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Abstract: In this paper, the finite-time formation problem of UAVs is investigated with consideration
of semi-Markov-type switching topologies. More precisely, finite-time passivity performance is
adopted to overcome the dynamical effect of disturbances. Furthermore, an asynchronous event-
triggered communication scheme is proposed for more efficient information exchanges. The mode-
dependent formation controllers are designed in terms of the Lyapunov–Krasovskii method, such that
the configuration formation can be accomplished. Finally, simulation results are given to demonstrate
the validity of the proposed formation approach.
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1. Introduction

With the rapid development of control and network technology, unmanned aerial
vehicles (UAV) have been a prominent research topic in both academic and engineering
fields in recent years. A variety of application scenarios have been employed by UAVs, such
as search and rescue [1–3], express transportation [4,5], and remote sensing [6]. Further-
more, it is worth mentioning that multiple UAVs can accomplish complex tasks with more
robustness and efficient working ability than a single UAV. As one of the interesting control
issues, the formation problem for UAVs has gained significant research attention [7–10].
Specifically, the communication topology for UAVs has played a key role since all the
information exchanges are achieved via the communication network. It should be pointed
out that it is always difficult or expensive to hold fixed communication topology within
different task assignments or in an unstructured environment with disturbances. Fur-
thermore, the varying topology may exhibit certain random features in some conditions.
Hence, it is natural and important to investigate the formation protocol with random
topologies [11–13]. On the other hand, lots of studies have shown that the Markov process
could be adopted to describe these stochastic jumping features between different modes
accurately. As a result, some initial efforts have been made toward Markovian jumping
communication topologies. However, notice that the transition probabilities of a Markovian
jumping system are conformed to be a fixed exponential distribution, which would lead to
certain restrictions in practical applications. In fact, time-varying transition probabilities
are more general in implementations, and the semi-Markov process is able to depict these
time-varying transition probabilities [14–17]. As far as the authors’ knowledge extends,
there is still huge room for studies on the integration of semi-Markovian jumping topology
and UAV formation problems.

Another active research field is networked control systems, where the event-triggered
schemes have aroused great concern recently [18–20]. As we well know, computational and
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network resources are very valuable for UAVs. Under this context, the event-triggered com-
munication schemes could considerably improve communication efficiency and optimize
data transmission compared to traditional time-triggered ones [21–23]. Moreover, when
taking into account the topology jumpings, the vast majority of event-triggered schemes
do not utilize mode information well, and thus, the acquired results are conservative in
certain senses. It is noteworthy that control strategies for Markov/semi-Markov jumping
systems could utilize the involved information on active modes to improve control effects
substantially. In short, the mode-dependent event-triggered strategies are more applicable
in practical applications [14,24]. However, it is necessary to point out the fact that construct-
ing an available mode-dependent triggering scheme by events is difficult and challenging.
To date, to the best of our knowledge, there are few results on the formation of UAVs with
semi-Markovian jumping topology. This motivates us to shorten this gap.

In light of the aforementioned discussions, our aim is to explore the mode-dependent
event-triggered strategy for UAVs formation problems with semi-Markovian jumping
topology within a finite-time framework. More precisely, the concept of finite-time pas-
sivity is employed for disturbance attenuation during UAV formation while the transient
performance of formation dynamics is achieved. Compared with most reporting works,
the novelties of our paper are threefold. First, the finite-time formation model of UAVs
is formulated with sufficient consideration of semi-Markovian jumping topologies. Sec-
ondly, an original asynchronous mode-dependent event-triggering strategy is developed
for UAVs in order to improve the communication efficiency through reducing data transmis-
sions. Thirdly, according to model transformation and the Lyapunov–Krasovskii functional,
a distributed formation protocol has been developed to satisfy the finite-time passivity
performance in the mean-square sense.

The rest of our work is as listed following. In Section 2, we construct the formation
model of UAVs with regard to semi-Markovian jumping topologies and design the asyn-
chronous mode-dependent event-triggering formation protocol. Then, sufficient conditions
satisfying finite-time passivity performance would be verified and given with reliable
details in Section 3. After that, the simulation results are illustrated with numerical simula-
tions in Section 4 to verify the correctness of our derived designs. Finally, the conclusion
and expectation of this paper are given in Section 5.

The notations in this paper are given in Table 1.

Table 1. Notations.

Symbol Implication

Rn n dimensional Euclidean space matrices
A � 0 Positive symmetric definite matrix A
(O,F,P) Complete probability space
Pr{·} Probability
A⊗ B Kronecker product
∗ Symmetry term in matrix
E{·} Mathematics expectation of a stochastic process

2. Problem Formulation

Given a probability space (O,F,P) and denote {δ(t), t ≥ 0} as a continuous-time
discrete-state semi-Markov process, which takes values in a finite set S = {1, . . . ,N}.
The transition probability matrix Π := (πij(h)), h > 0, ∀i, j ∈ S is defined as follows

Pr(δ(t + h) = j|δ(t) = i)

=

{
πij(h)h + o(h), i 6= j,
1 + πii(h)h + o(h), i = j,
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πij(h) ≥ 0, i 6= j,

πii(h) = −
N
∑

j=1, j 6=i
πij(h), ∀i ∈ S .

Accordingly, we introduce a directed graph Gδ(t)= {Vδ(t),Eδ(t),Aδ(t)} to depict the
communication topology among the UAVs. Vδ(t)= {v1δ(t), · · · , vδ(t)} and Eδ(t) represent
for the sets of nodes and edges, Aδ(t)= [aijδ(t)]N×N ∈ RN×N represents the weighted
adjacency matrix by {

aijδ(t) > 0, (viδ(t), vjδ(t)) ∈ Eδ(t),
aijδ(t) = 0, Otherwise.

