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Abstract: Bluetooth monitoring systems (BTMS) have opened a new era in traffic sensing, providing
a reliable, economical, and easy-to-deploy solution to uniquely identify vehicles. Raw data from
BTMS have traditionally been used to calculate travel time and origin–destination matrices. However,
we could extend this to include other information like the number of vehicles or their residence times.
This information, together with their temporal components, can be applied to the complex task of
forecasting traffic. Level of service (LOS) prediction has opened a novel research line that fulfills the
need to anticipate future traffic states, based on a standard link-based variable, accepted for both
researchers and practitioners. In this paper, we incorporate BTMS’s extended variables and temporal
information to an LOS classifier based on a Random Undersampling Boost algorithm, which is proven
to efficiently respond to the data unbalance intrinsic to this problem. By using this approach, we
achieve an overall recall of 87.2% for up to 15-min prediction horizons, reaching 96.6% predicting
congestion, and improving the results for the intermediate traffic states, especially complex given their
intrinsic instability. Additionally, we provide detailed analyses on the impact of temporal information
on the LOS predictor’s performance, observing improvements up to a separation of 50 min between
last features and prediction horizons. Furthermore, we study the predictor importance resulting from
the classifiers to highlight those features contributing the most to the final achievements.

Keywords: bluetooth traffic monitoring system; traffic prediction; level of service; temporal compo-
nents of traffic information

1. Introduction

Traffic forecasting is yet an unresolved challenge among the scientific community [1].
Both traffic management and information systems will evidently benefit from an anticipated
knowledge about future traffic states, reducing congestion and allowing drivers to make
informed decisions. In order to fulfill this need, research has opened two strands of work.
On one hand, traffic models construct a representation of traffic based on the theoretical
definition of its behavior given a set of variables describing flows and road structure.
On the other hand, data-driven approaches extract inherent relations between different
types of information, measured on the road, such as intensity, occupancy, or travel time.
Despite the capacity of theoretical models of building cause-effect relationships, data-
driven approaches show the advantage of providing accurate predictions, even when fed
with incomplete data [2]. Most current technologies in this area apply several artificial
intelligence functionalities including the k nearest neighbors (k-NN) as in [3,4] or neural
networks like [5–8] to particular input data sets.

Data can be collected from a wide variety of sensors: inductive loops, license plate
readers, Bluetooth traffic monitoring systems (BTMS), etc. Among them, BTMS gained
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attention during the past decade as they provide remote sensing capabilities that avoid
expensive installation and maintenance tasks. BTMS uniquely identify vehicles in a certain
coverage area. By using the information registered at different locations, we can calculate
the representative travel time (TT) of each monitored stretch in the road network [9].
The great majority of researchers and practitioners agree that traffic must be represented
by a link-based variable, among which TT appears as the best candidate. The underlying
reason is that TT refers to the stretch, thus being able to provide, on its own, information
about the state of traffic on a whole link. By using TT we avoid the extrapolation required
to infer these same traffic states from variables like intensity, occupancy, and velocity
provided by point-like sensors (mainly inductive loops). The only downside of TT is its
inherent dependency on some of the link’s features like length, speed limit, etc. We can
overcome this issue evolving TT to level of service (LOS) [10], given that LOS generalizes
its calculation to any type of stretch regardless of its specific configuration.

In order to predict TT or LOS, approaches that use time series analysis achieve good re-
sults in situations where traffic shows recognizable patterns in time [11]. Time is an inherent
component of traffic, showing a multidimensional nature. First, we can differentiate two
separate time variables, departure TT (DTT) and arrival TT (ATT), depending on whether
we measure the time required to cover a specific stretch from the perspective of the vehicles
that started or finished it, respectively. Second, DTT is inherently delayed with respect to
ATT, as we must wait until every vehicle departing from the origin gets to the destination
in order to calculate the corresponding DTT value. Third, ATT is the only variable that
we can measure in real time; however, traffic management requires DTT forecasts, which
complicates the task. Fourth, there exists a correlation between past, current, and future
traffic [2]. Fifth, this correlation also includes a spatial component as traffic in preceding
and succeeding links has an effect on the link under study [12].

These “physical” traffic connections in space and time are not the only ones we need
to consider. In our previous work [13], we observed that the prediction of the LOS on a
northbound stretch of the urban expressway SE-30 in Seville, Spain, benefited from TT
data captured on southbound stretches with no direct physical connections to the studied
link. This means that data-driven approaches can extract hidden relationships among input
variables. Furthermore, in addition to TT, we can also extract other variables from BTMS,
that would extend the input data set for the predictors. This may lead us to conclude
that the bigger the feature space, the better. The appearance of big data solutions and
platforms has given direct access to new sources of data like weather or social networks,
which reinforces the idea that massive amounts of data are the ultimate solution to traffic
forecasting. Nevertheless, the reality is that the performance of predictors has more to do
with quality than with volume [14] as variables may carry information already existent in
the remaining set, thus resulting in redundancy and forcing the predictor to eliminate the
accessory relations.

