
Citation: Yoon, S.; Yu, H.-J. BPCNN:

Bi-Point Input for Convolutional

Neural Networks in Speaker

Spoofing Detection. Sensors 2022, 22,

4483. https://doi.org/10.3390/

s22124483

Academic Editor:

Julio Carabias-Orti

Received: 12 May 2022

Accepted: 7 June 2022

Published: 14 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

BPCNN: Bi-Point Input for Convolutional Neural Networks
in Speaker Spoofing Detection
Sunghyun Yoon 1 and Ha-Jin Yu 2,*

1 Department of Artificial Intelligence, Kongju National University, Cheonan 31080, Korea; syoon@kongju.ac.kr
2 School of Computer Science, University of Seoul, Seoul 02504, Korea
* Correspondence: hjyu@uos.ac.kr

Abstract: We propose a method, called bi-point input, for convolutional neural networks (CNNs)
that handle variable-length input features (e.g., speech utterances). Feeding input features into a
CNN in a mini-batch unit requires that all features in each mini-batch have the same shape. A set of
variable-length features cannot be directly fed into a CNN because they commonly have different
lengths. Feature segmentation is a dominant method for CNNs to handle variable-length features,
where each feature is decomposed into fixed-length segments. A CNN receives one segment as
an input at one time. However, a CNN can consider only the information of one segment at one
time, not the entire feature. This drawback limits the amount of information available at one time
and consequently results in suboptimal solutions. Our proposed method alleviates this problem
by increasing the amount of information available at one time. With the proposed method, a CNN
receives a pair of two segments obtained from a feature as an input at one time. Each of the two
segments generally covers different time ranges and therefore has different information. We also
propose various combination methods and provide a rough guidance to set a proper segment length
without evaluation. We evaluate the proposed method on the spoofing detection tasks using the
ASVspoof 2019 database under various conditions. The experimental results reveal that the proposed
method reduces the relative equal error rate (EER) by approximately 17.2% and 43.8% on average for
the logical access (LA) and physical access (PA) tasks, respectively.

Keywords: bidirectional feature segmentation; bi-point input; convolutional neural network (CNN);
spoofing detection; variable-length features

1. Introduction

Automatic speaker verification (ASV) is a technique to verify a user’s identity from
his or her utterances. It is convenient and has provided consistently low verification errors.
However, ASV is vulnerable to various spoofing attacks that attempt to deceive the system
and manipulate its results using a fake utterance. A spoofed utterance is one artificially
manipulated to sound like the target speaker’s utterance. Current spoofing attacks include
text-to-speech (TTS) synthesis, voice conversion (VC), and replay attacks. Although the
identity claim with spoofed utterance must be rejected for obviating the harms caused
by the impersonation, ASV may not be able to reject these claims because it is hard to
distinguish between a human being’s genuine utterance and the spoofed utterance.

The development of spoofing detection systems to address the shortcomings of ASV
has recently gained importance. Spoofing detection is a technique to protect ASV systems
from spoofing attacks by distinguishing between genuine and spoofed utterances. Spoofing
detection systems reject the identity claim with a spoofed utterance, regardless of how
similar the spoofed utterance is to the target speaker’s genuine utterance. For research
and development on spoofing detection techniques, ASV spoofing and countermeasure
(ASVspoof) challenges have been organized periodically [1–4]. In this paper, we focus on

Sensors 2022, 22, 4483. https://doi.org/10.3390/s22124483 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124483
https://doi.org/10.3390/s22124483
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3657-0665
https://doi.org/10.3390/s22124483
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124483?type=check_update&version=1

Sensors 2022, 22, 4483 2 of 21

ASVspoof 2019 [3], which first addresses all major types of spoofing attacks (i.e., TTS, VC,
and replay attack).

It is essential for spoofing detection to capture the differences of the frequency at-
tributes between genuine and spoofed utterances, regardless of the type of spoofing attack.
The frequency attributes of genuine and spoofed utterances differ [5,6]. Furthermore,
the discriminative attributes between genuine and spoofed utterances are spread across
the entire time domain of an utterance and there is no strong time dependency. This
locally connected information can be effectively modeled by convolutional neural networks
(CNNs) [7]. Accordingly, many cutting-edge spoofing detection systems are based on
CNNs [8–11].

