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Abstract: In service-transaction scenarios, blockchain technology is widely used as an effective tool
for establishing trust between service providers and consumers. The consensus algorithm is the core
technology of blockchain. However, existing consensus algorithms, such as the practical Byzantine
fault tolerance (PBFT) algorithm, still suffer from high resource consumption and latency. To solve
this problem, in this study, we propose an improved PBFT blockchain consensus algorithm based on
quality of service (QoS)-aware trust service evaluation for secure and efficient service transactions.
The proposed algorithm, called the QoS-aware trust practical Byzantine fault tolerance (QTPBFT)
algorithm, efficiently achieves consensus, significantly reduces resource consumption, and enhances
consensus efficiency. QTPBFT incorporates a QoS-aware trust service global evaluation mechanism
that implements service reliability ranking by conducting a dynamic evaluation according to the
real-time performance of the services. To reduce the traffic of the blockchain, it uses a mechanism
that selects nodes with higher values to form a consensus group that votes for consensus according
to the global evaluation result of the trust service. A practical protocol is also constructed for the
proposed algorithm. The results of extensive simulations and comparison with other schemes verify
the efficacy and efficiency of the proposed scheme.

Keywords: QoS-aware; blockchain; consensus mechanism; PBFT

1. Introduction

In service-transaction scenarios, service providers encapsulate resources (such as
software and data) into services for publishing and sales. Service consumers can search
for, purchase, and use services to meet their needs. However, traditional service-trading
platforms typically lack trust mechanisms and have insufficient security protection. In
recent years, several methods have been proposed for introducing blockchain technology,
which was initially launched with the Bitcoin whitepaper by Satoshi Nakamoto in 2008 [1],
into service transactions in an attempt to solve the security problems and trust deficits in the
process of service transactions. Blockchain technology provides distributed shared ledgers
and databases that have salient features, such as decentralization, tampering-proofing,
full traceability retention, suitability, collective maintenance, robustness, and transparency.
These ledgers and databases are shared through decentralized peer-to-peer exchange within
a network. All nodes in the blockchain form a peer-to-peer network and all participating
nodes are equal and collaboratively provide services. Without a central service node, the
risk of a single bottleneck point is reduced. Nowadays, blockchain is widely used in fields
such as finance [2], supply chain [3], energy trading [4], healthcare [5], Internet of Things [6],
and other fields [7,8].

The consensus algorithm is the most important part of the blockchain as it establishes
flexible trust relationships in distributed systems and affects the security and efficiency
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of blockchain products. The most commonly used consensus algorithms are the proof-of-
work (PoW), proof-of-stake (PoS), delegated proof-of-stake (DPoS), practical Byzantine fault
tolerance (PBFT), Raft, and proof-of-authority (PoA) algorithms. Among these algorithms,
PoW, PoS, and DPoS are widely used in public blockchain applications. The PBFT algorithm
is primarily used for consortium blockchains to solve general Byzantine problems. The
Raft algorithm is generally considered a consensus algorithm for private blockchains and
is suitable for more ad hoc networks, such as intranets. As a consensus mechanism in
consortium blockchain, PBFT has the advantages of high efficiency and fast feedback.
However, PBFT still suffers from high resource consumption and latency, which is not
efficient when the distributed system is scaled up. The communication costs necessary
to form a consensus in the mesh network increase exponentially as the number of nodes
increases in the PBFT system, resulting in a scalability problem. To solve this problem,
in this study, we propose an improved PBFT blockchain consensus mechanism based on
QoS-aware trust service evaluation for secure and efficient service transactions called the
QoS-aware trust practical Byzantine fault tolerance (QTPBFT) algorithm.

In summary, the main contributions of this study are as follows.

(1) We propose a QoS-aware trust service global evaluation mechanism to achieve relia-
bility ranking of services. Services with higher evaluation values are considered more
reliable and secure. The global evaluation is calculated by integrating the performance
of static and dynamic QoS, where the static QoS value is the initial state of the service,
which is provided by the service provider, and the dynamic QoS value is the real-time
performance of the service, which is captured by monitoring the QoS parameters of
the service.

(2) We develope an improved PBFT consensus algorithm called QTPBFT that is based on
the trust service global evaluation mechanism. The QTPBFT algorithm introduces a
mechanism to select nodes participating in the consensus based on their QoS-aware
trust value, which reduces the communication cost in the network. Nodes with higher
degree of trust are selected to form the main consensus group.

(3) We constructe a practical protocol for the proposed system. Simulation experiments
and analysis of the optimization scheme verify its efficacy and efficiency.

2. Related Work

In this section, we discuss related work in terms of the basic PBFT consensus scheme
and improved PBFT based on blockchain.

2.1. The Basic PBFT

PBFT is a consensus algorithm introduced in 1999 by Liskov and Castro [9]. It provides
a practical Byzantine state that works even when malicious nodes are running in the
system, and is one of the most popular mechanisms for protecting distributed systems from
malicious users. The core theory underlying PBFT is formulated as Equation (1).

n ≥ 3 f + 1 (1)

where n is the total number of nodes in the system and f is the number of malicious nodes.
In other words, if the system allows f malicious nodes, then the system must have n nodes
to reach a consensus regarding the state of the system using the majority rule. 3 f + 1 is the
minimum number of replicas that allows an asynchronous system to provide safety and
liveness properties. The system becomes more secure as the number of nodes n increases.

