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Abstract: In order to avoid the direct depth reconstruction of the original image pair and improve the
accuracy of the results, we proposed a coarse-to-fine stereo matching network combining multi-level
residual optimization and depth map super-resolution (ASR-Net). First, we used the u-net feature
extractor to obtain the multi-scale feature pair. Second, we reconstructed global disparity in the
lowest resolution. Then, we regressed the residual disparity using the higher-resolution feature pair.
Finally, the lowest-resolution depth map was refined by using the disparity residual. In addition,
we introduced deformable convolution and group-wise cost volume into the network to achieve
adaptive cost aggregation. Further, the network uses ABPN instead of the traditional interpolation
method. The network was evaluated on three datasets: scene flow, kitti2015, and kitti2012 and the
experimental results showed that the speed and accuracy of our method were excellent. On the
kitti2015 dataset, the three-pixel error converged to 2.86%, and the speed was about six times and
two times that of GC-net and GWC-net.

Keywords: stereo matching; coarse-to-fine; depth map super-resolution; disparity regression; deep learning

1. Introduction

Visual depth estimation has its economic advantages over the lidar method. Therefore,
a vision-based depth estimation algorithm has always been a popular research field. At
present, the stereo matching algorithm is widely used in AR [1], MR [2], autopilot [3], robot
navigation [4], and other fields.

Human acquisition of external image information is mainly based on the receptive
field mechanism. The brain can infer and estimate the depth by understanding the image
features captured by both eyes. Stereo matching technology lets the computer simulate this
process. The main problem solved by this technology is how to find the matching pixels
in the left and right view, calculate the disparity between the matching points, and finally
obtain the depth map.

For example, in binocular image pairs corrected by epipolar line: we define x and y
as coordinates along the width and height of the image, d as disparity, and D as depth.
According to the principle of a binocular camera, if there is a pixel point (x, y) in the left
image, there must be a point (x − d, y) in the right image to match the left. When we obtain
the disparity, we can obtain the actual depth (D = (fb/d)) of the pixel point in the real world,
where f is the focal length and b is the baseline distance of the binocular camera. However,
in the application, it is vital to estimate the depth of the 3D world quickly and accurately.

In recent years, traditional stereo matching methods have been unable to effectively
deal with morbid image regions such as strong reflection and low texture. In order to avoid
wrong matches, an increasing number of scholars apply deep learning to stereo matching.
Due to the complexity of the stereo matching algorithm, how to design a network that takes
into account the stability of speed, accuracy, and robustness is our main research problem.
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This paper proposes an adaptive aggregate stereo matching network with depth map
super-resolution (ASR-net) based on the idea of coarse-to-fine. We adopt some ideas in
Any-net [5] and GC-net [6]. However, although Any-net is fast, its accuracy is inferior.
GC-net applies 3D convolution and it has received good accuracy, but the amount of
calculation is too large. Our method combines their advantages and achieves a better
disparity estimation, as shown in Figure 1. According to the experimental conclusion, the
advantages of our network are as follows:
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Truth disparity Pseudo-color data, (c) is disparity prediction by stereonet, and (d) is our result. It 
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(1) Through a u-net multi-scale feature extractor, we only reconstructed the global depth 
map in the lowest resolution once. Then we refined the depth map step by step. Fi-
nally, the original depth map is restored. In this way, the calculation cost was signif-
icantly reduced. 

(2) Deformable convolution and Group-wise cost volume construction were introduced 
into our network to thoroughly learn the global depth information of feature image 
pairs. 

(3) Using the depth map super-resolution network ABPN [7] to replace the traditional 
interpolation algorithm significantly reduces the information loss in the up-sampling 
process. 