Given these issues, this work presents an analysis of the impact of temporal data on
the performance of LOS predictions. We designed a mathematical framework to tackle this
classification problem and validate the resulting predictor with empirical TT data captured
by a BTMS deployed in real operation on the SE-30 and A-49 expressways. Introducing
temporal information about ATTs in our original random undersampling boost (RUSBoost)
classifier, we achieved a significant improvement in the recall values, especially on the
intermediate LOS, which showed lower performance. Finally, we completed this study
with a deep analysis of the predictor significance of each feature, which sheds light on the
temporal components of traffic. Thus, the main contributions of this work are:

1. We formalize the introduction of time information into a short-time LOS predictor.
2. We propose an improved RUSBoost LOS classifier that makes use of the temporal

components of traffic information, achieving an overall 88.7% success rate, which
reaches 96.6% predicting congestion up to 15 min in the future.

3. We validate the performance of this LOS classifier with actual data from a BTMS in
real operation in the SE-30 road in Seville, Spain.
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4. We study the contribution of secondary variables provided by BTMS, such as count
and residence time, to the prediction of LOS.

5. We analyze the predictor importance of the studied temporal features and extract
conclusions about traffic’s temporal components.

2. Related Work

The prediction of future traffic states has opened a challenging research line. The scien-
tific community has developed a whole set of methods that have currently led to different
approaches based on artificial intelligence. A rigorous survey on these methods can be
found in [1]. Artificial intelligence allows the learning of patterns that are replicated in time,
showing some kind of standard behavior. In order to do this, the autonomous machines
must be fed with data embedding representative information about different features
regarding traffic.

Evidently, the first data to be contemplated are traffic variables themselves: vehicle
count, intensity, occupancy, velocity, or travel time, among others. These variables are
often fused as a way of exploiting complementary information provided by traffic sensors
of a different nature like automatic vehicle identification (AVI) systems and counters.
As illustrative examples of the recent work in this area, the authors in [15] fuse data
collected by inductive loops and probe vehicles in order to estimate traffic states, while
in [16,17] records in toll areas are exploited together with microwave sensor data to predict
future behaviors. The advent and rapid expansion of big-data technology have opened
traffic prediction to a new set of variables like weather [18] or social data [19]. However,
the potential benefits of big data applied to traffic forecasting must first guarantee the
quality of the data they use [14]; otherwise, an excessive number of input features may
bias the learning process [20]. Some of these harmful effects have been studied in [21],
which focused on data captured by inductive loops and license plate recognition systems.
In addition, the fusion of new information sources involve specific issues regarding the
spatial and temporal heterogeneity of data [22].

These potentially harmful effects directed research back to the original set of traffic
variables. Consequently we look for features that show a relevant impact on the future
behavior of traffic [23]. Future traffic states are undoubtedly linked to current and past
behaviors, both in the link under study and the remaining links in the road network.
Therefore, the study of temporal and spatial correlations between the values of a single
representative variable like flow or TT may result in enhanced traffic predictors. At its
first level, this study is supported by the existence of causality relations [24] between a
specific variable and future traffic. This principle has been recently applied to flow and TT
prediction. The authors in [25] analyzed correlations between flow data time series in order
to reveal hidden causal dependencies. In [26] the authors included the spatial equivalent
distance in their evaluation of the time correlations observed in data provided by inductive
loops. In addition, the authors in [27] represented spatial and temporal information in
two dimensions, which allowed them to transform a time series problem into an image
analysis. Flow information can be used to estimate future TT exploiting spatio-temporal
correlations among consecutive links applying an approach based on Markov chains [28].
Nonetheless, TT prediction is best performed by using data from AVI systems or probe
vehicles. The authors in [29] developed a traffic speed predictor, which capitalized on the
multi-dimensional time information and the bi-directional spatial information observed in
taxi GPS data.

The analysis of spatio-temporal correlations in values of traditional traffic variables
has recently opened a new strand of work that explores attention models [30], which aim
at providing ways of interpreting the operation of deep neural networks (DNN) while
improving their performance. This approach has been followed by works like [31–33],
which propose DNN-based traffic flow predictors. Nonetheless, the correlation between
flow or TT measurements and future traffic extends beyond causal relations in space and
time [34]. We came up to this same conclusion in [13] where we observed how the TT
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prediction of a stretch in an expressway (SE-30, Seville, Spain) was improved by using TT
data collected on the opposite direction, which presents negligible or non-existent physical
connection with it. Consequently, variables may provide information about future traffic
states not only because of their physical impact on it, but also because they are capable of
describing a specific state in the whole traffic network in a particular moment in time.