(1)

respectively. Moreover, the Laplacian matrix of Gδ(t)is defined by Lδ(t) = [lijδ(t)]N×N ∈
RN×N with {

lijδ(t) = −aijδ(t), i 6= j
liiδ(t) = ∑N

j=1,i 6=j aijδ(t).
(2)

By employing the graph theory, one can verify for any possible Lδ(t) and a full row
rank matrix E ∈ R(N−1)×N [25]

E =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . .

...
...

0 0 0 1 −1

,

there must exist a matrixMδ(t) ∈ RN×(N−1) satisfying Lδ(t) =Mδ(t)E .
For the formation of UAVs, a typical outer/inner-loop design structure is utilized [26].

Then, consider the group of N quadrotors with double integrator dynamics described
as follows: {

ṗm(t) = vm(t)
v̇m(t) = um(t)

,

m = 1, 2, . . . , N,

where pm ∈ Rn, vm ∈ Rn and um ∈ Rn represent the position, velocity and formation
control input vector, respectively.

Remark 1. The notable outer/inner-loop formation control configuration for quadrotors has been
widely studied, where the outer-loop control is devoted to the desired position and velocity of UAVs.
Under this context, the double integrator point-mass model can be effectively adopted to describe the
formation dynamics of UAVs.

By taking into account the external disturbances, the following state-space model of
each UAV can be rewritten by:

ẋm(t) = Axm(t) + Bum(t) + Bw(t), (3)

where xm =
(

pT
m, vT

m
)T , um(t) denotes the formation control input, w(t) represents the

external disturbances and

A =

[
0 I
0 0

]
,

B =

[
0
I

]
.
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Suppose that all UAVs share a unified communication network with semi-Markovian
jumping topologies. Accordingly, we assume that a mode-dependent sampling period hδ(t),
hδ(t) ≤ h̄, is adopted, such that local information exchanges are accomplished between
neighboring UAVs. Furthermore, the following asynchronous mode-dependent event
triggering communication strategy is applied

tm
k+1hδ(t) =tm

k hδ(t) + min
lm≥1
{lmhδ(t)|χT

m(t
m
k hδ(t) + lmhδ(t))W1δ(t)χm(tm

σ hδ(t) + lmhδ(t))

≥κδ(t)κT
m(t

m
k hδ(t) + lmhδ(t))W2δ(t)κm(tm

k hδ(t) + lmhδ(t))},

where

χm(tm
k hδ(t) + lmhδ(t))

=xm(tm
k hδ(t) + lmhδ(t))− xm(tm

k hδ(t)),

κm(tm
k hδ(t) + lmhδ(t))

=
N

∑
n=1

amnδ(t)(xm(tm
k hδ(t))− xn(tm

k∗hδ(t))),

k∗ = arg min
$
{tm

k + lm − tn
$ |tm

k + lm > tn
$ , $ ∈ N},

and tm
k represents the latest kth updating instant of the mth UAV, 0 < κδ(t) < 1 represents

the triggering threshold, W1δ(t) > 0 and W2δ(t) > 0 represents the weighting matrices. It
can be found that based on the proposed asynchronous event-triggered strategy, the infor-
mation updates of the UAVs only require the neighboring information exchanges instead
of the overall states of UAVs, which is more applicable for the distributed local communica-
tions of the UAVs. In conclusion, detailed notations of these parameters are given in the
following Table 2.

Table 2. Notation of event triggering parameters.

Symbol Implication

tm
k Latest kth updating instant of the mth UAV

κδ(t) Triggering threshold parameter
W1δ(t), W2δ(t) Triggering weighting matrices
χm(tm

k hδ(t) +

lmhδ(t))

Single UAV state changes

κm(tm
k hδ(t) +

lmhδ(t))

Local neighboring UAVs state changes

In the sequel, the formation configuration definition is given as follows:

Definition 1. The distributed formation configuration can be accomplished if it holds that

lim
t→∞
‖xm − xn − dmn‖ = 0,

where dmn represents the relative formation configuration distance.

Denote dmn = dm − dn, and design the formation control input by

um(t) =Kδ(t)

N

∑
m=1

amnδ(t)(xm(tm
k hδ(t))

− xn(tm
k∗hδ(t))− dmn), t ∈ [tm

k hδ(t), tm
k∗hδ(t)),
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where Kδ(t) represents the mode-dependent gains to be determined. As a result, by letting
ζm = xm − dm and dividing tm

k ≤ l < tm
k+1 into tm

k+1 − tm
k intervals, it yields that

ζ̇m(t) =Aζm(t) + BKδ(t)

N

∑
m=1

amnδ(t)(ζm(tm
k hδ(t))

− ζn(tm
k∗hδ(t))) + Bw(t), t ∈ [tm

k hδ(t), tm
k∗hδ(t)).

Based on the above results, one can further obtain that

ζ̇m(t) =Aζm(t) + BKδ(t)

N

∑
m=1

amnδ(t)(ζm(lhδ(t))

− ζn(lhδ(t))− em(lhδ(t)) + en(lhδ(t))) + Bw(t),

t ∈ [lhδ(t), (l + 1)hδ(t)).

where
em(lhδ(t)) = ζm(lhδ(t))− ζm(tm

k hδ(t)).

Note that the resulting closed-loop dynamics can be rewritten as follows:

ζ̇(t) =(IN ⊗ A)ζ(t) + (Lδ(t) ⊗ BKδ(t))×
(ζ(lhδ(t))− e(lhδ(t))) + (I ⊗ B)w(t),

where

ζ(t) =[ζT
1 (t), ζT

2 (t), . . . , ζT
N(t)]

T ,

e(t) =[eT
1 (t), eT

2 (t), . . . , eT
N(t)]

T .