2. Realated Work 
The traditional representative algorithm of binocular stereo matching is SGM(Semi-

Global Matching) [8,9], which obtains the disparity map through four steps: cost calcula-
tion, cost aggregation, disparity calculation, and disparity optimization [10]. Inspired by 
the SGM algorithm, Mayer et al. first proposed the end-to-end stereo matching network 
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Figure 1. Disparity prediction results in the Scene Flow dataset; (a) is origin RGB data, (b) is Ground-
Truth disparity Pseudo-color data, (c) is disparity prediction by stereonet, and (d) is our result. It can
be seen from the red circle region that our method can also achieve an excellent disparity estimation
in the morbid graphic area.

(1) Through a u-net multi-scale feature extractor, we only reconstructed the global depth
map in the lowest resolution once. Then we refined the depth map step by step.
Finally, the original depth map is restored. In this way, the calculation cost was
significantly reduced.

(2) Deformable convolution and Group-wise cost volume construction were introduced
into our network to thoroughly learn the global depth information of feature im-
age pairs.

(3) Using the depth map super-resolution network ABPN [7] to replace the traditional inter-
polation algorithm significantly reduces the information loss in the up-sampling process.

2. Realated Work

The traditional representative algorithm of binocular stereo matching is SGM(Semi-
Global Matching) [8,9], which obtains the disparity map through four steps: cost calculation,
cost aggregation, disparity calculation, and disparity optimization [10]. Inspired by the
SGM algorithm, Mayer et al. first proposed the end-to-end stereo matching network Disp-
net [11], which integrates the four steps of the traditional algorithm into the neural network,
and directly obtains the disparity map by inputting left–right image pairs. Kendall et al.
Proposed GC-net based on Disp-net in 2017. This method introduces the concept of cost
volume, constructs cost volume by splicing left and right feature images, simulates the cost
aggregation of traditional methods, uses the 3D convolution method to optimize dispar-
ity [12], and finally obtains the normalized disparity map. The emergence of the GC-net
laid the basic framework of a stereo matching network. Later, scholars proposed PSM-Net
based on pyramid pooling [13] and GWC-net based on Group-Wise correlation [14]. In the
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last two years, with the rise of the attention module [15], the channel attention mechanism
has been gradually introduced into the stereo-matching network. By using the channel
attention module and spatial attention module to optimize the features independently,
the feature information of the image is fully extracted [16–18]. These methods exchange
better computation for a height–precision disparity map, resulting in many redundant
calculations.

In order to reduce the computational cost, scholars refine the network differently.
Zhang Peng et al. proposed a method based on semantic edge driving. They constructed a
lightweight feature extraction module to reduce the redundancy of the feature extraction
module to simplify the feature extraction steps better and improve the real-time and
lightweight nature of the network [19]. In order to replace the complex 3D convolution
calculation, Xu et al. proposed AA-net [20]. This method integrates multi-scale feature
extraction, adaptive inter-layer aggregation (ISA), and cross-layer cost aggregation (CSA),
completely replaces the 3D convolution in the current SOTA(state-of-the-art) model, and
dramatically improves the reasoning speed. Khamis et al. proposed stereo-net [21] in 2018.
This method is based on the idea of coarse-to-fine for the first time, using lowest-resolution
images to predict depth maps and then using datasets for guided filtering to improve the
accuracy of low-resolution disparity maps step by step. Based on Khamis’s research, Wang
et al. proposed Any-net [5] to solve the problem that the computing power of the mobile
terminal is too low to adapt to the stereo matching network. Based on stereo-net, this
method uses residual optimization to restore the original resolution depth map from one-
sixteenth of the input image resolution; the network saves the optimization results of each
scale. The lower the accuracy of the depth map, the faster the generation speed. Finally, the
depth map with different accuracy can be output according to the actual requirements. Last
year, the image super-resolution task [22,23] also made a further breakthrough in depth
estimation. Song et al. proposed a framework based on iterative residual learning [24]. In
this method, channel attention, multi-stage fusion, weight sharing, and depth thinning
were used to learn and generate a height-resolution depth map.