The operation of the PBFT system requires at least four participants, one of which
is elected as the primary node (or the leader node), and the other three are referred to as
secondary nodes (or backup nodes). All nodes in the system communicate with each other,
aiming to reach a consensus based on the principle of the minority obeying the majority. If
the primary node is lying, the other nodes can join forces to replace it. The PBFT consensus
algorithm typically consists of the following four steps:
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• Step 1: Request. The client sends a request to the primary (leader) to perform an operation.
• Step 2: Pre-prepare. The primary (leader) node broadcasts the request to each sec-

ondary (backup) node.
• Step 3: Prepare. After receiving the preparation message, and after confirming that the

information is correct, all nodes (primary and secondary) verify the message, execute
the request, and then send a reply to the client.

• Step 4: Commit. When the client receives f + 1 identical replies from different nodes,
the process ends, where f is the maximum number of faulty nodes allowed.

Figure 1 shows the operation of the algorithm in the normal case of no primary
faults. Owing to its low complexity and resource consumption, it is favored by consortium
blockchains. However, the PBFT consensus works efficiently only when the number of
nodes in the distributed network is small; the efficiency falls sharply with the expansion of
the network scale because the communication overhead increases exponentially with every
extra node in the network, and there is also the problem of low scalability.

Figure 1. The operation of the PBFT algorithm.

2.2. The Improved PBFT

Many PBFT variants have been proposed that purportedly improve the quality and
performance of PBFT for specific cases and conditions. Some researchers have proposed
adding cryptographic mechanisms and algorithmic optimizations to PBFT. One of the most
famous methods is Zyzzyva [10], which adds many encryption mechanisms to improve
the security of the protocol by verifying the identity of clients to replicas and replicas to
each other. Zyzzyva speculates that all replicas are correct, so they can process requests
and send replies to the client without communicating with each other. There is no message
exchange between replicas. The protocol performs differently in different situations. In
the fast situation, that is, all replicas are honest, consensus can be reached in a very short
time. However, in other situations, if there are any bad replicas, a complex recovery
phase is initiated and recovery time is required; therefore, performance may deteriorate
significantly, and the consensus will be slower than PBFT. SBFT [11] combines protocol steps
with threshold cryptography and extends Zyzzyva by introducing communication and
execution nodes called collectors. In addition, other BFT blockchain consensus algorithms
have been proposed to improve PBFT, such as dBFT [12] and Ouroboros-BFT [13]. However,
these consensus algorithms still have problems of low efficiency or low scalability, and
some algorithms have a strong dependence on the primary node in consortium blockchains.

Researchers have also proposed additional mechanisms to improve the robustness
of the PBFT algorithm. In redundant BFT (RBFT) [14], reliability is achieved through
resource redundancy because each node runs f + 1 PBFT protocol instances, including
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1 primary and f replicas. All the instances sort the requests, but only the requests sorted
by the primary instance are executed. Other instances are backups for throughput measure-
ment. If the measured throughput of the primary instance is lower than that of the best
backup instance, the view should be changed. RBFT adds the concept of random numbers,
which weakens the authority of the master node. However, it has little improvement over
the PBFT algorithm and its scope of application is limited. Whenever the primary node
broadcasts information, it takes too much time for consensus nodes to verify the response.
In FairLedger [15], which is a permissioned blockchain BFT protocol, a communication
abstraction protocol, called Detectable All-to-All (DA2A), detects participants who deviate
from the protocol (Byzantine or rational) and punishes them. T-PBFT [16], which is a
multi-stage consensus algorithm, is an optimized PBFT consensus algorithm based on
the EigenTrust model that replaces a single primary node with a primary group. X-layer
PBFT [17] incorporates a scalable multilayer PBFT-based consensus mechanism that hierar-
chically groups nodes into different layers and limits the communication within the group.
It extends the optimal double-layer PBFT to arbitrary-layer PBFT systems. However, most
of these methods are focused on fault tolerance and scalability, and consensus efficiency
and dynamically changing node states are rarely considered.

From the above analysis, it is clear that much work has been done to improve the
PBFT algorithm. The methods proposed reduce the scale of the consensus cluster from
different perspectives and improve the consensus efficiency of the PBFT algorithm to a
certain extent. However, there are limitations in applying these consensus algorithms to
blockchain-based service-trading platforms. Although the algorithms proposed above
involve improvements in terms of resource consumption, throughput, and latency, there is
still room for optimization. In our previous study [18], a PBFT-optimized algorithm based
on an improved C4.5 was proposed. In a service-transaction scenario, based on the initial
static QoS and real-time dynamic QoS parameters of the service, this study proposes a
global evaluation scheme for further optimization.

3. Qos-Aware Trust Service Evaluation

Service trust value is an essential element in establishing trust among multiple parties
in online electronic transactions, particularly in open public networks. Nodes participating
in a transaction should provide trusted identity information and establish secure communi-
cations between multiple parties. Algorithmic or mathematical modeling methods can be
used to measure the trustworthiness of a service provider’s promises to its customers. Par-
ticularly in a distributed service environment, a suitable service trust evaluation solution is
an effective way to solve service security problems, and it is essential for service providers
and customers to protect their rights.