For simplicity of description, denote δ(t) = i and one has

ζ̇(t) =(IN ⊗ A)ζ(t) + (Li ⊗ BKi)×
(ζ(lhi)− e(lhi)) + (I ⊗ B)w(t).

Recalling that Lδ(t) =Mδ(t)E , it can be obtained that

η̇(t) =(IN−1 ⊗ A)η(t) + (EMi ⊗ BKi)×
(η(lhi)− ε(lhi)) + (IN−1 ⊗ B)ω(t),

where η(t) = (E ⊗ I)ζ(t) represents the formation error of ζ(t) and ε(t) = (E ⊗ I)e(t),
ω(t) = (E ⊗ I)w(t), respectively.

Before proceeding, the following definitions are given for the transient performance of
formation dynamics [27,28].

Definition 2. Given constants c1 > 0, c2 > 0, ω̄ > 0, TF > 0 and matrix Λ > 0, the finite-time
boundedness formation is achieved with respect to (c1, c2, ω̄, TF) in a mean-square sense, if it
holds that {

E{ηT(t0)Λη(t0)} ≤ c1∫ TF
0 ωT(s)ω(s)ds ≤ ω̄

=⇒ E{ηT(t)Λη(t)} ≤ c2,

c2 > c1, t ∈ [0, TF].
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Definition 3. Given constants c1 > 0, c2 > 0, ω̄ > 0, γ > 0, TF > 0 and matrix Λ > 0,
the finite-time passivity formation is achieved with respect to (c1, c2, ω̄, γ, TF) in mean-square sense,
if finite-time boundedness is satisfied and it holds that

2E{
∫ TF

0
ηT(s)ω(s)ds}+ γ

∫ TF

0
ωT(s)ω(s)ds ≥ 0.

Remark 2. It should be pointed out that based on model transformation, the finite-time formation control
problem is converted to the finite-time stability (passivity performance) control problem. The concept of
finite-time stability (passivity performance) of formation errors is then investigated, where the asymptotic
behavior over a finite-time interval is concerned instead of infinite-time stability, which implies that the
prescribed upper bound can be satisfied during the prescribed time intervals. The mean-square finite-time
passivity performance not only focuses on the dynamical features within a finite time interval but also
deals with the disturbances from an energy point of view. It should be pointed out that mean-square
finite-time passivity may not be Lyapunov mean-square passivity and vice versa.

Hence, our main aim is to design the mode-dependent formation control gains Ki to
guarantee finite-time passivity formation. The following matrix lemma can be provided to
derive further results [29].

Lemma 1. Given matrix Φ > 0, τ(t) satisfying 0 ≤ τ(t) ≤ τ̄, τ̄ > 0, and ẋ(t) : [−τ̄, 0]→ Rn

such that it holds that

−τ̄
∫ t

t−τ̄
ẋT(s)Φẋ(s)ds ≤ χT(t)Ψχ(t),

where

χ(t) =[xT(t), xT(t− τ(t)), xT(t− τ̄)]T ,

Ψ =

 −Φ Φ 0
∗ −2Φ Φ
∗ ∗ −Φ

.

3. Main Results

This section gives the detailed formation controller design procedure with the aid of
convex optimization and the matrix technique.

Theorem 1. For given h̄, the finite-time formation problem of UAVs (3) can be solved with designed
formation controller gains if there exist mode-dependent matrices P(i) � 0, Q � 0, R � 0, such
that Ξi(h) ≺ 0 holds for all i ∈ S , where

Ξi(h) =
[

Ξ1i(h) Ξ2i(h)
∗ Ξ3i(h)

]
,

Ξ1i(h) =
[

Ξ11i(h) (EMi ⊗ PiBKi) + (I ⊗ R)
∗ −2(I ⊗ R) + κi(EET ⊗W2i)

]
,

Ξ11i(h) =2(I ⊗ Pi A) + (I ⊗Q)− (I ⊗ R)

− α(I ⊗ Pi) +
N

∑
j=1

πij(h)(I ⊗ Pj),

Ξ2i(h) =[Ξ21i(h), Ξ22i(h)],
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Ξ21i(h) =
[

0 −(EMi ⊗ PiBKi)
(I ⊗ R) 0

]
,

Ξ22i(h) =
[

I ⊗ PiBw h̄(I ⊗ Ai)
T

0 h̄(EMi ⊗ BKi)
T

]
,

Ξ3i(h) =
[

Ξ31i(h) Ξ32i(h)
∗ Ξ33i(h)

]
,

Ξ31i(h) =
[
−(I ⊗Q)− (I ⊗ R) 0

∗ −(I ⊗W1i)

]
,

Ξ32i(h) =
[

0 0
0 −h̄(EMi ⊗ BKi)

T

]
,

Ξ33i(h) =
[
−αI h̄(I ⊗ Bw)T

∗ −(I ⊗ R)−1

]
.

and
c1φ1 + h̄c1φ2 +

1
2

h̄3c1φ3 + ω̄(1− e−aTF ) ≤ φ4e−aTF c2,

with φ1 = max{λmax{Pi}}, φ2 = λmax{Q}, φ3 = λmax{R}, φ4 = min{λmin{Pi}}.

Proof. Construct mode-dependent Lyapunov–Krasovskii functionals as follows:

V(i, t) = V1(i, t) + V2(i, t) + V3(i, t), i ∈ S , (4)

where

V1(i, t) = ηT(t)(I ⊗ Pi)η(t),

V2(i, t) =
∫ t

t−h̄
ηT(s)(I ⊗Q)η(s)ds,

V3(i, t) = h̄
∫ 0

−h̄

∫ t

t+ς
η̇T(s)(I ⊗ R)η̇(s)dsdς.