The above methods generally use the end-to-end network to obtain the exact size
depth map output from the original size input and apply many 3D convolutions in the
network layer, resulting in too much computation. Some lightweight networks usually use
interpolation to up-sample low-resolution inputs [25–27], which causes the loss of depth
information in resolution restoration. We combined the super-resolution task of depth map
with a stereo matching network to solve the problem of depth information loss caused
by traditional interpolation in the up-sampling part. Because the whole network only
carries out global depth reconstruction for low-resolution feature image pairs, the amount
of redundant calculation is significantly reduced and decreases the use of 3D convolution.
Compared with other networks, our method considered both speed and accuracy and
dramatically improved the generalization performance of the network.

3. Network Architecture

Our work focused on depth map refinement. The structure of the network refers to
Any-net [5]. A lightweight u-net network is used to obtain the feature image pairs with
different scales in the preliminary feature extraction process. Then, the lowest resolution
features are input into the GWD-module(Group-wise cost volume with deformable con-
volution) for density disparity reconstruction. Then we use ABPN [7] to up-sample the
depth map output from each layer. Finally, each layer’s residual module will filter the
lower resolution depth map to obtain the original size depth map.

3.1. Features Extraction

In order to realize the idea from coarse to fine, we used a lightweight u-net net-
work [28,29] as the feature extractor (see Figure 2). The network structure is shown in
Figure 3:
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The feature extractor took left and right camera images as the input. In the process of 
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Figure 3. Our network‘s structure.

The feature extractor took left and right camera images as the input. In the process of
the first layer, an 8-layer res-block [30] with dilated convolution [31] was used to extract
edge features from binocular image pair. The subsequent layer used maximum pooling
and stride convolution for down sampling and then a 2D convolution filter for feature
extraction. Bilinear interpolation was used for up-sampling, and skip-connection was
used between layers to prevent the loss of feature information. Finally, three scale feature
image pairs of 1/4, 1/8, and 1/16 were obtained as the input parameters of the subsequent
optimization process.
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3.2. GWD-Module

The global depth reconstruction of a low-resolution feature map is the key to the
whole network. In this part, we propose a GWD-module (Group-wise cost volume with
deformable convolution) (see Figure 4), which includes the construction of group-wise cost
volume and deformable convolution to realize adaptive cost aggregation. Finally, we used
the multi-scale 3D convolution structure 3D u-net [32,33] to regularize the cost volume.
Through this method, the network parameters were increased, and a better low-resolution
disparity map was obtained.
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3.2.1. Group-Wise Correlation Cost Volume

In our research, the depth results of different cost volume construction methods have
their advantages:

The concatenate method obtains the correlation between left and right images through
parameter learning, while the inner product method and subtraction method estimate
the correlation through artificially set measurement methods. As shown in Figure 5, the
concatenate method contains more local details. The subtraction and inner product contain
more global features. In order to build a cost volume that can learn more information,
we combined the concatenate method and the inner product method. However, in the
traditional inner product correlation calculation, we calculated and averaged all feature
image pairs along the channel, which resulted in the loss of feature continuity in time and
space. d means disparity level, x, y, means the width and height of feature. We denoted left
unary features and right feature as fl , fr, the number of channel is N. 〈., .〉 represents the
inner product of two vectors, the correlation Cs was obtained by k-th feature pair f k

l , f k
r for

each disparity level d, as shown in formula (1):

Cs(d, x, y) =
1
N

〈
f k
l (x, y), f k

r (x− d, y)
〉

(1)

In order to deal with this problem, a group-wise correlation construction method is
proposed concerning GWC-net [14], which combines the advantages of concatenation and
inner product methods. Firstly, we recorded the number of feature graph channels input
in the feature extractor as Nc, and divide the channels into groups Nk along the channel
dimension. Each group contains Nc

Nk
channels. The corresponding k-th feature group f k

l , f k
r

consists of the k Nc
Nk

, k Nc
Nk

+ 1, ..., k Nc
Nk

+
(

Nc
Nk
− 1
)

th channels of the original feature. The
correlation calculation formula is as follows:

Cs(d, x, y) =
1
N

〈
f k
l (x, y), f k

r (x− d, y)
〉

(2)
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Figure 5. Different results with different cost volume construction methods in Stereo-net [21] ((a) is
the real left camera’s image; (b) is the concatenate method; (c) is the inner product method; (d) is the
subtract method).