3.1. Overview of Evaluation Strategy

In this paper, we propose a QoS-aware trust service global evaluation scheme, which
is calculated from the static initial value of the service and dynamic value that reflects real-
time service status. The overall framework of the service trust global evaluation strategy is
illustrated in Figure 2.

The service trust evaluation scheme comprises two parts: static and dynamic trust.
Initially, static evaluation is calculated based on the service’s initial QoS value provided
by the provider. The dynamic evaluation is then calculated according to the real-time QoS
value obtained from the monitoring parameters after the service invocation. To reduce the
abnormality and distortion of real-time parameters, it is appropriate to monitor for some
time and average the parameters. Finally, global evaluation is calculated by integrating the
static and dynamic values, which are fed back to the consumer as the trust parameter of the
service. The global evaluation values are sorted from high to low. Those parameters with
higher scores are considered more credible and can form a consensus group to participate
in the blockchain consensus process.
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Figure 2. The overall framework of the service trust evaluation strategy.

3.2. Detailed Evaluation Process

The proposed scheme utilizes static analysis and dynamic analysis in combination to
form a specific global evaluation system, which results in the evaluation of service quality.
To evaluate QoS based on non-functional indicators of the service, this study utilizes the
response time (RT), throughput (TP), successability (SA), best practices (BP), and latency
(LC) as evaluation indicators. The format is as Equation (2).

QoS = {RT, TP, SA, BP, LC} (2)

The detailed global evaluation process comprises the following five steps.

• Step 1: Set QoS parameters of provider’s service.
In this study, QoS parameters are set in the form of intervals. The format is as
Equation (3).

a =
[

a−, a+
]

(3)

where a represents a value of a QoS parameter, a− represents the lower limit interval
number, and a+ represents the upper limit interval number. When a provider pub-
lishes a service, some QoS parameters will fluctuate owing to network instability. The
interval can filter out some fluctuations and ensure the authenticity and objectivity of
the parameters.

• Step 2: Capture consumer’s requirement.
Candidate services are selected based on the functional requirements of the user.
Users can set various QoS parameters in the form of intervals according to different
requirements and additionally set the maximum tolerance threshold for negative
parameters. The format is as Equation (4).{

b =
[

b−, b+
]

Maxthr = b+ − b−
(4)

where b represents the value of a QoS parameter, b− represents the lower limit interval
number, b+ represents the upper limit interval number, and Maxthr represents the
user-acceptable maximum threshold for negative parameters. Considering that the
service is dynamic, the appropriate service is reselected if the current dynamic QoS
information exceeds the user threshold.
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• Step 3: Select candidate services and construct possible degree matrix.
The QoS parameters of the services requested by consumers are compared with the
QoS parameters of the services provided by providers, and then the candidate’s
services with the same intersection are selected. Assuming that there are two intervals
a = [a−, a+] and b = [b−, b+], and la = a+ − a−, lb = b+ − b−, the formula’s possible
degree is calculated by Equation (5) as follows:

P(a ≥ b) = max
{

1−max
(

b+ − a−

la + lb
, 0
)

, 0
}

(5)

where P(a ≥ b) represents the possible degree that a is greater than b. Calculate the
possible degrees and then construct the possible degree matrix. The interval is due
to the dynamic variability of the service, and the possible degree is a measure of the
distance between the current provider’s service and the consumer’s requirement.
In this study, TP and SA are positive indicators, whereas RT, BP, and LC are negative
indicators; therefore, The Equation (6) is used to express the values corresponding to
different indicators.

P =

{
P
(
cij ≥ dij

)
, Negative Indicator

P
(
dij ≥ cij

)
, Positive Indicator

(6)

where P represents the possible degree, matrix cij represents the consumer’s require-
ment intervals, which is the j-th index of the i-th service, and matrix dij represents
the matrix of the QoS service interval, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Suppose that the
consumer requirement interval matrix is 13× 5; that is, there are 13 candidate services
and 5 QoS factors. Therefore, the initial static QoS matrix is a 13× 5 matrix. Then, the
consumer requirement interval matrix is compared with the static and dynamic QoS
parameter matrices of each service, and a 13× 5 static possible degree matrix and a
13× 5 dynamic possible degree matrix are calculated. The static QoS possible degree
matrix is set as the initial evaluation when the service is called for the first time.

• Step 4: Set weight.
Weight is an important parameter for evaluating multi-attribute decision-making prob-
lems. Among the commonly used weight determination methods, the entropy weight
method [19] is significantly affected by sample data, which may cause inconsistency
with actual cognition, and the analytic hierarchy process [20,21] relies excessively on
subjective emotions. In this study, we integrate these two weight determination meth-
ods; specifically, the analytic hierarchy process is used to set the subjective weights
of the five factors, and the entropy weight method is used to determine the objective
weights. Saaty [20] uses a 1–9 scale pairwise comparison method to establish the
judgment matrix ajj(1 ≤ j ≤ m) for QoS parameters and then verifies the consistency
of the matrix according to Equations (7) and (8).