In the light of the above, this work presents the following contributions:

• We take LOS as the prediction objective, given that it is a standard variable representa-
tive of future traffic states.

• We propose an enhanced RUSBoost classifier that exploits spatio-temporal correlations
found in TT data.

• We analyze the impact of temporal and spatial information on the performance of the
resulting predictor.

• We train and validate the predictor by using 12 months of TT data collected by a BTMS
deployed on the SE-30 and A-49 highways (Seville, Spain).

3. Materials and Methods
3.1. Previous Work

Our objective is to construct a short-term LOS predictor, exploiting the temporal
and spatial components of traffic. In order to reach this objective, we take the basis of our
previous work in [13], in which we built an LOS predictor by using a RUSBoost classifier fed
with ATT data corresponding to the same instant of prediction. This classifier was capable
of predicting LOS at 15 min in the future with an average 82.8% recall, which reached 92.5%
predicting heavy congestions (LOS F). Despite these good results, the classifier reduced its
performance when predicting intermediate LOS due to the instability that traffic shows
under these circumstances. Consequently, we now focus on improving these capabilities
by using temporal and spatial information. Let us present a brief overview of the first
predictor we constructed; please visit [13] for further details.

TT is a statistical variable that shows the representative time that vehicles required
to traverse a stretch at a given time. We can define two types of TT: ATT, which is the
only measurement that a real-time system can provide, and DTT, which is the variable
we seek for in order to inform the driver about the state of traffic that he expects to find
on the stretch, when he is still at the origin. Given that TT is inherently affected by the
specific features of the stretch under study, such as length or maximum speed limit, we
moved to predicting LOS. LOS provides standardized information about the traffic state,
ranging from free-flow (LOS A) to heavy congestion (LOS F), as it is defined in the Highway
Capacity Manual [10].

As the base technology for our classifier we used an RUSBoost classifier [35], which is
capable of dealing with unbalanced datasets as is the case of LOS, with evident majority
(LOS A) and minority classes. RUSBoost works with partitions of the complete dataset in-
cluding the number of samples in the minority class and iterates (60 times) the basic process
to incorporate every sample in the overall training phase. Each step in this training phase
employs a weak learn algorithm, a standard regression tree [36] in our case. The output of
every step is a suboptimal model, which is then applied to the complete dataset in order to
calculate the corresponding pseudo-loss and assign a new set of weights to every sample.
The final result is a data-driven model for each link in the network and prediction horizon.

3.2. Empirical Data

The LOS predictor we aim to construct consumes ATT data. In our case, these data are
collected by a BTMS deployed on the SE-30 and A-49 expressways in Seville (Spain), where
we installed 4 Bluetooth identifiers, which define 6 links shown in Figure 1. We applied
the TT calculation described in [9] over 100 million vehicle identifications produced by the
BTMS during 2017 (12 months), which resulted in 525, 600 1-min DTT and ATT values for
every link.
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Figure 1. Nodes and links in the BTMS deployed in Seville (Spain).

3.3. Problem Statement

This work aims at constructing LOS predictors based on current and past ATT values,
captured in the L links forming the road network. Let t be the moment of prediction and t′

the prediction horizon; thus, at t we need to predict the specific LOS that will be observed
by vehicles starting a particular link k at time t + t′. In order to perform this prediction,
the classifier consumes ATT values collected in every link l in the network (l = 1, . . . , L) at
times pu previous to t (pu < t). Thus, for a given prediction time t, we construct L sets of
input data

ATTl(t) = {ATTl(t), ATTl(t− p1), . . . , ATTl(t− pn)}, (1)

where n is the number of ATT values previous to the time of prediction t. Consequently,
the resulting feature space is X(t) = ATT1(t) ∪ ATT2(t) ∪ . . . ∪ ATTL(t).

The complete dataset S is then formed by samples

(~xk(t), yi(t + t′)), (2)

where ~xk(t) ∈ X(t) and yi(t + t′) ∈ Y = {A, B, C, D, E, F} is the LOS actually observed
in link k at time t + t′. In our case, S contains 525, 600 samples per link, summing up to
3, 153, 600 in total.

3.4. Configuration of Predictors

We set up a maximum separation of 55 min between any temporal feature and the prediction
horizon, which resulted in 27 predictors: 10 for 5-min prediction horizons (t′ = 5 min), 9 for
10-min prediction horizons (t′ = 10 min), and 8 for 15-min prediction horizons (t′ = 15 min).
As an illustrative example, the first predictor for t′ = 5 min. was fed with ATT values registered
on each link l at t and t− 5, i.e., {ATTl(t), ATTl(t− 5)}; and the tenth predictor for t′ = 5
consumed input values {ATTl(t), ATTl(t− 5), . . . , ATTl(t− 50)}.