In this part, the disparity candidate space is Dmax. Like the input feature map, disparity
candidate space must be changed to the 1/16 of the original. Finally, the shape of the cost
volume is [Dmax/16, H/16, W/16, Nk] (see Figure 6).
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3.2.2. Adaptive Cost Aggregation Based on Deformable Convolution

The disparity search window is a regular rectangle in the traditional cost aggregation
process. This kind of search method will cause the fusion of foreground and background
information and then generate severe depth loss. In order to solve this problem, an adaptive
cost aggregation based on deformation convolution is proposed. For a search window, we
discerned the additional offset which consists of two bias ∆x,∆y along the width and height
directions. As shown in Figure 4, this method has been used in depth map regression of
AA-Net [20] and PatchMatch-Net [34] and achieves a better effect. The implementation
method is shown in the formula:

Cost′(d, p) =
I2

∑ wi ∗ Cost(d, p + pi + (4x +4y)) (3)

Cost′(d, p) denotes the aggregated cost at pixel p for disparity candidata d. I is
convolution kernel size, I2 is the number of kernel‘s element (in our paper I = 3). wi is the
aggregation weight for Ith kernel‘s points. pi is the fixed offset of the standard convolution
method. ∆x,∆y is additional offset. The sampling points can be qualitatively concentrated
in the target area to achieve adaptive aggregation by learning and fusing these two offsets.

This step constructs three-layer convolutions to process the input cost volume. The
three-layer convolutions are 1 × 1, 3 × 3, and 1 × 1. Two 1 × 1 convolutions were used to
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adjust the number of channels. The 3 × 3 convolution adopts the deformation convolution
method and dilated convolution mode. By increasing the receptive field of the search box,
the model can learn more offset information (in this paper, the expansion rate was 3).

3.2.3. 3D-Unet Cost Volume Regularization

In previous work, we solved the problem of preliminary construction of cost-volume
and adaptive cost aggregation. However, some noise will still be in such cost volume (such
as features extracted from non-textured image areas). Although this method takes 1/16 as
the minimum resolution, the lower resolution will also contain some global semantic infor-
mation. Here, we constructed a multi-scale 3D-CNN model for cost volume regularization.
The encoding and decoding structure is similar to u-net, which is called 3D U-net [32,33] in
this paper.

Each layer uses 3D convolution, batch normalization 3D, and a Relu activation function
to process the cost volume. The down-sampling process was realized by setting the
convolution step size = 2, and the up-sampling uses the same 3D deconvolution layer.
Skip connection was adopted between the same scale to share weight information. This
regularization method makes the cost volume contain more global information. Finally,
we used the softmax function to convert the correlation into probability along with the
disparity candidate space of the cost volume to facilitate the subsequent error propagation.

3.3. Residual-Module

We used the residual module to optimize the low-resolution depth map. In order to
simplify the operation, we did not carry out global reconstruction like the first layer. Firstly,
we used ABPN [7] to up-sample the low-resolution depth map to make it consistent with
the size of the feature map of the upper layer. Then we saved the left view generated by
the correct feature map under the supervision of the low-resolution disparity map through
the grid sample method in PyTorch and input it into the residual module together with the
original left feature map. Finally, we obtained the residual. This item represents the error
generated by the disparity map. The implementation process is shown in the following
Figure 7.
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Assuming there is Pl(x, y) in left feature, the right feature can obtain match point
Pr(x + d, y) under the supervision of the disparity map. If there is no error normalization
in the disparity map, these two points should be identical. Nevertheless, there must have
been some wrong match in the disparity map. In order to construct the cost volume, the
left feature with error is subtracted from the left feature obtained by this layer to obtain
the difference. In the process of global reconstruction, our disparity candidate was 0–192,
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which was specified by the Kitti dataset. In the step-by-step optimization of disparity by
the residual module, we set the disparity consideration as (−3,3), a total of seven possible
candidates. The new disparity consideration represents the range space of error in the
generated residual. In this way, the constructed cost volume is reduced from D = 192 to
d = 7. It dramatically improves operational efficiency.