CI =
φmax −m

m− 1
(7)

CR =
CI
RI

(8)

where CI represents the consistence index, m is the order of the matrix, and φmax is
the maximum eigenvalue of the matrix. When CI = 0, it means complete consistency,
and the larger CI, the worse the consistency. RI represents the random index, and the
corresponding value of RI can be obtained in Table 1. CR represents the consistency
ratio. When CR < 0.1, the matrix is considered to be valid.
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Table 1. The standard values of RI.

Order of Matrix 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

After verification, the subjective weight is calculated by Equation (9) as follows:

WS
j =

m
√

∏m
k=1 ajk

∑ m
√

∏m
k=1 ajk

(9)

where WS
j represents the subjective weight and ajk represents the judgment matrix,

1 ≤ j ≤ m, 1 ≤ k ≤ m. The objective weight is adjusted according to the change in
static or dynamic QoS parameters, whereas the subjective weight is not. Equation (10),
which is used to calculate the entropy of the j-th index according to the possible degree
matrix obtained in Step 3, compares and normalizes the possible degree of each QoS
parameter vertically and finally obtains a 1× j matrix. Equation (11) then calculates
the objective weights.

ej =
1

ln n

n

∑
i=1

Pij ln
1

Pij
(10)

where ej represents the entropy of the j-th index and P is the possible degree matrix.

Wo
j =

1− ej

∑m
j=1 1− ej

(11)

where Wo
j represents the objective weight, ∑m

j=1 wo
j = 1. Finally, the mixing weight is

calculated Equation (12) as follows:

Wj = γWs
j + (1− γ)Wo

j j = 1, 2, 3, . . . , m (12)

where Wj represents the mixing weight, Ws
j represents the subjective weight, Wo

j
represents the objective weight, and γ represents weight ratio, 0 ≤ γ ≤ 1. Using the
static possible degree matrix and the dynamic possible degree matrix mentioned above,
the static mixing weight and dynamic mixing weight are calculated, respectively.

• Step 5: Calculate global evaluation.
Finally, we employ the technique for order preference similarity to ideal solutions
(TOPSIS) [22,23] to evaluate the service. TOPSIS is a method used to calculate the
distance between the candidate service with the best service and the worst service,
and then evaluate the service.
First, build a possible degree evaluation matrix D =

{
pij
}

according to the possible
degree interval in Step 3. If there are 13 candidate services and 5 indicators, it is a
13× 5 matrix. Then, build a weight matrix W = {w1, w2, . . . wm} according to the
corresponding mixing weight in Step 4 and rewrite it in diagonal form. There are
5 indicators; therefore, it is a 5× 5 matrix. Then, the static or dynamic evaluation
matrix is Z =

{
zij
}

, where zij = pij ∗ wj is a 13× 5 matrix to obtain the score of each
index of each service. Consequently, the maximum value of each index constitutes a
positive ideal solution z+j , and the minimum value of each index constitutes a negative
ideal solution z−j . Finally, according to the calculation of the possible degree of each
candidate service, a global evaluation is performed. The service that is closest to the
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positive ideal solution and farthest from the negative ideal solution is the optimal
service. These formulas are shown as Equation (13).

V+
i =

√
∑m

j=1

(
zij − z+j

)2

V−i =

√
∑m

j=1

(
zij − z−j

)2

Ci =
V−i

V+
i +V−i

(13)

where V+
i represents the distance of the positive ideal solution, V−i represents the

distance of the negative ideal solution, and Ci represents the evaluation value of the
i-th service. When a service is initialized, it is evaluated according to the static QoS
data provided by the service provider. As the number of times the service is invoked
increases, the static weight will gradually decrease, and the global evaluation of the
service will be more focused on the dynamic evaluation data of the current service.
The global evaluation value format is shown as Equation (14).{

Q0 = CStatic
Qµ = 1

µ+1 Qµ−1 +
µ

µ+1 CDynamic
(14)

where Q0 represents the initial value of global evaluation, CStatic represents the static
evaluation value, CDynamic represents the dynamic evaluation value, µ is the number
of times the service has been invoked, and Qµ is the global evaluation value after
µ times.

In summary, static QoS evaluation evaluates the initial state of services provided
by the participating nodes, and dynamic QoS evaluation evaluates the real-time state of
services based on values monitored during the operation of the system. The processes and
relationships of these five steps are shown in Figure 3.

Figure 3. Global evaluation process.
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4. Improved PBFT Consensus Mechanism
4.1. Consensus Mechanism

As discussed above, the trust values of the nodes in the system are quantified by QoS-
aware trust service evaluation. If a node has a higher global trust value than other nodes,
it is considered more trustworthy. We choose nodes with higher trust values to establish
the blockchain consensus group. Reducing the number of consensus nodes can improve
the efficiency of blockchain consensus algorithms. As the scope of blockchain consensus
nodes is narrowed, it can improve the Byzantine fault tolerance rate by selecting nodes
with higher trust, thereby reducing the number of messages transmitted and speeding up
the process of blockchain consensus consistency. The nodes are divided into two groups
based on the global trust values.

4.1.1. Consensus Group

Suppose there are N nodes in the network, among which C consensus nodes partici-
pate in the consensus process. We assume that the number of C values can be dynamically
adjusted. The format is shown as Equation (15).