Like other types of neural networks, a CNN is also trained in a mini-batch unit [12].
When feeding input features into a CNN in a mini-batch unit, all features in each mini-batch
must have the same size. However, the lengths of speech utterances differ because speakers
have different uttering styles, even if all speakers are constrained to utter only the same
phrase. Therefore, it is required that all input utterances (it is not limited to ‘utterance’ and
can correspond to any kind of sequence (e.g., a waveform signal, a sequence of acoustic
feature vectors), although we use the word ‘utterance’ in this sentence) have the same
length before we feed them into a CNN. There are several ways to make all input features
in each mini-batch have the same length, which can be categorized into three methods:
(1) padding only, (2) both padding and truncation, and (3) feature segmentation. Through-
out this paper, the target length refers to the length that all features in a mini-batch
must have.

The first method is to apply padding only, by repeating the feature’s own frames or
filling with zeros (i.e., zero-padding). In other words, there is no feature truncated. The
target length is set long enough (e.g., the length of the longest feature over the dataset) so
that no feature is longer than the target length, as in [13–15]. This method has the advantage
of no information loss caused by truncation. However, it causes a data redundancy problem
caused by padding because the padded frames are not novel but merely part of the original
frames (for the repeating) or common zero values that are meaningless (for the zero-
padding). Thus, padding brings the additional unnecessary information in terms of the
information diversity and novelty, which may not help improve classification. Furthermore,
this problem accompanies the increases in the computational burden and memory usage.
This side effect worsens as the standard deviation of the utterance lengths increases.

The second method is to apply both padding and truncation. The target length is set to
a moderate length, neither too long nor too short (e.g., the average length), as in [9,10,15–24].
Features shorter than the target length are padded and those longer than the target length
are truncated. This method has a relatively smaller computational burden and memory
usage than the first method. However, it causes the information distortion that is due to
both padding and truncation. The padding leads to the additional unnecessary information,
as described above, and truncation leads to the information loss because of not being able
to use truncated frames.

In [25], an on-the-fly data loader was proposed to handle variable-length input fea-
tures. It can be regarded as an extension of the aforementioned second method to enable
batch-wise variable-length training. For each iteration, the target length (common to all
the features in each mini-batch) and start points (for truncation only; different for each
input feature in a mini-batch) are randomly selected. This method achieved improved per-
formances on both text-independent speaker verification and language identification [25].
However, our findings reveal that the on-the-fly data loader was shown to be ineffective
for improving performance on spoofing detection, except in some cases. This issue will be
discussed in Section 5.2.

The third method is feature segmentation [8,11,26–29], which breaks each feature down
into fixed-length segments. The target length corresponds to the length of a segment. A
CNN receives one segment at one time rather than an entire feature. This method seems to
combine the benefits of the previous two methods. It can reduce the information distortion

Sensors 2022, 22, 4483 3 of 21

caused by padding and truncation. Therefore, it is a more flexible method in terms of the
difference in the utterance length. In this paper, we used the feature segmentation as a
baseline method.

However, segmentation has the shortcoming of the limitation on the amount of infor-
mation available at one time because a CNN can consider only one segment at one time,
not an entire feature. At least, but not limited in spoofing detection, this shortcoming is
detrimental to the performance. It is important for better detection to capture and model as
many the discriminative attributes in an input feature as possible, and then aggregate them
into a fixed-size embedding. Moreover, the discriminative attributes are spread across the
entire time domain, rather than being concentrated in certain time intervals, as mentioned
earlier. In other words, the feature segmentation is inevitable to reach suboptimal perfor-
mances on spoofing detection. This problem has made us take how to increase the amount
of information available at one time into consideration.

We had proposed a method called multiple points input for CNN [27]. The proposed
method increases the amount of information available at one time by feeding a pair of two
segments as an input to a CNN. It exhibited substantial reductions in detection error in the
ASVspoof 2019 PA scenario (i.e., replay attack detection task). Nonetheless, there are still
some issues worthy of further discussions in [27] because our previous experiments in [27]
were performed under restricted conditions: (1) the use of only one type of CNN-based
model, squeeze-and-excitation [30] residual network [31] (SE-ResNet), (2) a fixed target
length at 400 frames, and (3) evaluation only in the replay attack detection task. In this
paper, therefore, we present comprehensive experimental results conducted under various
conditions and in-depth analyses to verify the ability of the proposed method to reduce
the detection errors in various conditions. The contributions of this paper are summarized
as follows:

• Proposing a bi-point input for CNN (BPCNN). It feeds a pair of two segments, rather
than one segment, into a CNN at one time. The main advantage of BPCNN is to
increase the amount of the available information at one time with hardly changing the
CNN structure.

