under different “Test Condition”; Test Condition: “Whole” refers to the
analysis of the entire dataset; “Supine” stands for the analysis of the data in supine position; “Standing” stands
for the analysis of the data in standing position.
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It was observed that all the p values were higher than 0.05, which implies that there
was no substantial difference between the modGauss and the other four BRS estimation
approaches. The ICC [49,50] was used to evaluate the level of correlation between the
BRS values deriving from modGauss and the other four methodologies. The results of the
ICC analysis comparing modGauss with the other approaches under different conditions
(supine and standing position, whole dataset) are shown in Table 4. The 95% confidence
interval (CI) is also provided in this table for each comparison, along with the ICC value.
Even considering the lowest CI (which is 0.91 for αLF compared between the modGauss and
GAFD under the supine condition), the obtained results indicated “excellent” agreement
(based on the guideline described in [52]) for the estimation of BRS between the modGauss
and the other four approaches.

Table 4. Summary of the intraclass correlation coefficient (ICC) results for modGauss compared to
four different methodologies.

Condition vs. GAFD vs. AR vs. Welch vs. Wavelet

α (Whole)
95% CI

1.00 0.99 1.00 1.00
0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00

α (Supine)
95% CI

0.99 0.99 1.00 1.00
0.96 1.00 0.98 1.00 0.99 1.00 0.99 1.00

α (Standing)
95% CI

1.00 0.99 1.00 1.00
0.99 1.00 0.98 1.00 0.99 1.00 0.99 1.00

αLF (Whole)
95% CI

0.99 1.00 1.00 1.00
0.96 1.00 0.99 1.00 0.99 1.00 0.99 1.00

αLF (Supine)
95% CI

0.99 1.00 1.00 1.00
0.91 1.00 0.98 1.00 0.99 1.00 0.99 1.00

αLF (Standing)
95% CI

0.99 1.00 1.00 1.00
0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00

αHF (Whole)
95% CI

1.00 0.98 0.99 0.99
0.99 1.00 0.97 0.99 0.98 1.00 0.99 1.00

αHF (Supine)
95% CI

1.00 0.98 0.99 0.99
0.99 1.00 0.96 0.99 0.96 1.00 0.98 1.00

αHF (Standing)
95% CI

1.00 0.97 0.99 0.99
0.99 1.00 0.94 0.99 0.98 1.00 0.98 1.00

Legend: The data presentation in the table above follows the format of ICC (in upper cell) and the 95% CI of ICC
(in lower cell), with CI designating the confidence interval. modGauss: using modulated Gaussian filter; GAFD:
using Gaussian average filtering decomposition; AR: by autoregressive (AR) power spectral density (PSD); Welch:
using Welch’s periodogram; Wavelet: by the scalogram using complex Morlet wavelet; α (Test Condition): the test
results of BRS α index under different “Test Condition”; αLF (Test Condition): the test results of BRS α index in LF
band under different “Test Condition”; αHF (Test Condition): the test results of BRS α index in HF band under
different “Test Condition”; Test Condition: “Whole” refers to the analysis of the entire dataset; “Supine” stands
for the analysis of the data in supine position; “Standing” stands for the analysis of the data in standing position.

4. Discussion

The various experiments and tests performed using the proposed modGauss algorithm
have shown that the algorithm is highly comparable to other conventional BRS estimation
methods. More importantly, a major advantage of our proposed modGauss method is
its simplicity for performing complex computation. As its highly simplified structure
uses only two dedicated bandpass filters and bypasses the three-level structure of the
GAFD algorithm [33], this strategy is more computationally efficient than the GAFD
method while retaining all the advantages of the latter. Another major advantage of the
proposed modGauss method is its fast computation time. A fast-computational time is an
important criterion in defining the performance of computational algorithms. In this study,
a comparative analysis of the proposed modGauss method was performed to evaluate the
computational time of the algorithm using the EuroBavar dataset. Four different methods
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(GAFD, AR, Welch and Wavelet) were chosen for comparison and the results are presented
in Table 5. It can be observed from this table that the modGauss algorithm had a shorter
computational time in the 0.05 quartile, median and 0.95 quartile. The p values of the
Wilcoxon rank sum one-tailed tests for modGauss versus the other four methods were all
less than 0.05. This means that the modGauss algorithm was faster in computation, which
makes it more attractive for performing rapid computation for BRS estimation. Although
the elapsed time for each method was of the order of milli-seconds, it should be noted
that the values were evaluated under the platform of a mid-2015 MacBook Pro. If the
computation were conducted in the embedded micro-controller of a medical device, the
elapsed time might be very different, especially for the spectral methods because of their
relatively high demand for computational resources.

Table 5. Summary of the elapsed time tests using the EuroBavar dataset for five different methods.

Method modGauss GAFD AR Welch Wavelet

p value (SW) 4.88× 10−11 3.21× 10−10 3.22× 10−11 7.46× 10−12 4.10× 10−11

Elapse time (s)
0.05 quartile 0.0093 0.0117 0.0129 0.0155 0.0704

Median 0.0109 0.0128 0.0135 0.0162 0.0746
0.95 quartile 0.0159 0.0166 0.0347 0.0345 0.1524

p value (Wilcoxon) 1.0 2.89× 10−10 1.59× 10−12 1.55× 10−14 7.41× 10−17

Legend: modGauss: by modulated Gaussian filter; GAFD: using Gaussian average filtering decomposition; AR:
by autoregressive (AR) power spectral density (PSD); Welch: using Welch’s periodogram; Wavelet: by scalogram
using complex Morlet wavelet; SW denotes the Shapiro–Wilk normal test (0.05 significance level); Wilcoxon
represents the Wilcoxon rank sum one-tailed test (0.05 significance level).