C = N × d (15)

where d is the constant percentage of nodes. Consensus nodes are responsible for the
operation of the entire blockchain system and participate in the voting of the block and
chaining process. They receive transactions, work together to determine a consensus, and
store the latest state of the public ledger.

4.1.2. Candidate Group

The remaining nodes in the network are candidate nodes and the number is N − C.
Nodes in the candidate group do not participate in the consensus, but accept the consensus
result. When a Byzantine node appears in the consensus group, it is eliminated after the
consensus process. Then, the node with the highest global trust value of the candidate
group is selected to join the consensus group to ensure that the nodes in the consensus
group are likely to be honest nodes.

4.1.3. Promote–Exclude Mechanism

Only nodes in consensus group are allowed to participate in the following blockchain
consensus process, which is described in Algorithm 1 in detail.

Algorithm 1 conConsensusGroup
Input: Global trust T, Nodes N, d
Output: ConsensusGroup, CandidateGroup

1: ConsensusGroup = �
2: Sort N by T;
3: for ni ∈ N do
4: if Ti is in the top of d then
5: Add ni into ConsensusGroup;
6: else
7: Add ni into CandidateGroup;
8: end if
9: end for

10: Return ConsensusGroup, CandidateGroup

In the initialization stage, N blockchain nodes are sorted in descending order according
to the QoS evaluation value T of the service. The nodes at the top of d are selected to
form the consensus group C, and the remaining nodes join the candidate group. The
promote–exclude mechanism then establishes a dynamic balance between the consensus
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and candidate groups. After the consensus group is constructed, the algorithm will continue
to perform the optimized consensus process. When a consensus cycle is completed, the
consensus and candidate groups are updated based on the latest QoS global trust value of
the node. Nodes with poor performance in the consensus group, that is, nodes with lower
QoS value T, are excluded from the consensus group, and nodes with the highest QoS
value in the candidate group are promoted to the consensus group. When a normal node
becomes a Byzantine node and is discovered, it is punished by QoS value reduction and
then promptly removed from the consensus group. New nodes with high QoS values can
also become consensus nodes. In this way, it can reduce the number of consensus nodes,
speed up the blockchain consensus process, and significantly improve the dynamics and
robustness of the network.

4.2. Consensus Process

The PBFT consensus algorithm reaches a consensus on a single operation between
n servers, which requires extensive calculation and communication, such as exchanging
messages, leading to O(N2) complexity. Assuming that in a network, the total number of
nodes is N and the number of malicious nodes is f , the normal network operation needs to
satisfy N ≥ 3 f + 1. Under this assumption, it can be guaranteed that the operation of the
system will not be stopped because of the influence of malicious nodes. Regardless of the
3 f + 1 nodes in a distributed system, where f represents the number of Byzantine nodes,
the system can survive f fault nodes and can reach agreement as long as there are no less
than 2 f + 1 non-Byzantine nodes. The optimized consensus protocol combined with the
improved consensus group is shown in Figure 4.

Figure 4. The optimized consensus process.

The improved PBFT consensus rounds are broken into five phases below:

(1) Request phase. In this phase, a client sends a request message to the primary node in
the network. The format of the request message is shown as Equation (16).

< Request, o, t, c > (16)

where Request contains message details m and message digest d(m), o represents the
requested operation, t represents the timestamp, and c represents the client ID.

(2) Pre-prepare phase. When the primary node receives the request, it enters the pre-
prepare phase, and announces the next record that the consensus group should agree
to, which is realized by sending a pre-prepare message. The primary node sorts the
transaction requests, assigns a number n, and generates a pre-prepare message, which
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is broadcast to other replica nodes. The format of a pre-prepare message is shown as
Equation (17).

<< Pre− prepare, v, n, d, h >, g, m > (17)

where v represents the view number, d represents the message digest of the client, m
represents the message details, g is the global trust value of node, and h is the result of
hash calculation on g.

(3) Prepare phase. After each node in the consensus group receives the pre-prepare
message, it verifies the correctness and validity of the record, and determines whether
the h value in the pre-prepare message is the same as the local h value. If they are
different, the local global trust value will be updated to g. Then a prepare message
is multicast to all the other nodes. The format of the prepare message is shown as
Equation (18).

< Prepare, v, n, d, i > (18)

where i represents the current replica node ID. The prepare phase is complete when a
replica node obtains 2 f valid prepared messages from different replica nodes, where
f is the number of Byzantine nodes in the system.

(4) Commit phase. If replica node i receives 2 f + 1 verified PREPARE messages, it will
send commit messages to other nodes, including the primary node. After receiving
the prepare messages from the 2/3 majority, the primary node multicasts a commit
message to both the consensus group and the candidate group. The format of the
commit message is shown as Equation (19).

< Commit, v, n, d, i > (19)

At this stage, the primary node will receive feedback messages from all consensus
nodes and verify the validity of the messages. Once the transaction information m
is tampered with, its hash value d will be changed accordingly. If the value of d
is different, it means that the transaction message has been tampered with, so it is
determined that the node sending the feedback message is a Byzantine node. When a
Byzantine node is identified, the node will be penalized, i.e., the QoS global trust value
will drop by 50%. Finally, each node waits for more than 2/3 of commit messages
from the consensus group to ensure that a sufficient number of nodes agree with the
record proposed by the leader.

