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Abstract: The blast furnace ironmaking process is the core of steel manufacturing, and the optimiza-
tion of this process can bring enormous economic and environmental benefits. However, previous
data-driven optimization methods neglect the uncontrollability of part of the variables in the pre-
dictive modeling process, which brings great uncertainty to the optimization results and adversely
affects the optimization effect. To address this problem, a consistency optimization framework based
on controllability assurance soft sensor modeling is proposed. The method achieves the informa-
tion extraction of uncontrollable variables in a process-supervised way, and improves the posterior
distribution prediction accuracy. The method also proposes an integrated self-encoder regression
module, which uses the regression to guide the encoding, realize the construction of latent features,
and further improve the prediction accuracy of the model. Integrating the prediction module and
the multi-objective gray wolf optimizer, the proposed model achieves the optimization of the blast
furnace ironmaking process with only controllable variables as prediction model inputs while being
capable of giving uncertainty estimates of the solutions. Empirical data validated the optimization
model and demonstrated the effectiveness of the proposed algorithm.

Keywords: blast furnace; soft sensor; mixed density networks; consistency optimization

1. Introduction

Steel manufacturing is an essential foundation of the world industry. The energy con-
sumption of this process accounts for about 10% of the total global energy consumption [1],
while its carbon dioxide emissions also account for a significant share. The blast furnace
ironmaking process as the core of steel manufacturing is the most prominent carbon dioxide
emitting process, and its energy consumption accounts for 65% of the steel manufacturing
process [2]. The quality of the product in this process also directly impact the energy
consumption and emissions of subsequent processes. Thus, a minor enhancement of the
blast furnace iron making process, such as reducing energy consumption, emissions or
improving product quality, can bring significant economic and environmental benefits.

The blast furnace iron making process is complicated. The process is shown in Figure 1.
Firstly, raw materials such as iron ore and coke are loaded from the top of the furnace,
and complicated physicochemical reactions take place in a high temperature and high
pressure environment to finally produce molten iron. Due to the complexity of the process,
existing blast furnace control and optimization is simply performed through workers’
experience. This leads to additional waste and makes it hard to improve the product quality.

In fact, studies on the optimization of this process have been conducted for a long
time. Ref. [3] examines the chemical activation of blast-furnace slag pastes with alkaline
solutions by means of various characterization techniques. Ref. [4] studied coke behavior
in an operating blast furnace with the main emphasis being on the role of its inherent
mineral matter. However, due to the complexity of the industrial process, it is challeng-
ing to build the mechanistic models, which makes it hard for the the research methods
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to work. It was not until data-driven metaheuristic algorithms were developed for the
optimization of industrial processes. In order to obtain the best material surface distribu-
tion, Ref. [5] first uses a kernel extreme learning machine to build a prediction model for
the relevant indexes, and then solves the optimal solution for the decision variables related
to the material surface shape by a heuristic algorithm. Ref. [6] combined machine learning
methods and particle swarm algorithms to achieve optimization of industrial propane
dehydrogenation processes. Ref. [7] proposed a two-stage optimization algorithm that first
implemented a Mixed Data Sampling regression model based on the conditional weighting
of the mixed flow, and then used a population-adaptive genetic algorithm to achieve energy
consumption reduction in the paper-making process. Based on subtractive clustering and
adaptive neuro-fuzzy inference, Ref. [8] established a high-precision prediction model of
fiber quality and process energy consumption in the paper refining process, based on which
the guidance of medium density fiberboard production process was realized by using the
simulated annealing method. Finally, the fiber quality is improved while the process energy
consumption is reduced.

CO+CO2

Fe2O3

Fe3O4

FeO

CO CO

Ore and coke
Gas Gas

Hot air

Pig iron Slag
Hot air

Figure 1. Blast furnace ironmaking process.