Moreover, we defined the weak infinitesimal operator for V(i, t) by

LV(i, t) = lim
∆→0

1
∆
{E{V(δ(t + ∆), t + ∆)|δ(t) = i} −V(i, t)},

with

lim
∆→0

1
∆

Γi(h + ∆)− Γi(h)
1− Γi(h)

= 0,

lim
∆→0

1
∆

1− Γi(h + ∆)
1− Γi(h)

= 1,

lim
∆→0

1
∆

qij(Γi(h)− Γi(h + ∆))
∆(1− Γi(h))

= qijπi(h) = πij(h),

where Γi(h) represents the cumulative distribution function of the sojourn time, and qij
denotes the probability intensity.

By employing the input-delay strategy, one has

η̇(t) =(I ⊗ Ai)η(t) + (EMi ⊗ BKi)×
(η(t− τi(t)))− ε(lhi)) + (I ⊗ Bw)ω(t),
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where τi(t) = t− lhi, t ∈ [lhi, (l + 1)hi) with 0 ≤ τi(t) < h̄. As a result, it can be derived that

LV1(i, t) = lim
4→0

1
4 [

N
∑

j=1,j 6=i
Pr{σ(t +4) = j|

σ(t) = i}ηT(t +4)Pjη(t +4)

+ Pr{σ(t +4) = i|σ(t) = i}×
ηT(t +4)Piη(t +4)− ηT(t)Piη(t)]

lim
4→0

1
4 [

N
∑

j=1,j 6=i

qij(Γi(h +4)− Γi(h))
1− Γi(h)

×

ηT(t +4)Pjη(t +4)

+
(Γi(h +4)− Γi(h))

1− Γi(h)
×

ηT(t +4)Piη(t +4)]− ηT(t)Piη(t)

=η̇T(t)Piη(t) + ηT(t)Piη̇(t)

+ ∑N
j=1 πij(h)ηT(t)Pjη(t)

=2ηT(t)Piη̇(t) + ∑N
j=1 πij(h)ηT(t)Pjη(t)

=2ηT(t)Pi((IN ⊗ Ai)η(t) + (EMi ⊗ BKi)×
(η(t− τi(t))− ε(lhi)) + (I ⊗ Bw)ω(t))

+ ∑N
j=1 πij(h)ηT(t)Pjη(t)

Similarly, it can be obtained that

LV2(i, t) = ηT(t)(I ⊗Q)η(t)− ηT(t− h̄)(I ⊗Q)η(t− h̄)

LV3(i, t) = h̄2η̇T(t)(I ⊗ R)η̇(t)− h̄
∫ 0

h̄
η̇(s)(I ⊗ R)η̇(s)ds.

By employing Lemma 1 to LV3(i, t), one has

LV3(i, t) =h̄2η̇T(t)(I ⊗ R)η̇(t)

− h̄
∫ 0

h̄
η̇(s)(I ⊗ R)η̇(s)ds

≤ξT


(I ⊗ Ai)

T

(EMi ⊗ BKi)
T

0
−(EMi ⊗ BKi)

T

(I ⊗ Bw)T


T

×

(I ⊗ R)


(I ⊗ Ai)

T

(EMi ⊗ BKi)
T

0
−(EMi ⊗ BKi)

T

(I ⊗ Bw)T

ξ,

where ξT = [ηT(t), ηT(t− τi(t)), ζT(t− h̄), εT(lhi), ωT(t)]T .
Meanwhile, the event-triggered function implies that

− εT(lhi)(I ⊗W1i)ε(lhi)

+ κiη
T(t− τi(t))(EET ⊗W2i)η(t− τi(t)) ≥ 0.
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Then, we can derive the following matrix inequality

LV(i, t)− αηT(t)(I ⊗ Pi)η(t)− αωT(t)ω(t)

≤LV(i, t)− αηT(t)(I ⊗ Pi)η(t)− αωT(t)ω(t)

− εT(lhi)(I ⊗W1i)ε(lhi) + κiη
T(t− τi(t))

× (EET ⊗W2i)η(t− τi(t))

≤ξT

Ξ̃i(h) + h̄2


(I ⊗ Ai)

T

(EMi ⊗ BKi)
T

0
−(EMi ⊗ BKi)

T

(I ⊗ Bw)T


T

×

(I ⊗ R)


(I ⊗ Ai)

T

(EMi ⊗ BKi)
T

0
−(EMi ⊗ BKi)

T

(I ⊗ Bw)T


ξ

where

Ξ̃i(h) =
[

Ξ̃1i(h) Ξ̃2i(h)
∗ Ξ̃3i(h)

]
,

Ξ̃1i(h) =
[

Ξ̃11i(h) (EMi ⊗ PiBKi) + (I ⊗ R)
∗ −2(I ⊗ R) + κi(ETE ⊗W2i)

]
,

Ξ̃11i(h) =2(I ⊗ Pi A) + (I ⊗Q)− (I ⊗ R)

− α(I ⊗ Pi) +
N

∑
j=1

πij(h)(I ⊗ Pj),

Ξ̃2i(h) =
[

0 −(EMi ⊗ PiBKi) I ⊗ PiBw
(I ⊗ R) 0 0

]
,

Ξ̃3i(h) =

 −(I ⊗Q)− (I ⊗ R) 0 0
∗ −(I ⊗W1i) 0
∗ ∗ −αI

.