• Proposing various methods for combining the two segments in various levels: embedding-
level combination, feature map-level combination, and two-channel input.

• Evaluating the performances of the proposed method in both logical and physical
access tasks in various conditions and analyzing the effect and strength of the proposed
method via the ablation studies.

The structure of this paper is organized as follows. Section 2 outlines the conventional
feature segmentation method. Section 3 introduces the proposed method. Section 4
describes the experimental setup, and Section 5 analyzes the obtained results. Finally,
Section 6 concludes the paper.

2. Conventional Feature Segmentation

Feature segmentation is a method that decomposes all the variable-length features
into fixed-length segments along the time axis. Figure 1 and Algorithm 1 illustrate the
overview and pseudocode of conventional feature segmentation. Let X = [x0, . . . , xT−1] be
a sequence of T feature frames extracted from an utterance (e.g., log power spectrogram).
With the feature segmentation, X is divided into N segments {Fi}N−1

i=0 using a sliding
window of M(< T) frames length with L frames shift (this explanation is only for the
case of M < T. The case of M ≥ T will be discussed later.) All segments have the same
length of M, which is the target length. The number of segments N is different for each
feature, which is proportional to the feature length T. The i-th segment Fi corresponds to
the sequence of M frames that start from the iL-th frame xiL to the (iL + M− 1)-th frame
xiL+M−1, Fi = [xiL, . . . , xiL+M−1], where iL + M ≤ T for all i.

Sensors 2022, 22, 4483 4 of 21

Sensors 2022, 22, x FOR PEER REVIEW 4 of 22

to the sequence of 𝑀 frames that start from the 𝑖𝐿-th frame 𝐱௜௅ to the (𝑖𝐿 + 𝑀 − 1)-th
frame 𝐱௜௅ାெିଵ, 𝐅௜ = ሾ𝐱௜௅, … , 𝐱௜௅ାெିଵሿ, where 𝑖𝐿 + 𝑀 ≤ 𝑇 for all 𝑖.

Figure 1. The overview of the conventional feature segmentation when (left) 𝑀 < 𝑇 and (right) 𝑀 > 𝑇, where 𝐗 = ሾ𝐱଴, … , 𝐱்ିଵሿ is a feature with the length of 𝑇, 𝑀 is the segment length, 𝐿 is the
shift interval for segmentation, and 𝐅௜ is the 𝑖-th segment.

Algorithm 1 Pseudocode of Conventional Feature Segmentation
Input
 𝐗 = ሾ𝐱଴, … , 𝐱்ିଵሿ: A feature with the length of 𝑇
 𝑀: The segment length
 𝐿: The shift interval for segmentation
Output
 S: A list of the segments
1. if 𝑇 > 𝑀:
2. S = ሾ ሿ # Empty list
3. 𝑁 = ቔெ்ቕ # The quotient
4. 𝑟 = mod(𝑇 − 𝑀, 𝐿) # The remainder
5. for 𝑖 = 0 to 𝑁 − 1:
6. 𝐅௜ = ሾ𝐱௜௅, … , 𝐱௜௅ାெିଵሿ # The 𝑖-th segment
7. S. append(𝐅௜)
8. if 𝑟 > 0:
9. 𝐅ே = ሾ𝐱்ିெ, … , 𝐱்ିଵሿ # The last 𝑀 frames of 𝐗
10. S. append(𝐅ே)
11. return S
12. else if 𝑇 < 𝑀:
13. 𝐅଴ = pad(𝐗, 𝑀) # Set 𝐗 to have the length of 𝑀
14. return ሼ𝐅଴ሽ
15. else: # The case of 𝑇 == 𝑀
16. 𝐅଴ = 𝐗 # 𝐗 itself becomes a segment
17. return ሼ𝐅଴ሽ

We do not consider a unified feature map approach [11,16,22] for segmentation. In
the unified feature map approach, all features are first extended to have the same length
that are sufficiently long (e.g., usually the length of the longest feature over the dataset)
before segmentation. Therefore, all features have the same number of segments regardless
of their original lengths. However, we empirically found no significant difference in
detection error between with and without the unified feature map. Nonetheless, our
approach (i.e., without the unified feature map) is more efficient in terms of data
redundancy and computational amount and memory usage. This is why the unified
feature map approach is not considered throughout this paper.