It can be seen that a common prerequisite for the working of the above research
methods is the ability to build accurate data-driven predictive models. In fact, there are
plenty of studies on soft sensors of industrial processes [9–11]. Ref. [12] implemented
industrial soft sensor modeling using support vector machines (SVM), while optimal SVM
model selection was achieved using a Bayesian evidence framework. Accurate prediction
and variation tracking of the freezing point of light diesel fuel was achieved. Ref. [13]
proposed a semi-supervised gaussian mixture model (GMM) regression model utilizing
both labeled and unlabeled samples to achieve a soft measurement of the process based on
expectation maximization. Ref. [14] designed a dynamic convolutional neural networks
(CNN)strategy for learning hierarchical local nonlinear dynamic features. The method
considers both temporal and spatial features of the process and establishes a high-precision
soft measurement model. Ref. [15] proposed a dynamic feature extraction model, using
the encoder–decoder structure to achieve dynamic feature extraction, and a dynamic
feature smoothing method using attention weights to achieve denoising and reduce model
overfitting, which greatly improves the robustness and prediction accuracy of the model.

There is also a lot of soft sensor research in the blast furnace ironmaking process. Ref. [16],
inspired by the digital twin, combined the CFD model and the support vector machine (SVM)
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model to achieve the real-time estimation of raceway depth of the blast furnace. Ref. [17] built
a multistep prediction model, called a denoising spatial-temporal encoder–decoder, for the
prediction of burn-through point (BTP) in advance. Ref. [18] proposed an adaptive stacked
polymorphic model to realize the online measurement of the silicon content of molten iron.

The essence of these soft sensor methods is to extract the relevant information from the
process variables that are used as inputs to the model to achieve the prediction of quality
variables. When the process variables are used only for predicting quality indexes, there
is no need to be concerned about whether the variables are controllable or not. However,
when the prediction model is used as the fitness function of the heuristic algorithm, the con-
trollability of the inputs of the model matters a lot. The controllability is illustrated here by
means of instances. In general, the controllability of the model inputs can be guaranteed
in two cases. First, all the input variables of the model are controllable variables. Second,
the input variables of the model are partly controlled variables and partly not, but the
uncontrolled variables are independent from the controlled ones, so that the uncontrolled
variables can be fixed only to assist in predicting the quality variables, and adjust the
controlled variables without affecting the uncontrolled ones during optimization.

In fact, to ensure the accuracy of the prediction model, the controllability of the input
variables of the model cannot be guaranteed in some industrial processes. For example,
in the blast furnace ironmaking process, the prediction of iron quality-related indicators
requires the collection of as many relevant variables as possible, including raw materials
grade, operating variables, and detection variables. The detection variables data are critical
process information measured by the sensors and can provide valid information to predict
the quality indicators. However, they are not independent of the operation variables. As the
operating variables are adjusted, the detection variables will change as well. There is a lack
of research related to properly addressing this issue.

To address this problem, this paper proposes an optimization framework based on
process-supervised distribution regression aided by uncontrollable variables. The opti-
mization method is able to extract information of the detection variables while keeping
them from being used as input in the prediction stage. It aims to improve the prediction
accuracy of the distribution of quality indicators as much as possible under the conditions
of available information, and thus to obtain reliable optimization results with uncertainty
estimates. The main contributions of the paper include:

1. A controllability assurance modeling method is proposed. Uncontrollable variables
are used as supervised information to assist feature construction in the training phase,
enabling information extraction without being used as input in the prediction phase
and improving the prediction accuracy of the distribution of quality variables.

2. A semi-supervised autoencoder regression method is proposed. The method combines
the autoencoder and regression methods into an end-to-end integrated model to
achieve feature extraction and improve model prediction accuracy.

3. A consistency optimization framework is proposed. Combining the above feature
extraction, the distribution regression method, and the multi-objective gray wolf
algorithm, the consistency optimization of the operating parameters and detection
variables is achieved.

The rest of this paper is organized as follows: Section 2 presents the background
of data-driven metaheuristics. Section 3 consists of the description of the optimization
problem and explanation of the proposed method. Section 4 illustrates the experiments
and results corresponding to the proposed techniques. Ultimately, Section 5 presents
the conclusions.