Hence, we can verify that when Ξi(h) < 0 in Theorem 1 holds, it satisfies that

E{V(i, t)} < eatηT(0)(I ⊗ Pi)η(0)

+ eat
∫ 0

−h̄
ηT(s)(I ⊗Q)η(s)ds

+ eat h̄
∫ 0

−h̄

∫ t

t+ς
η̇T(s)(I ⊗ R)η̇(s)dsdς

+ aeat
∫ t

0
e−asωT(s)ω(s)ds,

≤eaTF (λmax{Pi}c1 + eaTF h̄(λmax{Q}c1

+
1
2

h̄3λmax{R}c1 + ω̄(1− e−aTF ),

0 ≤ t ≤ TF

where Pi = Λ−1/2(I ⊗ Pi)Λ−1/2,Q = Λ−1/2(I ⊗Q)Λ−1/2,R = Λ−1/2(I ⊗ R)Λ−1/2.
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Furthermore, it can be derived that

E{V(i, t)} ≥E{ηT(t)(I ⊗ Pi)η(t)}
≥λmin{Pi}E{ηT(t)Λη(t)}.

Consequently, we have that

φ4iE{ηT(t)Λη(t)} ≤eaTF [c1φ1i + h̄c1φ2+

1
2

h̄3c1φ3 + ω̄(1− e−aTF )],

where

φ1i =λmax{Pi},
φ2 =λmax{Q},
φ3 =λmax{R},
φ4i =λmin{Pi}.

This means that η(t) can be finite-time boundedness according to Definition 2, and we
thus finish this proof.

Theorem 2. For given h̄, the finite-time formation problem of UAVs (3) can be solved, if there exist
mode-dependent matrices P̃i � 0, Q̃ � 0, R̃ � 0 and constant χ > 0, such that χΛ−1 ≺ P̃i ≺ Λ−1,
0 ≺ Q̃ ≺ 2Λ−1, 0 ≺ R̃ ≺ 2Λ−1 and Θi,ι ≺ 0 holds for all i ∈ S and ι ∈ L, where

Θi,ι =

[
Θ1i,ι Θ2i,ι
∗ Θ3i,ι

]
,

Θ1i,ι =

 Θ11i Θ12i 0
∗ Θ13i (I ⊗ R̃)
∗ ∗ −(I ⊗ Q̃)− (I ⊗ R̃)

,

Θ11i = 2(I ⊗ AP̃i) + (I ⊗ Q̃)− (I ⊗ R̃)

− α(I ⊗ P̃i) + πii,ι(I ⊗ P̃i),

Θ12i = (EMi ⊗ BK̃i) + (I ⊗ R̃),

Θ13i = −2(I ⊗ R̃) + κi(EET ⊗ W̃2i)

Θ2i = [Θ21i, Θ22i],

Θ21i =

 −(EMi ⊗ BK̃i) I ⊗ Bw h̄(I ⊗ AT
i P̃i)

0 0 h̄(MT
i ET ⊗ BTK̃i)

0 0 0

,

Θ22i =

 √πi,ι1P̃i
√

πi,ι2P̃i · · ·
√

πi,ιN P̃i
0 0 · · · 0
0 0 · · · 0

,

Θ3i =

[
Θ31i(h) Θ32i(h)
∗ Θ33i(h)

]
,
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Θ31i =

 −γP̃i h̄(I ⊗ BT
w) 0

∗ (I ⊗ R)− 2(I ⊗ P̃i) 0
∗ ∗ −(I ⊗ P̃1)

,

Θ32i =

 0 · · · 0
...

...
...

0 · · · 0

,

Θ33i =

 −(I ⊗ P̃2) · · · 0

∗ . . . 0
∗ ∗ −(I ⊗ P̃N)

.

with

c1(
1
χ
+

2h̄
χ2 +

1h̄3

χ2 ) + ω̄(1− e−aTF ) ≤ c2e−aTF .

Proof. Following similar proofs in Theorem 1, it can be derived that

LV(i, t)− αηT(t)(I ⊗ Pi)η(t)

− 2ηT(t)ω(t)− γωT(t)ω(t)

≤LV(i, t)− αηT(t)(I ⊗ Pi)η(t)− 2ηT(t)ω(t)

− γωT(t)ω(t)− εT(lhi)(I ⊗W1i)ε(lhi)

+ κiη
T(t− τi(t))(ETE ⊗W2i)η(t− τi(t)),

such that Θ̃i(h) < 0 can guarantee that the above matrix inequality holds, where

Θ̃i =

[
Θ̃1i Θ̃2i
∗ Θ̃3i

]
,

Θ̃1i =

 Θ̃11i Θ̃12i 0
∗ Θ̃13i (I ⊗ R)
∗ ∗ −(I ⊗Q)− (I ⊗ R)

,

Θ̃11i = 2(I ⊗ Pi A) + (I ⊗Q)− (I ⊗ R)

− α(I ⊗ Pi) + πij(h)(I ⊗ Pi),

Θ̃12i = (EMi ⊗ PiBKi) + (I ⊗ R),

Θ̃13i = −2(I ⊗ R) + κi(ETE ⊗W2i)

Θ̃2i =
[
Θ̃21i, Θ̃22i

]
,

Θ̃21i =

 −(EMi ⊗ PiBKi) I ⊗ PiBw h̄(I ⊗ Ai)
T

0 0 h̄(EMi ⊗ BKi)
T

0 0 0

,

Θ̃22i =


√

πi1(h)I
√

πi2(h)I · · ·
√

πiM(h)I
0 0 · · · 0
0 0 · · · 0

,

Θ̃3i =

[
Θ̃31i Θ̃32i
∗ Θ̃33i

]
,
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Θ̃31i =

 −γI h̄(I ⊗ Bw)T 0
∗ −(I ⊗ R)−1 0
∗ ∗ −(I ⊗ P−1

1 )

,

Θ̃32i =

 0 · · · 0
...

...
...

0 · · · 0

,

Θ̃33i =

 −(I ⊗ P−1
2 ) · · · 0

∗ . . . 0
∗ ∗ −(I ⊗ P−1

N )

.