As we showed in our previous work [13], traffic is deeply influenced by the type of
day in the week, which resulted in a better performance of the predictor we constructed
separating the sample data into four categories: Monday (Mon), Tuesday-Wednesday-
Thursday (Tu/We/Th), Friday (Fri), and Saturday-Sunday-holiday (Sa/Su/ho). We built
the new 27 predictors taking this same approach in order to compare their results to the
best previous performance. In addition, we kept a fixed configuration for every predictor
so that their results were not impacted by this factor. Consequently, every predictor used
a standard decision tree [36] as the RUSBoost weak learn classifier, which was iterated
60 times, with a learning rate of 0.3. Finally, we selected 128 splits for categories Mon, Fri,



Sensors 2022, 22, 4565 6 of 14

and Sa/Su/ho and 196 splits for category Tu/We/Th, according to the feature space we
managed. In order to validate the obtained results, we performed 5 independent runs of
5-fold cross validation. Thus, we split the dataset into 5 different partitions, using 4 of them
to train the classifiers and the remaining one for testing. We analyzed the performance of
these predictors by using recall as the relevant metric, given the imbalance shown within
the set of classes [37] and its column-based nature from the perspective of the corresponding
confusion matrices. We calculated recall values for each LOS and the result for every link,
prediction horizon, and type of day.

4. Results

The 27 predictors were trained and validated by using ATT data captured by the
BTMS deployed on the SE-30 highway in Seville, as we described in Section 3. Given the
space limitations, for each link, prediction horizon, and type of day, we select the predictor
with the best performance, which corresponds to a specific set of input features, i.e, how
far in time from the time of prediction t we take ATT values. In order to complete this
information, in Section 4.3 we will perform an analysis of the evolution of the prediction
performance with the sequential addition of temporal features, in order to extract overall
conclusions about the decision-making process in the design of LOS classifiers.

4.1. Performance Results

Table 1 shows the recall values we obtained for each LOS, using the best combination
of past temporal information in all 6 links in the network. We can observe that the overall
performance of the proposed predictor reaches 87.2% and rises above 70% for every LOS,
even at 15-min prediction horizons. In addition, it is remarkable that the classifier shows a
noticeable performance not only for free-flow (LOS A) and congestion (LOS F), which reach
more than 90%, but also for intermediate traffic states LOS D (88.3%) and LOS E (94.2%).
Moreover, the recall values obtained for LOS B and LOS C exceed 73%, thus confirming
that the addition of temporal data provides further information about unstable traffic states
that the classifier uses to increase its overall performance. Finally, let us mention that,
as expected, performance degrades as we increase the prediction horizon; however, this
degradation is soft, which supports the technical viability of the solution.

Table 1. Global performance results.

Horizon LOS A LOS B LOS C LOS D LOS E LOS F Total

5 min 96.2% 77.0% 76.6% 88.8% 94.7% 97.0% 88.4%
10 min 95.0% 72.9% 75.3% 88.3% 94.3% 96.7% 87.1%
15 min 93.8% 70.2% 74.3% 87.9% 93.8% 96.3% 86.1%

Total 95.0% 73.4% 75.4% 88.3% 94.2% 96.6% 87.2%

In order to provide the complete and detailed information about the performance of
the predictors, Table 2 shows the recall values we obtained for each combination of link,
prediction horizon, and type of day. In addition, it includes the total recall for the link and
prediction horizon as the average performance reached on the set of types of day. Observing
the particularized information, we can conclude that the overall performance is maintained
throughout the links. This means that the average values in Table 1 are not biased by an
outstanding performance in just a limited subset of links. The only exception that we notice
is Link 3, in which LOS B and LOS C show lower recall values than the rest, even at a 5-min
prediction horizon. Link 3 is particularly complex given that it includes several accesses
to an industrial and commercial area, which implies a high number of heavy trucks that
generate micro-congestions that increase the instability of the intermediate LOS in this
section of the road. Regarding the type of day, we can observe no clear differences in the
classifiers’ performance, which in consequence, fundamentally depends on the existence of
some kind of intrinsic pattern that the predictor can extract from the data.
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Table 2. Detailed performance results.