2. Data-Driven Metaheuristics

Data-driven meta-heuristics combining machine learning with meta-heuristic algo-
rithms to find high performance outcomes in the process industry have achieved great
success [19–21]. The fitness function as the primary component of the Metaheuristic al-
gorithm is the basis of optimization [22]. However, it is challenging to build an accurate
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mathematic model in some complex processes. In contrast, data-driven methods do not
have to focus on the details of physical and chemical reactions of the industrial process but
only use historical data to achieve modeling, which has excellent potential for modeling
the complex process. Thus, the prediction model built by machine learning can be used as
the fitness function of the heuristic algorithm to evaluate the quality of the search agents,
as shown in Figure 2.
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Figure 2. Illustration of the data-driven metaheuristic algorithm.

In the metaheuristic algorithm, the inputs of the fitness function are usually control-
lable parameters, and the outputs are the optimized values of the corresponding achievable
optimal indicators. The optimal combination of operational parameters is searched to
achieve production index optimization.

It should be noted that the gray wolf optimizer (GWO) algorithm is adopted as the
basic optimizer of the proposed algorithm because of its low computational complexity
and high search efficiency.

3. Methodology
3.1. Optimization Problem Description

As mentioned earlier, the key of data-driven heuristic algorithms is to build an accurate
prediction model. The inputs to the fitness function need to be of controllability. However,
the information provided by the detection variables is extremely critical when using a
data-driven approach for predictive modeling of process indicators in the blast furnace
ironmaking process. The detection variables are always uncontrollable and influenced by
the operating variables. As shown in Figure 3, the graph indicates that the distribution of
the carbon dioxide emission flow rate of the production process changes with the variation
of the top pressure of the furnace. It can be seen that, as the furnace top pressure increases,
the carbon dioxide emissions increase as well.

In fact, some operating variables such as top temperature and top pressure can be
controlled during the ironmaking production process. However, the difficulty of control
and the requirement for the smooth operation of the process also make people reluctant
to adjust them. Therefore, these variables are also considered as uncontrollable detection
variables in the optimization process in this paper.
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Figure 3. Variation of the posterior distribution of the detection variables with the change of opera-
tional variable. The horizontal axis is the probability density value of the distribution of the carbon
dioxide. The vertical axis shows the value of the volume fraction of the carbon dioxide flow at the
top of the furnace.

However, existing optimization methods have disregarded this uncontrollability. As
shown in Figure 4, the traditional optimization method on the left can perform searching
independently in the feasible domain of both the operating parameters and the detection
variables, given the raw material grade as the environment variable. The final optimized
solution is the recommended operating parameters and detection variables; however, the
fact is that the detection variable is not controllable. The actual controllable parameters are
only the operating parameters, so the process indexes corresponding to the recommended
operating parameters may not be optimal.
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Figure 4. Illustration of the inconsistency of traditional methods’ optimization results.

In the next case, considering that the detection variables are not controllable, they
are fixed as the raw materials grade. The search is performed only in the feasible domain
of the operating parameters. The final optimized solution is the recommended operating
parameters. There is still a problem that the recommended operating parameters may not
be consistent with the fixed detection variables.

3.2. Controllability Assurance Modelling Method

The detection variables, etc., are not controllable but the key variables for production
indices’ prediction. The first thought is trying to regress the detection variables like other
expert constructed features such as Permeability Index, Pressure Differential, etc. and then
use them to make predictions.

The prediction results of the support vector machine regression model with con-
trollable variables as inputs for the four uncontrollable variables are shown in Figure 5.
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The blue line is the empirical data and the orange line is the predicted data. It can be seen
that, although the controllable variables contain certain information from the uncontrollable
variables, the uncontrollable variables still have independent information components. The
controllable variables are not able to regress the exact values of the controllable variables.