Consequently, it yields that

E{e−aTF V(i, t)} <2E{
∫ TF

0
e−atηT(s)ω(s)ds}

+ γ
∫ TF

0
e−atωT(s)ω(s)ds,

which holds with E{V(i, t)} > 0 that

2E{
∫ TF

0
ηT(s)ω(s)ds} > −γ̃

∫ TF

0
ωT(s)ω(s)ds,

with γ̃ = γe−aTF .
Subsequently, by performing matrix congruent transformation to Θ̃i < 0 with I ⊗ P−1

i
and letting P−1

i = P̃i, P−1
i QP−1

i = Q̃, P−1
i RP−1

i = R̃, KiP−1
i = K̃i, P−1

i W1iP−1
i = W̃1i,

P−1
i W2iP−1

i = W̃2i, one has

Θ̂i =

[
Θ̂1i Θ̂2i
∗ Θ̂3i

]
,

Θ̂1i =

 Θ̂11i Θ̂12i 0
∗ Θ̂13i(h) (I ⊗ R̃)
∗ ∗ −(I ⊗ Q̃)− (I ⊗ R̃)

,

Θ̂11i = 2(I ⊗ AP̃i) + (I ⊗ Q̃)− (I ⊗ R̃)

− α(I ⊗ P̃i) + πij(h)(I ⊗ P̃i),

Θ̂12i = (EMi ⊗ BK̃i) + (I ⊗ R̃),

Θ̂13i = −2(I ⊗ R̃) + κi(EET ⊗ W̃2i)

Θ̂2i =
[
Θ̂21i, Θ̂22i

]
,

Θ̂21i =

 −(EMi ⊗ BK̃i) I ⊗ Bw h̄(I ⊗ AT
i P̃i)

0 0 h̄(MT
i ET ⊗ BTK̃i)

0 0 0

,

Θ̂22i =


√

πi1(h)P̃i
√

πi2(h)P̃i · · ·
√

πiM(h)P̃i
0 0 · · · 0
0 0 · · · 0

,

Θ̂3i =

[
Θ̂31i Θ̂32i(h)
∗ Θ̂33i(h)

]
,
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Θ̂31i =

 −γP̃i h̄(I ⊗ BT
w) 0

∗ (I ⊗ R)− 2(I ⊗ P̃i) 0
∗ ∗ −(I ⊗ P̃1)

,

Θ̂32i =

 0 · · · 0
...

...
...

0 · · · 0

,

Θ̂33i =

 −(I ⊗ P̃2) · · · 0

∗ . . . 0
∗ ∗ −(I ⊗ P̃N)

.

Meanwhile, by letting P̄i = Λ1/2P̃iΛ1/2 with

λmax{P̄i} =λmin{Pi},

one has
I < Pi <

1
χ

I

which leads to φ1 < 1
χ and φ4 > 1. Moreover, it follows that Λ−1/2QΛ−1/2 <

2(Λ−1/2PiΛ−1/2)2 < 2
χ2 I and Λ−1/2RΛ−1/2 < 2(Λ−1/2PiΛ−1/2)2 < 2

χ2 I, such that φ2 < 2
χ2

and φ3 < 2
χ2 . Then, we have

c1(
1
χ
+

2h̄
χ2 +

1h̄3

χ2 ) + ω̄(1− e−aTF ) ≤ c2e−aTF .

Finally, by adopting the method for the time-varying dwell time πij(h), πij(h) =

∑L1 λιπij,ι, ∑L1 λι = 1, λι ≥ 0, the remainder of the proof can follow conveniently from
Theorem 1, which ensures that the finite-time passivity formation can be satisfied according
to Definition 3.

Remark 3. The computation complexity for the above linear matrix inequality (LMI) convex
optimization conditions is related to the convex combination representation of time-varying dwell
time πij(h) with ι ∈ L. As such, it is a trade-off to setting an appropriate ι for better describing the
time-varying dwell time and computation complexity of LMIs.

4. Simulation Results

This section demonstrates the effectiveness of theoretical results via the numerical
simulation results.

As depicted in Figure 1, consider a group of four UAVs and the corresponding Lapla-
cian matrices of communication topology are given by

L1 =


1 −1 0 0
−1 2 −1 0
0 −1 1 0
0 0 −1 1

,

L2 =


1 0 −1 0
0 1 −1 0
0 −1 1 0
−1 0 −1 2

,
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with

M1 =


1 0 0
−1 1 0
0 −1 0
0 0 −1

,

M2 =


1 1 0
0 1 0
0 −1 1
−1 −1 −2

.

 !"#  !"$

 !"% !"&

'())*+,-./,(+0

/(1(2(340#

 !"#  !"$

 !"% !"&

'())*+,-./,(+0

/(1(2(340$

Figure 1. Illustration of switching communication topology of UAVs.

The transition rates of semi-Markov topologies are assumed to be π11(h) ∈ [−1.6,−1.4]
and π22(h) ∈ [−1.7,−1.3]. Accordingly, we can set ι = 2 and it follows that π11,1 = −1.4,
π11,2 = −1.6, π22,1 = −1.3 and π22,2 = −1.7. The formation configuration is supposed
to be d12 = [−10, 0]T , d23 = [0,−10]T , d24 = [10,−10]T , d34 = [10, 0]T . For the event-
triggered communication, the scalar parameters are set by κ1 = 0.2 and κ2 = 0.3 with
h1 = 0.05 s and h2 = 0.1 s. In terms of Theorem 2 with finite-time passivity performance
(2500, 1014, 100, 2.0612, 5), the values of mode-dependent formation controller gains and
triggering matrices are achieved by solving the convex optimization problem as follows:

K1 =
[
−0.0660 −0.2413

]
,

K2 =
[

0.0118 −0.4973
]
,

and

W11 =

[
1.2454 0.3238
0.3238 1.5785

]
,

W12 =

[
4.4888 0.3403
0.3403 5.1241

]
,

W21 =

[
0.0892 0.0239
0.0239 0.1816

]
,

W22 =

[
0.0796 0.0072
0.0072 0.2207

]
.