Horizon Day
Link 1 Link 2

A B C D E F A B C D E F

5 min

Total 94.1% 74.4% 64.1% 77.2% 91.4% 94.3% 94.7% 80.5% 72.1% 90.5% 97.1% 98.3%

Mon 93.8% 64.5% 59.7% 65.2% 94.4% 98.1% 93.5% 77.2% 66.1% 88.3% 98.9% 100%
Tu/We/Th 91.6% 65.1% 45.9% 66.2% 90.6% 93.9% 92.5% 69.2% 56.7% 86.4% 96.0% 98.6%

Fri 92.3% 75.8% 51.6% 77.4% 80.5% 90.9% 94.0% 76.7% 66.5% 87.2% 96.5% 96.2%
Sa/Su/ho 98.7% 92.0% 99.1% 100% 100% − 99.0% 98.8% 99.2% 100% − −

10 min

Total 92.9% 70.1% 64.4% 76.3% 90.9% 94.2% 93.4% 77.2% 69.8% 90.5% 96.5% 98.5%

Mon 92.5% 59.5% 60.1% 64.7% 95.2% 97.8% 92.2% 74.4% 62.8% 88.6% 98.1% 100%
Tu/We/Th 89.8% 59.2% 45.8% 63.8% 89.8% 93.2% 90.6% 63.4% 53.7% 85.7% 96.3% 98.1%

Fri 91.6% 70.4% 53.1% 76.8% 78.7% 91.4% 92.2% 72.3% 63.6% 87.9% 95.0% 97.3%
Sa/Su/ho 97.6% 91.4% 98.7% 100% 100% − 98.6% 98.8% 99.1% 100% − −

15 min

Total 91.8% 68.0% 64.7% 76.0% 89.2% 94.0% 92.2% 75.9% 67.7% 89.4% 96.1% 98.3%

Mon 91.4% 57.7% 58.2% 65.6% 93.3% 98.7% 90.8% 74.6% 60.3% 88.7% 98.1% 99.4%
Tu/We/Th 88.3% 55.9% 45.0% 63.3% 87.9% 92.7% 89.1% 61.1% 49.0% 85.8% 95.7% 98.1%

Fri 91.0% 67.5% 56.7% 75.3% 75.7% 90.6% 90.9% 69.2% 62.1% 83.4% 94.5% 97.5%
Sa/Su/ho 96.5% 90.7% 98.7% 100% 100% − 98.0% 98.8% 99.2% 100% − −

Horizon Day
Link 3 Link 4

A B C D E F A B C D E F

5 min

Total 95.8% 58.4% 62.6% 84.4% 96.1% 98.6% 99.0% 89.6% 89.2% 92.0% 90.6% 93.9%

Mon 94.8% 61.1% 60.7% 88.1% 95.8% 96.5% 99.1% 94.5% 91.7% 91.4% 93.2% 92.2%
Tu/We/Th 93.7% 47.3% 59.6% 82.4% 97.0% 97.7% 98.7% 78.5% 78.1% 80.8% 85.3% 91.4%

Fri 96.0% 55.8% 54.4% 70.3% 92.9% 100% 98.3% 87.4% 86.9% 95.9% 93.3% 98.1%
Sa/Su/ho 98.6% 69.4% 75.6% 96.6% 98.9% 100% 99.8% 98.2% 100% 100% − −

10 min

Total 94.0% 53.4% 60.0% 83.7% 96.0% 97.6% 98.6% 86.3% 88.6% 92.7% 90.3% 94.0%

Mon 92.5% 54.6% 58.3% 88.3% 95.1% 96.0% 98.9% 93.0% 93.3% 91.6% 91.4% 96.1%
Tu/We/Th 90.9% 40.8% 56.7% 82.6% 98.0% 96.0% 98.4% 71.0% 73.2% 85.0% 84.4% 88.7%

Fri 94.6% 49.4% 51.8% 67.8% 93.0% 98.4% 97.3% 83.1% 88.0% 94.1% 95.0% 97.2%
Sa/Su/ho 97.9% 68.7% 73.2% 96.3% 97.7% 100% 99.7% 98.1% 100% 100% − −

15 min

Total 92.5% 51.4% 58.5% 83.5% 96.8% 98.3% 98.1% 83.3% 87.1% 93.4% 88.9% 92.5%

Mon 90.5% 53.2% 57.8% 88.6% 96.2% 97.0% 98.7% 93.9% 93.0% 92.9% 93.1% 94.6%
Tu/We/Th 88.4% 38.3% 54.1% 81.9% 96.8% 98.3% 98.1% 62.2% 68.1% 86.2% 80.4% 85.5%

Fri 93.7% 48.0% 49.8% 67.3% 94.1% 97.8% 95.9% 79.5% 87.3% 94.7% 93.3% 97.4%
Sa/Su/ho 97.3% 65.9% 72.5% 96.3% 100% 100% 99.6% 97.6% 100% 100% − −

Horizon Day
Link 5 Link 6

A B C D E F A B C D E F

5 min

Total 96.3% 73.4% 84.9% 98.3% 99.8% 100% 97.0% 86.0% 86.9% 90.1% 93.0% 96.7%

Mon 96.7% 79.1% 99.3% 99.3% − − 96.0% 89.4% 85.5% 85.8% 87.7% 92.6%
Tu/We/Th 93.8% 64.9% 73.3% 96.2% 100% 100% 97.1% 76.2% 78.2% 81.3% 89.0% 96.5%