Therefore, the proposed method aims to achieve the extraction of physical features
related to the detection variables from the operational variables by using the historical
data of the detection variables, and to estimate the independent components of the detec-
tion variables.

Since the regression of exact values cannot be achieved, it is desired to obtain the
posterior distribution of the uncontrollable variables for given controllable variables. It
means that the output of the desired model is no longer the predicted values of the variables
but the parameters of the variable distribution model. We can implement this idea using
a mixture density network (MDN) [23]. Any probability distribution can be expressed
as a linear combination of several Gaussian components [24]. The original MDN model
combines the Gaussian mixture model and the neural network. In addition, the output
layer of the network is the parameters of the Gaussian mixture model. The conditional
probability distribution of the detection variables can be represented by a mixture of
multiple Gaussian components.
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Figure 5. Regression results for the uncontrollable variables. The horizontal axis of each subplot
indicates the numbers of the samples. The vertical axis indicates the value of each variable.

Figure 6 illustrates the structure of the original MDN model, with the dark green
neurons representing the input layers of the model and the three hidden layers in the
middle. The output layer here outputs the parameters of the model of a mixture of two
Gaussian components. The blue curve represents the first Gaussian component, the orange
curve describes the second Gaussian component, and the green curve represents the
posterior probability distribution after mixing the two Gaussian components. For any
operational parameter x, the well-trained mixture density network is able to give the
posterior probability distribution p(y|x) of the detection variable y as:

p(y|x) =
m

∑
i=1

αi(x)Ni

(
y|µi(x), σ2

i (x)
)

(1)

where m is the number of Gaussian components, α is the weight coefficient of the Gaussian
component; and µi and σi represent the mean and variance of the corresponding i-th
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Gaussian component. It should be noted that the sum of the Gaussian component weight
coefficients should be equal to 1:

m

∑
i=1

αi(x) = 1 (2)

Figure 6. Mixture density networks structure.

Therefore, the activation function of the network corresponding to the output is the
so f tmax function:

αi(x) =
exp

(
eα

i (x)
)

∑m
j=1 exp

(
eα

j (x)
) (3)

where eα
i represents the un-normalized i-th Gaussian component weight coefficients of the

model output:
σi = exp(eσ

i ) (4)

µi = eµ
i (5)

where eµ
i and eσ

i are the neural network outputs corresponding to the mean and variance of
the i-th Gaussian component.

The cost function of the MDN model is the negative loglikelihood of the observation y
given its input x. Here, we can formulate the loss function as:

log L(y|x) = − log

(
m

∑
i=1

αi(x)Ni

(
y|µi(x), σ2

i (x)
))

(6)

It should be noted that, when it comes to solving for the joint posterior distribution of
multiple variables, the σ in the above equation represents the elements in the covariance
matrix of the variables. This means that, when the variables are not independent, the model
also needs to predict the covariances among the variables. When the variables are not
independent, the number of model output units proliferates, harming model training and
accuracy. Accordingly, the proposed method performs principal component analysis (PCA)
on uncontrollable variables to remove variable correlations. It should be noted that the PCA
procedure does not reduce the dimensionality of the variables. It is only used to reduce the
model structure’s complexity and improve the distribution prediction accuracy.

The main idea of the controllability assurance modeling (CAM) method is shown in
Figure 7. As shown above the dashed line in the figure, a deep neural network (DNN) is
firstly trained with raw materials grade parameters, operational parameters, and detection
variables as model inputs and production index as output. The detection variables cannot
be used in the actual prediction process, so it is required to predict the distribution of the
corresponding features of the detection variable using the operational parameters. Then,
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the sampling is performed under the distribution, and the sampled data are obtained to
replace the original detection variables data.
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Figure 7. Illustration of a controllability assurance modeling method.

To predict the distribution of the features corresponding to the detection variables, the
MDN model is trained in the training phase with the historical detection variable data as
the supervised information and the operational parameters as the inputs.