When selecting a computational algorithm for BRS estimation, a key consideration is
the ability of the algorithm to perform long-term analysis. In this regard, a comparative
analysis was performed for long-term BRS estimation between the proposed modGauss
and sleep stage, with the results shown in Figure 9. The signal slp45 from the MIT-BIH
Polysomnographic Database [53] of PhysioNet [54] was adopted for the long-term BRS
analysis. In this figure, the proposed modGauss algorithm was used to perform an analysis
of the BRS estimate for a duration of 6 h. From Figure 9, it can be seen that the BRS values
generally increased after the awake stages, which implies arousal of the baroreflex function
when a person is awoken from the sleep stage. With respect to sleep, the increase in BRS
values and the delay in BRS elevation after waking up are topics which may warrant
further study.

Moreover, when compared to the other four methods reviewed in this study, the
long-term analysis of the modGauss algorithm suggest that it performed as well as the
other methods, as shown in Figure 10. This, combined with the previous observations on
elapsed time (Table 5), leads to the conclusion that, overall, the modGauss algorithm is
better and more suitable for the long-term estimation of BRS.

Although the new modGauss method proposed in this paper has various advantages,
limitations may include the double reflection that is required at the start and end points
of the filter to perform signal filtering. In practical use, a short waiting time is required
to assure the signal entirely entering the modGauss filtering window. However, if the
results obtained in this waiting window can be omitted without influencing the clinical
decision, this limitation does not affect the performance of the algorithm because the
modGauss algorithm only uses convolution, which results in faster computation time,
as shown in Table 5. The methodologies, such as AR, Welch, and wavelet require more
complex computation for model estimation, complex multiplication or to be spread out
in the time and frequency domains, which causes them to have longer computation times
because of the relatively higher demand on computing resources. The novel modGauss
algorithm as discussed in this paper, provides new insights into computational methods
for BRS estimation. Future development of this work could lead to the incorporation of the
modGauss algorithm into embedded medical devices for real-time BRS analysis. Real-time
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estimation of BRS is important in clinical application as it provides critical information for
continuous control of patient blood pressure [55,56]. Despite the existence of other methods
for real-time BRS estimation [57,58], these methods typically use advanced microcontrollers
for computation, making them more demanding on resources and more expensive. The
modGauss, which is a based on a linear convolutional approach, does not require significant
computational resources or advanced microcontroller systems.
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For BRS estimation, the phase spectrum is sometimes adopted in spectral approaches
to depict the timing difference from the sympathetic and vagal nerves in different con-
ditions [29]. In addition, some spectral approaches utilize the threshold of coherence
(e.g., greater than 0.5) between SBP and IBI spectral estimates to determine the bands used
for the computation of BRS [45]. The lack of phase and coherence information is another
limitation of the presented modGauss algorithm because its computation is conducted
thoroughly in the time domain. For this issue, correlation analysis between the separated
SBP and IBI sequences in the LF and HF bands may be helpful to compensate for such con-
straints. Due to the differences in the selected band and in the spectrum analysis method,
there have been eleven different spectral approaches for BRS estimation proposed [45].
Because there has been no gold standard method for BRS estimation until now, this study
selected three representative spectral analysis methods for performance comparison.

BRS estimation has been shown to be crucial in clinical settings and the evaluation of
BRS has been applied in cardiovascular disease (CVD) [3,4,9,10,18], diabetes [5], neurode-
generative disease [6], diagnosis of brain stem death [7], OSAS [8], surgery [16], physiologi-
cal function evaluation while conducting physical and psychological tasks [11], CKD [17],
and pain perception [19,20]. No dedicated medical device has been available for BRS
estimation until now. One attractive approach is to embed the BRS estimation algorithm
in contemporary medical equipment. Accumulated observations from BRS estimation in
various situations may provide new insights into the role that baroreflex function plays in
clinical settings. The proposed algorithm is a strong candidate for practical implementation
because of its computational simplicity and efficiency.

5. Conclusions

A new algorithm named modGauss, developed for the estimation of BRS values, is
described in this paper. The proposed method utilizes two bandpass filters of dedicated
passbands to separately decompose the evenly resampled SBP and IBI sequences into LF
and HF bands. Convolution and squared summation are used without the need to specify
a parameter, thus rendering the developed algorithm highly efficient in computing. The
EuroBavar dataset was used to perform computational experiments and the BRS estimation
results were compared with four different methods, namely the Welch’s periodogram,
GAFD, the AR spectrum and wavelet. It was found that the BRS values under different con-
ditions (whole dataset, supine position and standing position) obtained through modGauss
showed “excellent” concordance compared to the other four methodologies. In addition,
further tests showed that the proposed modGauss algorithm, which has a very simplified
structure, had faster computation times compared with the other methodologies (Table 5)
and was also suitable for the long-term analysis of SRB estimation (Figures 9 and 10).
The proposed algorithm may open new research avenues for the development of faster
embedded medical devices for clinical applications.
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