Fri 96.1% 66.1% 81.2% 97.7% 99.5% 100% 96.4% 83.4% 85.1% 93.4% 96.2% 97.6%
Sa/Su/ho 98.6% 83.4% 86.0% 100% 100% 100% 98.5% 95.0% 98.9% 100% 99.2% 100%

10 min

Total 95.1% 67.7% 82.7% 97.9% 99.6% 100% 95.9% 82.7% 96.4% 88.5% 92.2% 95.9%

Mon 95.1% 76.9% 98.9% 99.3% − − 94.7% 87.7% 86.1% 83.2% 86.8% 90.2%
Tu/We/Th 91.9% 58.4% 69.8% 95.7% 99.3% 100% 96.2% 69.5% 74.5% 76.7% 88.1% 96.3%

Fri 95.0% 60.9% 75.9% 97.7% 99.5% 100% 94.7% 80.7% 86.2% 94.0% 94.8% 97.2%
Sa/Su/ho 98.4% 74.8% 86.1% 98.9% 100% 100% 98.0% 92.9% 98.9% 100% 99.2% 100%

15 min

Total 93.5% 63.0% 82.2% 97.9% 99.6% 98.4% 94.8% 79.9% 85.6% 87.0% 92.1% 96.0%

Mon 93.3% 73.4% 98.8% 99.7% − − 93.7% 84.0% 88.9% 81.9% 88.5% 91.8%
Tu/We/Th 89.7% 51.9% 69.0% 95.0% 99.3% 100% 95.3% 63.4% 72.1% 74.1% 87.2% 95.2%

Fri 93.6% 55.7% 74.3% 97.9% 99.5% 100% 92.9% 80.0% 83.4% 92.2% 93.6% 97.0%
Sa/Su/ho 97.4% 70.9% 86.8% 98.9% 100% 95.2% 97.4% 92.1% 97.9% 100% 99.2% 100%

4.2. Performance Comparison with Previous Results

Comparing our current and previous results in [13], we can conclude that temporal
information about past traffic behavior provides the classifier with a more solid knowledge
base to predict future LOS. Tables 3 and 4 show the comparative results.
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Table 3. Improvements with respect to prior results in each LOS.

Horizon LOS A LOS B LOS C

Previous Current Previous Current Previous Current
5 min 96.0% 96.2% 72.5% 77.0% 71.4% 76.6%

10 min 94.8% 95.0% 68.1% 72.9% 69.3% 75.3%
15 min 93.5% 93.8% 65.4% 70.2% 68.9% 74.3%

Total 94.8% 95.0% 68.7% 73.4% 69.9% 75.4%

Horizon LOS D LOS E LOS F

Previous Current Previous Current Previous Current
5 min 82.7% 88.8% 89.7% 94.7% 92.5% 97.0%

10 min 81.9% 88.3% 89.1% 94.3% 93.0% 96.7%
15 min 82.0% 87.9% 88.4% 93.8% 92.0% 96.3%

Total 82.2% 88.3% 89.0% 94.2% 92.5% 96.6%

Table 4. Global Improvements with respect to prior results.

Horizon Total

Previous Current
5 min 84.1% 88.4%
10 min 82.7% 87.1%
15 min 81.7% 86.1%

Total 82.8% 87.2%

Specifically, including temporal information as input data to the LOS predictors, we
have raised its overall recall in 4.3%, to reach 87.2% total. This increase is particularly
relevant as it comes from an already noticeable performance. In addition, the highest
improvement occurs in the LOS D prediction (6.4% increase), one of the intermediate traffic
states that showed a performance below the average in our previous results. Progress is
even more significant if we observe the detailed results per type of day and LOS, which
increase up to 23.3%, registered for LOS E at Link 6, on weekdays (Tu/We/Th), with a
prediction horizon of 5 min. Nevertheless, inserting temporal information is not the
ultimate solution for a perfect LOS prediction. Despite the fact that it achieves an overall
performance increase, especially in some of the intermediate classes (LOS D and LOS E),
it seems unable to significantly improve the recall values for LOS B and LOS C in Link 3,
which are still below 65%. We will address this specific issue and propose future research
to correct it in the discussion in Section 5.

4.3. Impact of Temporal Components on Performance

Once we have confirmed that temporal information improves the performance of LOS
predictors, we will analyze the specific impact it produces. To this end, we provide figures
displaying the evolution of the performance of each of the 27 predictors. As we described
in Section 3.4, for each prediction horizon (t′ = 5, 10, 15), we constructed a sequence of
LOS classifiers adding ATT values from the six links in the network to the prior set of
input variables.