It can be seen that, to reduce the complexity of the MDN model structure, PCA
decoupling is performed on the detection variables data. In addition, PCA inversion is
performed on the sampled feature data. The elements represented by the light-colored
boxes and the purple flow lines in the figure are only involved in the model training phase.
The dark orange boxes and the orange flow lines in the figure show the prediction process.
In the prediction process, the operational variables are used as inputs of the MDN model to
obtain the posterior distribution. Sampling is performed under the distribution to obtain the
sampled data, and multiple feature data corresponding to detection variables are obtained
after inverse PCA transformation. Operational parameters and raw materials grade data
can be concatenated to predict a production index value using the well-trained DNN model
for any of the sampled feature data. In this way, multiple production index predictions can
be obtained, and the mean and variance of the predictions can be statistically calculated to
measure the expectation and uncertainty of the prediction results.

3.3. Beta Self-Encoding Regression Model

Inspired by feature extraction under the supervision of detection variables, the beta
self-encoder regression (βSER) method is proposed, which can generate deep features
under the self-supervision of operational parameters and use the extracted features to
improve the prediction accuracy of production indexes.

It should be noted that, in order to make sure that the generated features can effectively
improve the model prediction accuracy, different from the general regression method after
autoencoder feature extraction, the autoencoder and regression methods are combined
into an end-to-end integrated model. In this case, the encoder needs to consider both
reconstruction error and regression error. The loss function of the model is shown below:

loss =
1
N

N

∑
i
‖yi − ŷi‖2 + β ∗ 1

N

N

∑
i
‖xi − x̃i‖2 (7)

where N represents the number of samples, xi, x̃i represents the i-th operational variables
input sample and reconstructed sample, respectively. In addition, ŷi and yi represent the
i-th predicted and true value, respectively. β is a hyperparameter to balance the effect
of reconstruction error and prediction error on the encoder. It can be seen from the loss
function that the reconstruction error and the prediction error are interacting with each
other. The model prediction can be hampered when the weight of reconstruction error in the
loss function is too big. When the weight of reconstruction error in the loss function is too
small, the validity of the encoder features cannot be guaranteed. In addition, an appropriate
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weight can help the model construct valuable features and improve the prediction accuracy
of the model.

The main idea of the proposed method is shown in Figure 8. The self-encoder accom-
plishes deep feature extraction while reconstructing operational parameters. The deep
features are concatenated with the raw materials grade parameters, operating parameters
and detection variables to predict the production index.
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Figure 8. Schematic diagram of the self-encoding regression method.

3.4. Consistency Optimization Framework

The final optimization framework of the method is shown in Figure 9. The right
side of the figure shows the general population-based optimization algorithm flow. The
core of the method is to construct a suitable fitness function for the optimizer. It can be
seen that the final prediction model denoted as SERCAM integrates the aforementioned
distribution prediction model as well as the operational variable self-supervised feature
extraction model. Theraw materials grade parameters, operating parameters, self-coded
extracted features, and sampled data from the detection variables corresponding feature
distributions are integrated and input into the dense layers to achieve production index
prediction. During the model training phase, the sampled data are replaced by the practical
detection variables data. It is important to note that the detection variable data are only
used in the model training phase.
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Figure 9. The proposed consistency optimization framework.

In the figure, xm, xo, xd represent the materials grade parameters, operational pa-
rameters, and detection variables, respectively. xp represents the feature variables after
decoupling the detection variables. x̂p, x̂d denote the corresponding sampling data in the
prediction stage, respectively. x̂o represents the reconstructed operational parameters sam-
ple. The dashed boxes in the figure are used only for the model training phase. The brown
dashed line with arrows indicates the backpropagation links.
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4. Experiments and Discussion

To verify the validity, the method was validated on a empirical production data set.
The data are the 2021 production data from the No. 2 blast furnace of a steel group’s
ironmaking plant in a southwestern province of China. This ironmaking plant is different
from normal ironmaking plants with stable and high-grade raw materials. They expanded
many iron ore sources to reduce raw material costs, leading to low and fluctuating iron
ore grades. Therefore, raw material information needs to be used as input features when
forecasting production indexes. When the ingredients’ grades do not fluctuate much, they
can usually be considered as stable system information instead of being used as input
variables. The number of input variables affects the complexity and information extraction
capability of the model. Sinter and coke, as the most prominent raw materials for the
studied blast furnace, have fluctuating grades. Their grade information will be used as
input to the model.