In this part, we still used deformable convolution. In the lowest-resolution feature
of 3.2, deformable convolution is mainly used to distinguish the front and back scenes of
the image. In the process of residual optimization, with the improvement of resolution, ill-
conditioned graphic areas (low-textured, specular, reflective regions) will gradually appear.
According to the empirical analysis of traditional cost aggregation, the error will focus on
these areas. At this time, the residual cost volume constructed by deformation convolution
can adaptively aggregate the ill-conditioned region error to improve the accuracy of the
final result.

3.4. Super-Resolution Network

In the residual optimization network, the output of each scale needs to be up-sampled
before error regression with a height-resolution feature map. Traditional up-sampling
methods, such as bicubic interpolation, will inevitably cause information loss for depth
maps with dense information. In order to optimize the original disparity map and eliminate
the error caused by the traditional sampling method as much as possible, in this paper,
the ABPN model was used to replace the traditional sampling method to improve the
resolution of the depth map. SAB (Spatial Attention Blocks) and RBPB (Refined Back
Projection Block) is proposed in this model. In the super-resolution task of the depth map,
the restoration accuracy of the ABPN is much higher than that of traditional methods such
as bicubic interpolation.

3.5. Loss Function

Our training model adopted smooth Huber loss (L1 loss) in the residual module and
MDS module. In the disparity regression task, compared with L2 loss, in the disparity
discontinuous region, the loss is proved to be robust, and L1 can significantly suppress the
influence of noise. The formula is as follows:

smoothL1(x) =
{

0.5x2, i f
∣∣x∣∣< 1

|x|−0.5, otherwise
(4)

The loss calculation for each pixel is as follows:

L(d, d̂) =
1
N

N

∑
i=1

smoothL1(di − d̂i) (5)

N represents the total number of marked pixels, di is the actual disparity value of the
GT (ground-truth) image, d̂i is the predicted disparity value. This method corresponds to
four output losses on four layers. According to the parameter quantity of each layer, we
set the weight of loss for each layer as: ∂1, ∂2, ∂3, ∂4 = 0.25, 0.5, 1, 1 respectively. The final
loss function combines the prediction results of all layers, Li means the value of loss. The
formula is as follows:

L =
layer

∑
i=1

∂i•Li (6)

4. Experimental Evaluation

The generation result of the super-resolution network ABPN will affect the generation
efficiency of the primary network. Therefore, this model divides the training into two parts,
and the training process is shown in Figure 8 below:
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Figure 8. The flow chart of the experimental procedure.

4.1. Dataset Preprocessing and Setup

We used PyTroch + Ubuntu to complete our two training, both using Adam (β1 = 0.9,
β2 = 0.999) as our optimizer. Our experimental configuration is:

Memory: 32 GB,
CPU: AMD Ryzen9 5900X 12-core processor@3.69GHz,
GPU: NVIDIA RTX3090 (24 GB).

(1) scene flow [11], (2) Kitti 2012 [35], (3) Kitti 2015 [35], (4) Middlebury 2014 [36] were
used in our experiment. We extracted subsets from the four datasets for ABPN expansion
data. Among them, (1), (2), and (3) were used in the training of the main network. The
dataset is described as follows:

Scene Flow [11]: A large-scale synthetic dataset containing three sub-sets, FlyingTh-
ings3D, Monkaa, and Driving; contains daily supplies flying along random 3D paths,
animated short films, and vehicular driving images similar to the KITTI dataset. Datasets
provide a complete disparity image as ground truth. There are 35,454 training images and
4370 test images in the dataset, H = 540 and W = 960.