Consequently, Figure 2a shows the evolution of the performance of classifiers for a
5-min prediction horizon for each of the six links in the road network (in different colors).
The vertical axis displays global recall values while the horizontal axis refers to the times
pu (u = 0, 1, . . . , 10) previous to prediction time t in which we take ATT measurements.
Thus, the leftmost points at p0 = 0 act as the reference, showing the performance of the
classifier with no temporal information, whose set of inputs is

ATT0(t) = {ATT1(t), ATT2(t), . . . , ATT6(t)}. (3)

The next group of points on each curve (p1 = 5) represent the performance of the
second classifier, which is fed with the input set

ATT5(t) = ATT0 ∪ {ATT1(t− 5), ATT2(t− 5), . . . , ATT6(t− 5)}. (4)
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Subsequently, the last group of points on each curve show the recall achieved by the
tenth classifier, which was built with the set of inputs

ATT50 = ATT0 ∪ ATT5 ∪ . . . ∪ {ATT1(t− 50), ATT2(t− 50), . . . ATT6(t− 50)}. (5)

Accordingly, Figure 2b,c shows the evolution of the performance of classifiers for 10-
and 15-min prediction horizons. In all three figures we can observe how the addition of
new temporal components rapidly improves the performance up to a point where the curve
becomes flat. Furthermore, it is noticeable that from a point in time onwards, extending
the input feature set results in a decay in the performance of the LOS predictor. In fact,
most of the time this decay occurs when the last ATT values we insert are 50 min away
from the prediction horizon t′: 45 min for t′ = 5 (Figure 2a), 40 min for t′ = 10 (Figure 2b),
and 35 min for t′ = 15 (Figure 2c). Note that this observation applies to the great majority
of links, and the exceptions imply minimal differences in the recall values. Consequently,
this suggests that the temporal components of ATT may lose predictive capabilities beyond
a time separation of 50 min from the prediction horizon, which can be used as a sensible
design principle for constructing LOS predictors based on ATT measurements.
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Figure 2. Evolution of the performance of predictors with t′ = 5 min. (a) t′ = 10 min. ATTs up to
t− 50 min. (b) and t′ = 15 min. ATTs up to t− 45 min. (c) depending on the input feature set. ATTs up to
t− 40 min.

5. Discussion

Our previous findings in [13] showed that spatial information not only from preceding
and succeeding links, but also from those in the opposite direction, contributed to an
increase in the LOS predictor’s performance. The work we have just presented extends
those results and explores the predictive capabilities of traffic’s temporal components in
order to improve the overall performance of LOS classifiers by selecting the appropriate set
of input features. In this section, we discuss several relevant issues that derive from the
results we have obtained and further strands of our work.

5.1. Predictor Importance

We have performed a posteriori analyses regarding the predictor importance of every
temporal component that the classifier used. This study provides us with information
about which specific features within the overall set have played major roles and which
others had smaller contributions to the overall result. To this end, in Figure 3 we display the
predictor importance of each temporal feature that fed LOS classifiers applied to every link
on Mondays, with a 5-min prediction horizon, and a set of previous ATT values captured
up to 45 min from the time of prediction. The vertical bars in these figures are ordered in
increasing time; furthermore within each group of features, links are organized by their
direction on the road: southwards (links 6, 4, and 2) and northwards (links 1, 3, and 5) so
as to facilitate the visualization of the impact of temporal components of the traffic on the
same and opposite directions.
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As we can observe in all six graphs in Figure 3, as expected, the most important feature
is always the ATT on the link under study, at the time of prediction t. After it, the temporal
information on the link itself keeps its relevance up until a point in time and the specific
predictor built for each link shows distinct behaviors that do not present a direct relation
with the physical configuration of the road network. Specifically, the starting links on the
northbound (link 1) and southbound (link 6) sides of the expressway fundamentally take
information from their own traffic as their most important features; however, the additional
information the former includes comes from link 2 (which is in the opposite direction and
has no direct connection to it), whereas the latter prefers information from links 2 and 4
(both in its direction). Regarding the central links 3 and 4, the most relevant information is
taken from themselves and, respectively, from the succeeding (link 5) and preceding (link 6)
stretches. On their part, the final northbound stretch (Link 5) primarily uses information
from itself and the anterior (link 3), whereas the final southbound stretch (link 2) merges
information from itself, link 1 (on the opposite direction), and link 6 (in its direction,
but excluding its immediate precedent from the top 10 most important features).
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Figure 3. Predictor importance in classifiers with a 5-min prediction horizon on Mondays and ATT input
features up to t− 45 min. (a) Link 1. (b) Link 6. (c) Link 3. (d) Link 4. (e) Link 5. (f) Link 2.