Pig iron is the product of the blast furnace production process, and the phosphorus
content of pig iron is one of the important indicators of the quality of pig iron. As a harmful
element, phosphorus directly affects the efficiency of smelting and production costs in the
subsequent steelmaking process. Therefore, the optimization of the phosphorus content
of the pig iron is of great importance. It should be noted that, for ore materials with low
phosphorus content, it is difficult for the blast furnace to reduce the phosphorus content of
the iron. For ores with high phosphorus content, proper operation of the blast furnace can
reduce the phosphorus content in the iron. The optimization of phosphorus content is of
considerable significance in the low and fluctuating ore grades of this ironmaking plant.

In order to optimize the phosphorus content of iron, the variables related to the
phosphorus content of iron need to be determined first. The required variables were
identified by correlation analysis and expert experience, as shown in Table 1, including ore
grade parameters, operation parameters, and detection variables [25].

Table 1. Related variables.

Variables Unit Variable Type Controllable

Cold wind flow m3/min·kPa Operation Variable X
Pulverized coal injection t/h Operation Variable X
Wind speed m/s Operation Variable X
Oxygen enrichment flow m3/h Operation Variable X
Hot air temperature ◦C Operation Variable X
Hot wind pressure kPa Operation Variable X
Top blast pressure kPa Detection variable ×
Top temperature ◦C Detection variable ×
CO2 rate vt% Detection variable ×
H2 rate vt% Detection variable ×
SiO2 content wt% Sinter grade ×
CaO content wt% Sinter grade ×
TFe content wt% Sinter grade ×
M40 % Coke grade ×
CRI % Coke grade ×
CSR % Coke grade ×

As mentioned before, the top temperature and pressure are considered uncontrollable
variables. The simulation test is carried out based on the data set containing 10,000 blast
furnace process samples. The variables are normalized to facilitate model training.

There are always some anomalous samples, as shown in Figure 10. The horizontal axis
of the figure represents the normalized variable values, while the vertical axis represents
the variables. The left end of the solid line represents the minimum value of the variable,
the right end represents the maximum value, and the rectangle covers the values from the
lower quartile to the upper quartile. The black dots symbolize outliers. Box plots are used
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to identify and eliminate outliers. Outliers were not removed directly but replaced with the
mean of the normal samples before and after them. The data set is divided at a ratio of 8:1:1
into a training set with 8000 samples, a validation set, and a test set both with 1000 samples.

0.0 0.2 0.4 0.6 0.8 1.0

Oxygen enrichment flow (m3/h)

Cold wind flow (m3/min kPa)

Hot air temperature (oC)

Actual wind speed (m/s)

Hot air pressure (kPa)

Coal rate (t/h)

CO2 (vt%)

H2 (vt%)

Top blast temperature (oC)

Top blast pressure (kPa)

Boxplot

Figure 10. Box-plot for related variables (extreme outlier).

To verify the effectiveness of the established MDN model in predicting the posterior
distribution of uncontrollable variables under the given operational parameters, the method
was tested on the above-mentioned data set. In addition, to measure the difference between
the predicted and true distributions, the CRPS index is introduced:

CRPS =
1
N

N

∑
i=1

∫ +∞

−∞
[CDFi(t)− H(t− yi)]

2
dt (8)

where CDFi denotes the posterior cumulative distribution function for the i-th sample,
H denotes the Heavyside step function and yi denotes the observation. According to
the definition, CRPS is zero when the predicted distribution is exactly the same as the
true distribution. CRPS increases when the predicted distribution is overly concentrated,
dispersed, or deviates too far from the observed value.