(5) Reply phase. In this phase, the client waits for f + 1 replies from different nodes in the
consensus group. The results of these replies should be the same, where f represents
the maximum number of potentially faulty nodes. The format of the commit message
is shown as Equation (20).

< Reply, v, t, c, i, r > (20)

where r represents the result of the request. If the client receives f + 1 identical reply
messages, it means that the request has reached a consensus on the entire network.

5. Analysis and Evaluation
5.1. Qos-Aware Trust Service Validation
5.1.1. Dataset and Selected Services

We evaluated the performance of the QoS-aware trust service global evaluation mecha-
nism based on a real dataset: the Quality of Web Service (QWS) dataset [24,25] Version 2.0,
(last updated: 1 November 2019). The QWS dataset includes a set of 2507 web services and
their QWS measurements. Each web service has nine corresponding QWS measurements,
which were measured using multiple web service benchmark tools over a six-day period. The
QWS values represent the average of the measurements collected during that period. We
selected 13 testing query services for the evaluation, which should be similar services invoked
in the same domain, and selected five QoS indicators, namely, RT, TP, SA, BP, and LC, to verify
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the feasibility of the proposed model. RT, BP, and LC are negative indicators and TP and SA
are positive indicators. Table 2 lists the QoS indicator values for the selected services.

Table 2. The dynamic QoS indicator values for 13 selected services.

Service ID Service Name RT TP SA BP LC

CSP1 GoogleSearchService 133 7.7 95 84 10.67
CSP2 DiscoveryService 134.07 12.2 85 69 8.21
CSP3 CSearch 184.67 2.7 74 80 40.84
CSP4 AddressLookup 141.77 7.5 56 77 88.31
CSP5 SearchService 151.33 6.9 99 84 8.66
CSP6 AmazonSearchService 47.27 20.3 62 82 2
CSP7 AddressFinder 203.57 1.2 59 72 110.5
CSP8 redataService 383.2 2.1 100 84 6.2
CSP9 SearchCuroCustomerService 171 18.6 84 87 5

CSP10 search 58 16 98 80 1
CSP11 findkmService 204.6 1.9 99 75 7.8
CSP12 LookingForStrategyServices 149.67 11.2 95 84 82
CSP13 GoogleSearchServiceTwo 121 7.9 97 84 10

5.1.2. Results of Global Value

We calculated the global value of each service according to the user’s requirements to
select the most suitable service. Assume a user requirement as shown in Table 3. The user
wishes to select the best service among these 13 services. Broadly speaking, the smaller
the value of the negative indicator, the better the service performance. Therefore, a user-
acceptable maximum threshold requirement is set for each negative indicator. Conversely,
the larger the value of the positive indicator, the better the service performance; thus, there
is no maximum threshold limit.

Table 3. User requirement.

RT TP SA BP LC

Threshold 200 — — 100 100
Requirement [100, 150] [5, 20] [80, 100] [50, 80] [5, 50]

The subjective weight is calculated using Equation (9), and the weight will not change
whether it is static or dynamic. Then, the static and dynamic objective weights are calculated
using Equations (10) and (11), respectively. The static possible degree and the dynamic
possible degree are calculated using Equations (5) and (6), respectively. Finally, the mixing
weight is calculated using Equation (12) and the ratio of the subjective and objective weights
are set considering the user’s requirements. The values of various weights are shown in
Table 4.

Table 4. The values of various weights.

Name RT TP SA BP LC

Subjective weight 0.09 0.05 0.42 0.23 0.21
Static QoS objective weight 0.24 0.11 0.27 0.13 0.25

Dynamic QoS objective weight 0.24 0.17 0.21 0.22 0.16
Static QoS mixing weight 0.17 0.08 0.34 0.18 0.23

Dynamic QoS mixing weight 0.17 0.11 0.32 0.22 0.18

The evaluation value for each service can be obtained using Equation (13). Where the
values of CSP7, CSP8, and CSP11 are higher than the user’s threshold and do not meet
the user’s requirements; therefore, they are rejected. The static, dynamic, and global value
evaluation results for services that meet user requirements are shown in Table 5.
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Table 5. The static value, dynamic value, and global value evaluation result of services.

Service ID Static Value Dynamic Value Global Value

CSP1 0.78 0.63 0.7
CSP2 0.7 0.61 0.65
CSP3 0.28 0.15 0.21
CSP4 0.28 0.18 0.23
CSP5 0.74 0.6 0.67
CSP6 0.53 0.55 0.54
CSP9 0.38 0.53 0.45
CSP10 0.77 0.85 0.81
CSP12 0.47 0.44 0.46
CSP13 0.66 0.67 0.66

It can be seen that CSP10 is the best service, with a global value of 0.81, followed by
CSP1. From Equation (14), we know that the global value is calculated using static and
dynamic values. As can be observed in Table 5, similar to CSP9, the dynamic QoS value of
0.53 is higher than the static value of 0.38, so the global value of the service is also increased.
By contrast, similar to CSP1, the dynamic QoS value of 0.63 is lower than the static value
of 0.78; therefore, the global value of the service is also reduced. This indicates that the
global value of the service changes dynamically with the dynamic QoS value, reflecting
the real-time QoS performance status of the service. As the number of services invoked
increases, the weight of the dynamic values increases. The proposed evaluation strategy
tends to reflect the latest dynamic QoS in real time.