KITTI2012 [35]: This dataset was obtained by street photography of the Kitti data
acquisition platform, which includes two gray cameras, two RGB cameras, a lidar, four
optical lenses, and a GPS navigation system. The data includes vehicles, road signs, and
other road scenes. It contains 194 pairs of stereo images with ground truth for training and
195 pairs of stereo images without ground truth for testing, H = 376, and W = 1240.

KITTI2015 [35]: KITTI2015 is similar to KITTI2012. The dataset contains 200 pairs of
stereo images with ground truth that can be used for training and 200 pairs of stereo images
without ground truth for testing, H = 376, and W = 1240.

Middlebury 2014 [36]: These 33 datasets were created by Nera Nesic, Porter Westling,
Xi Wang, York Kitajima, Greg Krathwohl, and Daniel Scharstein at Middlebury College
during 2011 to 2013. Each dataset consists of two views taken under several different
illuminations and exposures. The full size of the image is H = 1988, width = 2964.
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4.2. ABPN Training

ABPN network provides a pre-training model. However, it is necessary to use depth
map datasets to fine-tune the pre-training model. We selected 200 GT depth maps from each
of the three subsets of the scene flow dataset and combined all GT depth maps of kitti2015,
kitti2012, and Middlebury to form a training set with a size of 1000. We first converted the
PFM file in the obtained dataset into PNG format through the script. Then we constructed
low-resolution datasets according to the down-sampling strategy of DVS [37] and AIR [24].
Datasets were divided into various resolutions (1/4, 1/8, 1/16), corresponding to the scale
of the primary network.

The learning rate interval was set from 0.01 to 0.0001. According to the attenuation
rate of 0.1, it gradually decreases with training progress (every 50 epochs), and the model
converges to 300 epochs. The training time of three scales on RTX 3090 GPU is 7 h, 10 h,
and 14 h. After the training, we randomly selected 100 samples from four datasets in 4.1 as
the test set. The comparison results between the output results of ABPN and the traditional
bicubic interpolation are as follows:

As shown in Figure 9 and Table 1, the recovery effect of ABPN on multi-scale was
more accurate than that of the traditional methods. Using ABPN instead of the traditional
interpolation method to carry out the up-sampling step in the primary network can further
avoid the loss of depth information.
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Table 1. Quantitative evaluation of ABPN including PSNR and SSIM for scale 4×, 8×, and 16×.

Algorithm
4× 8× 16×

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 23.27 0.603 21.35 0.544 17.76 0.434
ABPN 27.01 0.807 23.02 0.637 20.27 0.502

4.3. Main Network Training

After the training of the ABPN network, we saved and integrated the model into
callable functions. In the pre-training process of the primary network, we used all the
training sets of Sceneflow (35,454) and verified them on all the training sets (4370). The
original data were cut randomly before training. We set the batch size as the limit value of
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8, the learning rate starts at 0.001, and 30 epochs were trained. After 20 epochs, the online
learning rate decreased to 0.0001. In the fine-tuning process, the mixed datasets of kitti2012
and kitti2015 were used to train 800 cycles. After 400 epochs learning rate was initially set
to 0.001, and the learning rate decreased to half of the original every 100 epochs. For all
datasets, the input images were normalized with ImageNet mean and standard deviation
statistics. The network pre-training time is 23 h, and the fine-tune training time is 9 h.