The plots of the prediction results of the MDN model for several uncontrollable
variables are shown in Figure 11. The blue line in the graph represents the empirical data,
the orange line represents the mean of the predicted distribution, and the orange shading
represents the predicted distribution interval.

It can be seen that the model is able to determine the uncontrollable variables in a
narrow distribution interval for given operating variables, and the size of the distribution
varies with the operating parameters.

The number of Gaussian components as an essential hyperparameter of the MDN
model has an important impact on the model prediction performance. To study the effect,
the models are tested under different Gaussian component numbers.
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Figure 11. Prediction results of the posterior distribution of uncontrollable variables. The horizontal
axis of each subplot indicates the numbers of the samples. The vertical axis indicates the value of
each variable.

Table 2 shows the CRPS of the prediction results of the model for the features de-
coupled from PCA at different Gaussian component numbers. Considering the model
prediction accuracy as well as the model complexity, subsequent experiments set the
number of Gaussian components as 2.

Table 2. CRPS values of the model with different Gaussian component numbers.

Numbers Feature 1 Feature 2 Feature 3 Feature 4

1 0.0655 0.0602 0.0461 0.0710
2 0.0639 0.0578 0.0442 0.0698
3 0.0664 0.0601 0.0452 0.0715
4 0.0657 0.0592 0.0473 0.0717

To verify the effectiveness of the proposed method, four experiments were conducted.
The first experiment was performed on a DNN model with ore grade parameters, operating
parameters as inputs, and phosphorus content of pig iron as output. It can be represented
as DNN without uncontrollable variables (UV). The predicted results are shown in the first
row in Figure 12. The second experiment was also performed on a DNN model with ore
grade parameters, operating parameters, and detection variables as inputs and phosphorus
content of pig iron as output. It can be represented as DNN with UV. The predicted results
are shown in the second row in Figure 12. The third experiment was performed on a
βSER model with ore grade parameters, operating parameters, and detection variables
as inputs and phosphorus content of pig iron as output. According to the experimental
results, the key hyperparameters of the model, deep feature dimension, and balance
coefficient β were set as 5 and 0.8, respectively. The predicted results are shown in the
third row in Figure 12. The final experiment was performed on SERCAM with ore grade
parameters, operating parameters as inputs, and phosphorus content of pig iron as output.
The hyperparameters of the self-encoding feature extraction module are consistent with the
above βSER model. The number of samples of features corresponding to the uncontrollable
variables in the CAM module is set as 50. The predicted results are shown in the last row in
Figure 12. Each data point on the orange line in the plot is the mean of the 50 predicted
values. The orange shading denotes the distribution of the predictions. For the sake of
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observation, only 160 data on the test set are presented. RMSE of the models on the entire
test set are shown in Table 3. The hyperpameters of the models are shown in Table 4.
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Figure 12. The prediction results of different models under different input conditions. (a) the
prediction results of DNN without UV; (b) the prediction results of DNN with UV; (c) the prediction
results of βSER; (d) the prediction results of SERCAM.

Table 3. RMSE of the models.

DNN without UV DNN with UV βSER SERCAM

RMSE 0.0099 0.0084 0.0074 0.0089
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Table 4. Hyperpameters of the methods.

Models Hyperpameters

DNN without UV
Learning rate Hidden layers

0.001 64-128-32

DNN with UV
Learning rate Hidden layers

0.001 64-128-32

βSER
Learning rate β Encoder hidden layers Encoder feature dimension Decoder hidden layers Dense layers

0.001 0.8 64-128-64 5 64-128-64 64-128-64

SERCAM
βSER module

CAM module

Learning rate Hidden layers Gaussian components Num Sampling Num

Same as above 0.001 128-32 2 50

It can be seen that βSER can significantly improve the model prediction accuracy com-
pared with the general DNN model. Since the uncontrollable variables are not included as
inputs, the SERCAM model still has a slight disadvantage in prediction accuracy compared
to the models with the input of detection variables. However, SERCAM not only has higher
prediction accuracy compared to the DNN model without uncontrollable variables inputs
but also is capable of giving uncertainty estimates of the predicted values while ensuring
the controllability of the model inputs.