5.1.3. Effects of Parameter Adjustment

We selected the top five global values of services (CSP10, CSP1, CSP5, CSP13, and
CSP2), adjusted three parameters (dynamic QoS parameter, user requirements, and subjec-
tive weight), and observed the results of the evaluation model.

First, we set γ = 0.5, degraded the QoS parameters of the No. 1 service CSP10, and
optimized the QoS parameters of the No. 5 service CSP2 to judge whether the proposed
scheme can correctly reflect the service changes in real time. The experimental results
are presented in Figure 5a. It can be seen that CSP2, which was the worst service, has
transformed into the best service by continuously acquiring high-quality dynamic QoS
parameters, whereas CSP10 has changed from the best service to the worst service owing to
degraded dynamic QoS parameters. Therefore, the evaluation can accurately reflect service
performance in real time.

Second, we set γ = 0.5, when the user requirements are constantly changing, the
global value rankings of CSP1, CSP2, CSP5, CSP10, and CSP13 are shown in Figure 5b. It
can be seen that the global value ranking changes when the user demands are constantly
changing. The global value is calculated from the static and dynamic QoS values according
to Equation (14). The static QoS value remains unchanged, and the dynamic QoS value
changes when the user demands are constantly changing, similar to the global trust value.
Therefore, it can be concluded that user demand affects global value. As user requirements
change, the global value ranking also changes.

Finally, we set γ = {0, 0.1, 0.2, . . . , 0.9, 1}, when γ is changing, the global value ranking
of CSP1, CSP2, CSP5, CSP10, and CSP13 is shown in Figure 5c. It can be seen that with
the change in γ, the global value ranking of services constantly changes. Therefore, it can
be concluded that the subjective weight coefficient affects service ranking. These results
indicate that the proposed method effectively and accurately reflects service changes in
real time.
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Figure 5. Changes in global value ordering under different parameter adjustments. (a) QoS parame-
ters. (b) User requirements. (c) Subjective weight coefficient γ.

5.2. Efficiency Evaluation

Experimental studies are performed on UOS v20. The computer has an Intel® Core™ i7
CPU 10750H processor and 8 GB RAM. We implement a multi-node blockchain experimen-
tal system based on Java, and evaluate the proposed QTPBFT algorithm with an original
PBFT algorithm from three dimensions: communication complexity (CC), transaction
latency (TL), and transaction throughput (TT).

5.2.1. Communication Complexity

Communication complexity is the amount of communication required to complete
the consensus process. Assuming that there are n nodes in the blockchain system. In the
traditional PBFT algorithm, all nodes participate in the consensus process. A single process
has three stages: pre-prepare, prepare, and commit. The number of communications is
n− 1, n× (n− 1), and n× (n− 1), respectively. That is, a one-to-all broadcast and two
all-to-all broadcasts. Therefore, the total number of communications in a single consensus
process for PBFT CountPBFT is calculated by Equation (21) as follows:

CountPBFT = n− 1 + n× (n− 1) + n× (n− 1) = 2n2 − n− 1 (21)

where n represents the number of nodes in the blockchain system.
In our proposed QTPBFT, only selected nodes, that is, top d(0 < d 6 1) nodes

with the highest trust value, participate in the consensus process, rather than all nodes
in the network. To ensure the consensus operation, the maximum number of nodes in
the candidate group should be b n−1

3 c, so the number of nodes in the consensus group is
calculated by Equation (22) as follows:

n′ = n− bn− 1
3
c (22)
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where n represents the number of nodes and n′ represents the number of nodes in the
consensus group. Then, we can calculate d by Equation (23) as follows:

d =
n′

n
=

n− b n−1
3 c

n
=

2
3
+

1
3n

(23)

where n represents the number of nodes. The value of d tends to be in the range of
[ 2

3 + 1
3n , 1]; that is, consider the worst case, when d = 1, it will degenerate into a PBFT

process. The smaller the value of d, the lower the communication complexity. Obviously,
there will be fewer messages in the consensus process. The communication complexity has
been narrowed down overall. Therefore, the total number of communications in a single
consensus process for QTPBFT is calculated by Equation (24) as follows:

CountQTPBFT = n′ − 1 + n′ × (n′ − 1) + n′ × (n− 1) =
10
9

n2 +
1
9

n− 11
9

(24)

where n′ represents the number of nodes in the consensus group. Comparing
Equations (21) and (24), it can be concluded that the number of communications of QTPBFT
is much smaller than that of PBFT. Figure 6 compares communication numbers for a single
consensus of QTPBFT and PBFT systems with the same number of nodes.

Figure 6. Comparison of communication numbers for a single consensus of the two algorithms.

It can be seen that with an increasing number of nodes in the system, the communica-
tion numbers for a single consensus of the QTPBFT algorithm increase linearly, whereas
the communication numbers for a single consensus of the PBFT algorithm increase expo-
nentially. The communication complexity of QTPBFT is much lower than PBFT. It can
be concluded that the QTPBFT algorithm reduces the communication complexity of the
network significantly.