These disjointed behaviors suggest that the learning process each predictor performs
is capable of extracting correlations that are deeply hidden in the data, often presenting
no straightforward connection to the real physical road network they work on. This is a
clear advantage of data-driven approaches, but on the negative side, it requires further
insight in order to come up with the exact operation of the classifier in order to reach a
comprehensive knowledge about the intrinsic nature of traffic prediction.
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In order to extend the prior study and present the evolution of each predictor impor-
tance with the prediction horizon t′, in Figure 4 we particularize the predictor importance
graphs to Link 4, with t′ = 5, t′ = 10, and t′ = 15 and ATT input values up to 45, 40,
and 35 min from the time of prediction respectively. In this case, we can observe that traffic
information from the link under study loses importance as we increase the prediction
horizon, and data from other links take a predominant role. In the light of these results, we
can conclude that we require a combination of temporal and spatial components of traffic
that do not always reflect an evident connection to the underlying physical structure of the
road network.
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Figure 4. Predictor importance in classifiers at link 4, on Mondays. (a) ATTs up to t − 45 min.;
t′ = 5 min. (b) ATTs up to t− 40 min.; t′ = 10 min. (c) ATTs up to t− 35 min.; t′ = 15 min.

5.2. Feature Selection

The predictor importance analysis led us to wonder whether we could extract that
same knowledge about the predictive capabilities of temporal and spatial features prior to
the training of the LOS classifiers. With this aim, we built and ran several feature selection
algorithms in order to obtain those variables that could potentially improve the overall
results and optimize the operational costs of the predictor. To this end, we tested two
different filter methods, Relief [38] and MRMR [39], to find correlations with the desired
output and redundancies among the set of input features. Nevertheless, we observed that
first, the selected features depend on the classifier that we eventually chose, and second,
their results did not match to those obtained from the predictor importance provided by the
classifier itself. Thus, we abandoned this approach as an a priori way to select the potential
optimum set of features.
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5.3. Other Variables Produced by a BTMS

Finally, we also performed a battery of tests including other variables we could extract
from a BTMS: vehicle count and residence time. The inherent nature of the BTMS makes it
inappropriate for counting vehicles, given that it is always floored by the fact that it needs
every vehicle to be equipped with a Bluetooth hands-free device in order to be detected.
At present, most manufacturers incorporate this functionality, but there are still older
models that do not. In any case, even if every vehicle had a Bluetooth device, there would
always exist the probability of not detecting them as they traverse the zone of coverage.
However, some level of counting is available from a BTMS whose trend could embed some
useful information about the expected traffic behavior. We can address two types of BTMS
vehicle counting: (i) associated to a node, considering any vehicle despite its direction; and
(ii) associated to a stretch, selecting those vehicles that actually traversed the stretch under
study registering a coherent TT.

On the other hand, given the zone-based nature of a BTMS, it is capable of detecting
vehicles more than once as they traverse each node’s area of coverage, thus creating a
multiple detection. We define residence time as the time elapsed between the first and last
detections, whenever a multiple is produced. Thus we integrate all the individual residence
times corresponding to vehicles within a certain slot in order to come up with a new traffic
variable that somehow relates to the level of congestion on a stretch.

However, incorporating these two variables to the feature set did not improve the
performance of the LOS predictors. This fact was confirmed by the subsequent predictor
importance analysis, which highlighted the negligible contribution of vehicle counts and
residence time to the internal construction of the classifier. The most apparent reasons for
this observation are the low accuracy of the BTMS vehicle count and the insufficient number
of multiple detections that eventually produced residence time measurements. In any case,
other technologies such as inductive loops or radars, which are capable of providing far
more accurate vehicle counts, may still be potentially useful for prediction purposes.

6. Conclusions

In this paper, we have presented an LOS predictor capable of exploiting the tem-
poral and spatial components of traffic information, reaching an overall recall of 87.2%,
with prediction horizons of up to 15 min. The predictors used 12 months of ATT data
recorded by a BTMS in real operation on the SE-30 and A-49 highways in Seville, Spain.
We have proven that temporal information increases the predictor’s global performance,
particularly in those intermediate traffic states, which are especially complex due to their
intrinsic instability. We have provided evidence about the evolution of the performance
with the sequential addition of temporal components to the feature set, which first shows
a rapid growth, followed by a reduction in the slope, and a final decay. This last decline
occurs approximately when the input data is 50 min away from the prediction horizon,
which constitutes a basic design principle. In addition, we have extended the study on the
impact of temporal components on the construction of the LOS classifier by analyzing the
predictor importance. This study indicated that there is no evident connection between the
predominant input features and the underlying physical road network.

We are currently broadening this investigation, focusing on the internal process of
the LOS predictor construction with a twofold objective: to further extend its current
performance, and to achieve a deeper insight on the underlying mechanics of artificial
intelligence applied to traffic.
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