After the establishment of the prediction models, the optimization of the production
process can be carried out. Firstly, the phosphorus content of the pig iron is optimized with
conventional optimization method that ignores the uncontrollability of detection variables.
Take the DNN with the UV model as the fitness function of the Gray Wolf optimizer to
perform process optimization. The optimization method was simulated on the production
data of the ironmaking plant for 31 days in December 2021. The optimization results are
shown in Figure 13.
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Figure 13. Optimization results of the conventional method.

The shaded area in Figure 14 represents the distribution of the uncontrollable variables
consistent with the recommended operating parameters given by the optimization method
for the ore grade of the first three days of December. The symbols of the crosses in the
figure indicate the values of the recommended uncontrollable variables given by the
optimization algorithm.
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Figure 14. Inconsistency of operating parameters and detection variables recommended by the
conventional optimization method.

From the optimization results, it seems that the method has achieved excellent effects.
However, it can be seen from Figure 14 that the recommended operating parameters and
uncontrollable variables are not consistent. The recommended uncontrollable variables fall
on the edge or even outside of the distribution that is consistent with the recommended
operating parameters. This means that the optimization results shown in Figure 13 have
little or not even a probability of occurring.

The optimization results of the proposed method are shown in Figure 15. The SERCAM
model is used as the fitness function of the multi-objective gray wolf optimizer, and the
optimization is performed to find the smallest possible mean and standard deviation of the
phosphorus content of the pig iron.
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Figure 15. Optimization results of the proposed method.
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Figure 16a,b are the Pareto frontier solutions obtained by optimization for 4 and 11
December, respectively. The optimal solutions in Figure 15 are solutions with the smallest
mean among the frontier solutions. The pink shading in Figure 15 indicates the fluctuation
range of the optimization results. It can be seen that the proposed optimization method is
not only able to obtain the expected value of the optimization result but also the uncertainty
of the optimization solution. It makes the optimization method more reliable and valid
than the conventional methods.
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Figure 16. (a) The Pareto front solutions for 4 December given by the proposed method; (b) the Pareto
front solutions for 11 December.

5. Conclusions

In some industrial processes, information about uncontrollable variables is the key to
ensuring the accuracy of soft sensor models. In this paper, the unreliability of the conven-
tional data-driven meta-heuristic method for blast furnace production process optimization
is pointed out because it requires detection variables to assist in establishing a more ac-
curate fitness function, while the detection variables are not controllable. A consistency
optimization framework based on a controllability-assured soft sensor modeling method,
which improves the prediction accuracy by extracting the information of uncontrollable
variables while ensuring the controllability of model inputs, is proposed. Under the condi-
tion that uncontrollable variables are not used as input, the proposed method improves
the prediction accuracy of the model by extracting relevant information and realizes the
uncertainty estimation of the prediction target. The method transforms the original prob-
lem into a multi-objective optimization problem so that it has the ability to give both the
optimization solution and the reliability evaluation of the solution, and finally achieves the
reliable optimization of the blast furnace process. Then, the model was tested on the real
data set. In order to verify the performance of the proposed model, prediction experiments
were carried out under various input conditions and models. The results indicated that our
model achieved an outstanding performance. Moreover, optimization experiments are also
conducted to analyze the proposed method. The results also point out that the optimized
solution of our method is more reliable.

Uncertainty estimation is of great significance for the application of algorithms. Simple
theoretical results in a harsh industrial production environment can bring great uncertainty
to production. Only a reliable estimation of the uncertainty of the method can make
the method truly applicable. Therefore, in future works, we will focus on uncertainty
estimation of data-based modeling and optimization methods.
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