4.4. Ablation Experiments

In order to verify the effectiveness of various modules proposed in this method, we
tested the model through ablation experiments using Sceneflow and kitti2015 validation
sets. The evaluation index of this section adopts pixel error as the experimental evaluation
index. We set a threshold to judge depth estimation accuracy when the absolute difference
between the output and the actual disparity is bigger than the threshold. This pixel is
considered the wrong pixel. Pixel error is the percentage of these error pixels in all pixels.
EPE represents the mean value of all pixel errors between the predicted image and the
real image. The three pixel error is the final test result, which is composed of D1-bg
(background error evaluation index), D1-fg (foreground error evaluation index), and D1-all
(global evaluation index). The lower their value, the better the effect.

4.4.1. Group-Wise Cost Volume

The research in Figure 5 shows that different cost volume construction methods can
have a significant impact on model parameters and learning results in the stereo-net model,
and different construction methods have their unique advantages. We believe that this law
is also applicable to this method. In this section, ablation experiments are conducted on the
cost volume construction method in the GWD-module.

We kept the other modules of the network unchanged. Focusing on the method of
cost volume construction, we set two controls: Concatenate (left + right), the number of
channels is 2C, and subtract (left − right) channels is C. Our construction method combines
concatenate (left + right) and inner product <left, right>, and the number of channels is
3C. Analyze the original scale output image of the model. The evaluation index adopts
EPE and three-pixel error, represents the whole image matching error, and NOC represents
the unobstructed area error. It can be seen from Table 2 that the subcontract method was
the fastest to build the runtime, while the concatenate method was slower than the others,
but the accuracy is improved. Our method had the slowest speed, but a small amount of
speed sacrifice resulted in a massive improvement in accuracy. The whole region error
was about 0.28% lower than that of the subtract method, and in the whole region of the
three-pixel error, the error was 0.51% lower than the subtract method. Figure 10 proved that
our method fully combines the feature information of different dimensions and improves
the model’s accuracy more effectively than the simple splicing of concatenation.

Table 2. Ablation experiment of cost volume construction method on KITTI2015.

Method
EPE (%) 3-px Error (%)

Run-Time (s)
ALL Noc D1-bg D1-All

Concat 0.97 0.88 2.65 3.01 0.12

Subtract 1.10 1.05 2.99 3.37 0.08

Ours 0.82 0.80 2.44 2.86 0.15
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Figure 10. The rendering of different construction methods of cost volume. (A) is the left view RGB
image, (B) is the GT depth map, we analyze the red frame area in the original image, and the red circle
part represents the image area where depth recovery is difficult. (C1–C3) is the depth map generated
by concatenate, ours and subtract methods, and (D1–D3) is the corresponding pseudo-color map. It
can be seen that the local details of the (C1) image are more affluent than the others, and the accuracy
is height. The accuracy of the (C3) image is low, but the overall image is relatively smooth. Our
method combines the advantages of them.

4.4.2. Deformable Convolution

In order to explore the improvement of deformable convolution on the processing
effect of image ill-conditioned areas, this section compares the model output results without
deformable convolution. In Table 3, “w/o” means that deformation convolution is not
used, MDS means MDS module, and Res means residual module. The results showed that
on the scene flow dataset, EPE error decreased by 0.32% and 1-pixel error decreased by
3.6%. In the kitti dataset, three-pixel error D1-all decreased by 0.25%.

Table 3. Ablation study of Deformable convolution.

Method
Scene Flow KITTI 2015

EPE >1 px EPE D1-All

w/o in MDS 1.19 12.1 0.91 2.98
w/o in Res 1.23 12.5 0.93 3.05

w/o 1.33 13.9 1.00 3.11
ASR-Net 1.01 10.3 0.84 2.86

In Figure 11A, the depth of the occluded object is restored. In the non-textured region,
the depth information is smoother than that of Figure 11B. Figure 11 shows that after
deformation convolution is adopted, the problems of blurring of occluded areas after
reconstruction and edge loss of non-textured areas were effectively solved.
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map generated by this method, and (B) is the depth map without deformation convolution). It can 
be seen from the figure that the rectangle search window has caused depth misjudgment due to the 

Figure 11. The deformable convolution ablation experiment results on scene flow (the largest figure
shows the GT depth map, black dots represent the center of the convolution kernel. (A) is the depth
map generated by this method, and (B) is the depth map without deformation convolution). It can
be seen from the figure that the rectangle search window has caused depth misjudgment due to the
integration of front and back scene information. The deformation convolution adaptively selects the
same plane depth to prevent this problem.