5.2.2. Transaction Latency

Transaction latency is the time required for the blockchain platform to respond to the
transaction. It takes the time from when a node initiates a transaction request to when
the entire transaction process is completed. Lower transaction latency means the system
can acknowledge messages faster and with higher throughput. Therefore, the transaction
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latency is an important indicator to measure blockchain performance. Its calculation
formula is calculated by Equation (25) as follows:

delay = t f inish − trequest (25)

where t f inish represents the time when the transaction is completed, trequest represents the
transaction request time.

In the proposed blockchain system, large-scale transactions between service providers
and consumers become more complicated. There are multiple participants communicating
for the transaction, waiting for the next block to be verified across multiple nodes. The
blockchain key management, identity certification, and digital signatures will also add a
slight latency. Figure 7 shows the comparison of transaction latency of QTPBFT and PBFT
systems with the same number of nodes.

Figure 7. Comparison of the transaction latency of the two algorithms.

It can be observed from Figure 7 that, as the number of participants increases, the
transaction latency of the system will also increase. However, transaction latency of the
QTPBFT algorithm is significantly better than the PBFT algorithm. When the node number
increases to 50, the latency of QTPBFT processing a transaction is 195 ms, which is much
smaller than the 913 ms of PBFT. The transaction latency of the PBFT algorithm increases
rapidly, whereas the transaction latency of the QTPBFT algorithm is more stable and
increases slowly.

5.2.3. Transaction Throughput

Transaction throughput is also another important metric for measuring consensus
algorithms. Transaction throughput represents the number of transactions that the network
can process per second, that is, the number of transactions generated over time during the
test. Throughput performance is usually expressed as transactions per second (TPS) when
presenting performance test results. Its calculation formula is calculated by Equation (26)
as follows:

TPS =
transactions

∆t
(26)
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where transactions is the number of transactions written to the blockchain. ∆t is the time
interval from transaction occurrence to confirmation.

Figure 8 shows the comparison of transaction throughput of QTPBFT and PBFT
systems with the same number of nodes.

Figure 8. Comparison of the transaction throughput of the two algorithms.

It can be observed that, as the number of nodes in the network increases, the transaction
throughput of both algorithms will decrease. However, the transaction throughput of the
QTPBFT algorithm is much higher than that of PBFT algorithm.

5.3. Comparison with Other Optimization Mechanisms

The QTPBFT optimization mechanism proposed in this paper is compared and ana-
lyzed with other methods reported for the consensus optimization mechanism. From the
literature survey, we show that the proposed approach achieves better results than all the
previous methods to the best of our knowledge. A brief description of these methods and
the comparison results are shown in Table 6.

Table 6. Comparison results of the proposed method with other methods.

Consensus Byzantine Fault
Tolerance

Communication
Complexity Node View Change

Probability

Original PBFT [9] Yes O(N2) Single High
Zyzzyva [10] Yes O(N) Single High

SBFT [11] Yes O(N2) Single High
RBFT [14] No O(N) Single High

T-PBFT [16] Yes O(N2) Group Low
X-layer PBFT [17] Yes 1.9N

4
3 Multi-Layer High

Proposed method Yes O(d× N2) Group Low

The proposed QTPBFT narrows the consortium nodes to a consensus group with
higher trust values. Theoretically, the number of messages delivered among nodes is
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O(d× N2)(0 < d 6 1). For participating nodes, we score them based on their performance,
then sort and group nodes, which is different from most consensus algorithms. We use
the consensus group instead of individual nodes to enhance robustness. This can not only
ensure the privacy of the consensus group nodes and reduce the probability of the primary
node’s Byzantine behavior by mutual supervision, but also reduce the probability of the
view change process. However, specific to practical scenarios, different scenarios have
different demands and different consensus protocols should be adopted to provide the
corresponding optimal performance. As such, compared with other optimized consensus
algorithms, the proposed QTPBFT reduces consensus nodes through a QoS-aware trust
value mechanism, providing low complexity and high scalability. Moreover, the trust value
of the consensus nodes is dynamically adjusted according to the status of the service, which
is more suitable for real-time service-transaction scenarios.

6. Conclusions

In this paper, we propose an improved consensus algorithm, QTPBFT, which is based
on the QoS-aware trust service. It incorporates a QoS-aware trust service global evaluation
mechanism to ensure that nodes with higher trust values are more trustworthy and that
the global trust value of the nodes is updated dynamically. Further, it forms the consensus
group based on the trust value mechanism, which significantly reduces the number of
consensus nodes and the number of messages to be transmitted to guarantee that all nodes
participating in the consensus algorithm are trusted nodes, thereby reducing the complexity
of communication and improving the efficiency of consensus. A practical protocol is also
introduced for the QTPBFT system, and the format of the broadcast message is designed
to ensure that it can work in peer-to-peer networks, adjust the trust value adaptively, and
reach consensus efficiently. Theoretical analysis and simulation experiments indicate that
the proposed QTPBFT can dynamically adjust the trust value according to the performance
of the node and improve the consensus efficiently.
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