With initial conditions and setting tF = 5, Figures 2 and 3 show the resulting formation
trajectories of UAVs. More precisely, it can be observed that the UAVs can achieve converging
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motion within the prescribed finite time interval. Moreover, one can verify from Figure 3
that the finite-time boundedness can be ensured with c1 and c2 by Definition 2. Figures 4–7
reveal the data broadcasting instants with release intervals of UAVs, from which one can
find that the signal transmissions can be effectively decreased compared with the traditional
time-triggered approaches, such that the local communication efficiency among the UAVs
can be increased under the distributed formation control framework. Furthermore, it can
be seen from Figure 8 that the finite-time passivity condition can be satisfied according to
Definition 3 with

2E{
∫ 5

0
ηT(s)ω(s)ds}+ γ

∫ 5

0
ωT(s)ω(s)ds ≥ 0.

0
100

10

5

20

4
50 3

30

2
1

0 0

0 2 4 6

1

2

Figure 2. Formation state trajectories of UAVs.
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1500

2000

2500

3000

3500

4000

4500

5000

Figure 3. State trajectories of ηT(t)Λη(t) (bule) with c1 (red).
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Figure 4. Event-triggered communication instants and release intervals of UAV 1.
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Figure 5. Event-triggered communication instants and release intervals of UAV 2.
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Figure 6. Event-triggered communication instants and release intervals of UAV 3.
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Figure 7. Event-triggered communication instants and release intervals of UAV 4.
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Figure 8. Finite-time passivity performance.

5. Conclusions

This paper studies the formation problem of UAVs with semi-Markov jump topolo-
gies under the finite-time passivity performance. By proposing an asynchronous event-
triggered data transmission strategy, communication efficiency can be improved consid-
erably. With the aid of choosing the mode-dependent Lyapunov–Krasovskii function,
sufficient formation criterion is established, and corresponding formation controller gains
are calculated by LMIs, such that desired finite-time passivity performance is satisfied for
configuration formation. A simulation example with four UAV verifications is performed
to validate the effectiveness of the derived theoretical algorithm. Future research of inter-
est can be focused on the cases with more complex network environments, i.e., limited
bandwidth or channel fading of communication network.

Author Contributions: Conceptualization, methodology, C.M.; writing—original draft, Y.J.; writing—
review and editing, T.X.; funding acquisition, S.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China 2020AAA0105900.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data is within this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Erdos, D.; Erdos, A.; Watkins, S.E. An experimental UAV system for search and rescue challenge. IEEE Aerosp. Electron. Syst.

Mag. 2013, 28, 32–37. [CrossRef]
2. Birk, A.; Wiggerich, B.; Bülow, H.; Pfingsthorn, M.; Schwertfeger, S. Safety, security, and rescue missions with an unmanned

aerial vehicle (UAV). J. Intell. Robot. Syst. 2011, 64, 57–76. [CrossRef]

http://doi.org/10.1109/MAES.2013.6516147
http://dx.doi.org/10.1007/s10846-011-9546-8


Sensors 2022, 22, 4529 19 of 19

3. El-Sousy, F.F.; Alattas, K.A.; Mofid, O.; Mobayen, S.; Asad, J.H.; Skruch, P.; Assawinchaichote, W. Non-Singular Finite Time
Tracking Control Approach Based on Disturbance Observers for Perturbed Quadrotor Unmanned Aerial Vehicles. Sensors 2022,
22, 2785. [CrossRef] [PubMed]

4. Ke, R.; Li, Z.; Tang, J.; Pan, Z.; Wang, Y. Real-time traffic flow parameter estimation from UAV video based on ensemble classifier
and optical flow. IEEE Trans. Intell. Transp. Syst. 2018, 20, 54–64. [CrossRef]

5. Arbanas, B.; Ivanovic, A.; Car, M.; Orsag, M.; Petrovic, T.; Bogdan, S. Decentralized planning and control for UAV–UGV
cooperative teams. Auton. Robot. 2018, 42, 1601–1618. [CrossRef]

6. Feng, Q.; Liu, J.; Gong, J. UAV remote sensing for urban vegetation mapping using random forest and texture analysis. Remote
Sens. 2015, 7, 1074–1094. [CrossRef]

7. Anderson, B.D.; Fidan, B.; Yu, C.; Walle, D. UAV formation control: Theory and application. In Recent Advances in Learning and
Control; Springer: Berlin/Heidelberg, Germany, 2008; pp. 15–33.

8. Lin, W. Distributed UAV formation control using differential game approach. Aerosp. Sci. Technol. 2014, 35, 54–62. [CrossRef]
9. Chen, Y.; Yu, J.; Su, X.; Luo, G. Path planning for multi-UAV formation. J. Intell. Robot. Syst. 2015, 77, 229–246. [CrossRef]
10. Sun, Y.; Zhong, X.; Wu, F.; Chen, X.; Zhang, S.; Dong, N. Multi-UAV Content Caching Strategy and Cooperative, Complementary