4.4.3. SR-Network

In Section 4.2, the superiority of ABPN over traditional methods for sampling on
depth maps was proved. In order to further prove the significant improvement of this
method by introducing ABPN, the network trained by bicubic interpolation was compared
with the network trained by ABPN. It can be seen from Figure 12 that in the traditional
method, the most severe information loss in the sampling process is in the rod-shaped and
sharp edge areas, such as the electric pole notice board. All have recovered well.
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Figure 12. The rendering of the ABPN ablation study on Kitti2015. (A,C) show the network generation
results trained with ABPN. (B,D) show the results generated by the training model with bicubic
interpolation. The significant error area is marked with red dots in the figure.

4.5. Results of Experiments

Finally, in order to prove the advantages of our method, it was compared with other
robust stereo matching networks on two datasets:

Sceneflow: Because the dataset has a large amount of data and the accuracy of GT data
is very high, it was mainly compared in terms of EPE and run-time. It can be seen from
Table 4 that this method takes into account both accuracy and speed, and the error reached
one-half of that of the classical stereo matching network GC-net and six times the speed.

Table 4. Comparison of SceneFlow EPE error.

Method GC-Net [6] PSMNet [13] DispNetC [11] GWC-Net [14] StereoNet [19] ASR-Net

EPE 2.52 1.09 1.68 1.12 1.10 1.01
Time (s) 0.9 0.4 0.06 0.13 0.015 0.15

Kitti2012, Kitti2015: For these two datasets, we used different evaluation indicators
for comparison. Table 5 shows that in terms of a global error on the kitti2012 dataset,
although this method was 0.28% and 0.47% higher than PSM-net and GWC-net, its speed
was 2–2.5 times higher than theirs. On kitti2015 dataset, the regional error is only higher
than that of PSM-net and GWC-net. It can be seen that this method takes into account both
accuracy and speed, which shows that the combination of coarse-to-fine training method
and complex network layer can achieve better results.

Table 5. Performance on KITTI test set.

Method
KITTI2012 KITTI2015 Time

(s)All Noc D1-bg D1-All

GC-Net [6] 2.30 1.77 2.21 2.87 0.9
MC-CNN [38] 3.63 2.43 2.89 3.89 67
PSMNet [13] 1.89 1.49 1.86 2.32 0.41

GWC-Net [14] 1.70 1.32 1.74 2.11 0.32
DispNetC [11] 4.65 4.11 4.32 4.34 0.06
StereoNet [19] 6.02 4.91 4.30 4.83 0.015

ASR-Net 2.66 2.17 2.35 2.86 0.15
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5. Conclusions

A real-time height-precision stereo matching network using deformable convolution
and super-resolution network was proposed in our research. In this work, the problem
of information adhesion caused by regular convolution in cost aggregation was avoided,
and the problem of non-texture and occlusion area matching in traditional stereo matching
methods was solved. At the same time, to deal with the issue of a large amount of
3D convolution calculation and many redundant parameters, this method avoids global
disparity reconstruction at height resolution but in a low-resolution feature map, which
significantly reduces the amount of calculation while ensuring the accuracy. This paper
combined the advantages of different cost volume construction methods and adopted
GWC cost volume further to improve the global semantic information of model learning.
Finally, we used the super-resolution network ABPN to replace the traditional interpolation
up-sampling method to reduce the information loss in primary network optimization.
Compared with other networks, our experiments prove their superiority of them. Finally,
we believe that there is still promotion space in the depth image super-resolution task. In
future work, we will consider further improving the up-sampling process to improve the
performance of our method.
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