Content Transmission Based on Coalition Formation Game. Sensors 2022, 22, 3123. [CrossRef]
11. Zhou, Z.; Wang, H.; Wang, Y.; Xue, X.; Zhang, M. Distributed formation control for multiple quadrotor UAVs under Markovian

switching topologies with partially unknown transition rates. J. Frankl. Inst. 2019, 356, 5706–5728. [CrossRef]
12. Xue, D.; Yao, J.; Wang, J.; Guo, Y.; Han, X. Formation control of multi-agent systems with stochastic switching topology and

time-varying communication delays. IET Control Theory Appl. 2013, 7, 1689–1698. [CrossRef]
13. Li, X.; Zhou, C.; Zhou, J.; Wang, Z.; Xia, J. Couple-group L2 − L∞ Consensus of Nonlinear Multi-agent Systems with Markovian

Switching Topologies. Int. J. Control Autom. Syst. 2019, 17, 575–585. [CrossRef]
14. Ma, C.; Wu, W.; Li, Y. Distributed mode-dependent state estimation for semi-Markovian jumping neural networks via sampled

data. Int. J. Syst. Sci. 2019, 50, 216–230. [CrossRef]
15. Huang, J.; Shi, Y. Stochastic stability and robust stabilization of semi-Markov jump linear systems. Int. J. Robust Nonlinear Control.

2013, 23, 2028–2043. [CrossRef]
16. Shen, H.; Li, F.; Xu, S.; Sreeram, V. Slow state variables feedback stabilization for semi-Markov jump systems with singular

perturbations. IEEE Trans. Autom. Control 2017, 63, 2709–2714. [CrossRef]
17. Qi, W.; Zong, G.; Karimi, H.R. Sliding mode control for nonlinear stochastic singular semi-Markov jump systems. IEEE Trans.

Autom. Control 2019, 65, 361–368. [CrossRef]
18. Yue, D.; Tian, E.; Han, Q.L. A delay system method for designing event-triggered controllers of networked control systems. IEEE

Trans. Autom. Control 2012, 58, 475–481. [CrossRef]
19. Peng, C.; Li, F. A survey on recent advances in event-triggered communication and control. Inf. Sci. 2018, 457, 113–125. [CrossRef]
20. Zhang, X.M.; Han, Q.L. A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample

the system outputs. IEEE Trans. Cybern. 2015, 46, 2745–2757. [CrossRef]
21. Liu, X.; Su, X.; Shi, P.; Shen, C.; Peng, Y. Event-triggered sliding mode control of nonlinear dynamic systems. Automatica 2020,

112, 108738. [CrossRef]
22. Sahoo, A.; Xu, H.; Jagannathan, S. Neural network-based event-triggered state feedback control of nonlinear continuous-time

systems. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 497–509. [CrossRef] [PubMed]
23. Dai, J.; Guo, G. Event-triggered leader-following consensus for multi-agent systems with semi-Markov switching topologies. Inf.

Sci. 2018, 459, 290–301. [CrossRef]
24. Wang, J.; Chen, M.; Shen, H. Event-triggered dissipative filtering for networked semi-Markov jump systems and its applications

in a mass-spring system model. Nonlinear Dyn. 2017, 87, 2741–2753. [CrossRef]
25. Ren, W.; Beard, R.W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans.

Autom. Control. 2005, 50, 655–661. [CrossRef]
26. Dong, X.; Yu, B.; Shi, Z.; Zhong, Y. Time-varying formation control for unmanned aerial vehicles: Theories and applications.

IEEE Trans. Control Syst. Technol. 2014, 23, 340–348. [CrossRef]
27. Zhang, Y.; Shi, P.; Nguang, S.K.; Zhang, J.; Karimi, H.R. Finite-time boundedness for uncertain discrete neural networks with

time-delays and Markovian jumps. Neurocomputing 2014, 140, 1–7. [CrossRef]
28. Wang, J.L.; Xu, M.; Wu, H.N.; Huang, T. Finite-time passivity of coupled neural networks with multiple weights. IEEE Trans.

Netw. Sci. Eng. 2017, 5, 184–197. [CrossRef]
29. Park, P.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011,

47, 235–238. [CrossRef]

http://dx.doi.org/10.3390/s22072785
http://www.ncbi.nlm.nih.gov/pubmed/35408398
http://dx.doi.org/10.1109/TITS.2018.2797697
http://dx.doi.org/10.1007/s10514-018-9712-y
http://dx.doi.org/10.3390/rs70101074
http://dx.doi.org/10.1016/j.ast.2014.02.004
http://dx.doi.org/10.1007/s10846-014-0077-y
http://dx.doi.org/10.3390/s22093123
http://dx.doi.org/10.1016/j.jfranklin.2018.11.051
http://dx.doi.org/10.1049/iet-cta.2011.0325
http://dx.doi.org/10.1007/s12555-018-0550-7
http://dx.doi.org/10.1080/00207721.2018.1552771
http://dx.doi.org/10.1002/rnc.2862
http://dx.doi.org/10.1109/TAC.2017.2774006
http://dx.doi.org/10.1109/TAC.2019.2915141
http://dx.doi.org/10.1109/TAC.2012.2206694
http://dx.doi.org/10.1016/j.ins.2018.04.055
http://dx.doi.org/10.1109/TCYB.2015.2487420
http://dx.doi.org/10.1016/j.automatica.2019.108738
http://dx.doi.org/10.1109/TNNLS.2015.2416259
http://www.ncbi.nlm.nih.gov/pubmed/25879975
http://dx.doi.org/10.1016/j.ins.2018.04.054
http://dx.doi.org/10.1007/s11071-016-3224-0
http://dx.doi.org/10.1109/TAC.2005.846556
http://dx.doi.org/10.1109/TCST.2014.2314460
http://dx.doi.org/10.1016/j.neucom.2013.12.054
http://dx.doi.org/10.1109/TNSE.2017.2746759
http://dx.doi.org/10.1016/j.automatica.2010.10.014

	Introduction
	Problem Formulation
	Main Results
	Simulation Results
	Conclusions
	References