The following two issues should be considered to implement the feature
segmentation. The first issue is how to handle the features shorter than or equal to the
target length (i.e., 𝑀 ≥ 𝑇), where segmentation cannot be applied. As described above,

Figure 1. The overview of the conventional feature segmentation when (left) M < T and (right)
M > T, where X = [x0, . . . , xT−1] is a feature with the length of T, M is the segment length, L is the
shift interval for segmentation, and Fi is the i -th segment.

Algorithm 1 Pseudocode of Conventional Feature Segmentation

Input
X = [x0, . . . , xT−1]: A feature with the length of T
M: The segment length
L: The shift interval for segmentation

Output
S: A list of the segments

1. if T > M:
2. S = [] # Empty list
3. N =

⌊
M
T

⌋
The quotient

4. r = mod(T −M, L) # The remainder
5. for i = 0 to N − 1:
6. Fi = [xiL, . . . , xiL+M−1] # The i-th segment
7. S.append(Fi)
8. if r > 0:
9. FN = [xT−M, . . . , xT−1] # The last M frames of X
10. S.append(FN)
11. return S
12. else if T < M:
13. F0 = pad(X, M) # Set X to have the length of M
14. return{F0}
15. else: # The case of T == M
16. F0 = X # X itself becomes a segment
17. return{F0}

We do not consider a unified feature map approach [11,16,22] for segmentation. In the
unified feature map approach, all features are first extended to have the same length that
are sufficiently long (e.g., usually the length of the longest feature over the dataset) before
segmentation. Therefore, all features have the same number of segments regardless of
their original lengths. However, we empirically found no significant difference in detection
error between with and without the unified feature map. Nonetheless, our approach
(i.e., without the unified feature map) is more efficient in terms of data redundancy and
computational amount and memory usage. This is why the unified feature map approach
is not considered throughout this paper.

The following two issues should be considered to implement the feature segmentation.
The first issue is how to handle the features shorter than or equal to the target length
(i.e., M ≥ T), where segmentation cannot be applied. As described above, M should be
set to a moderate length, neither too long nor too short. In most cases, therefore, there
are some features shorter than M. In our approach, we extend the features shorter than
M to have the length of M by padding M− T frames from those features. If the number

Sensors 2022, 22, 4483 5 of 21

of additionally required frames M − T is below the target length T (i.e., M − T < T),
a padded segment F0 is obtained by padding the first M − T frames of X at the end
of X, F0 = pad(X, M) = [x0, . . . , xT−1, x0, . . . , xM−T−1] = [X, x0, . . . , xM−T−1]. Otherwise
(i.e., M − T ≥ T), F0 is defined as Q =

⌊
M
T

⌋
times repeat of X followed by the first

M−QT frames of X, F0 = pad(X, M) =
[
X, . . . , X, x0, . . . , xM−QT−1

]
. When M = T, F0 just

corresponds to X itself. In turn, there is only one segment F0 for the feature whose length is
shorter than or equal to M.

The second issue is how to handle the remaining frames fewer than M after segmenta-
tion. For each feature of which the length is T(> M), there are R = mod(T −M, L) frames
left after segmentation, where mod(a, b) is the modulo operation with the dividend a and
divisor b. We also use the remaining R frames to exploit complete frames. When R > 0, take
an additional segment corresponding to the last M frames of X, regardless of the number of
remainder frames R. This segment is defined as the last segment FN = [xT−M, . . . , xT−1].

In the training phase of the proposed method, each segment is treated as individual
data, regardless of which feature the segment was obtained from. Even so, all segments
obtained from a feature share the same class label. For instance, when the class label of a
feature X is c, all the segments {Fi}N−1

i=0 from X also have the class label c. In the evaluation
phase, the score (e.g., log probability of the genuine class) of each feature is calculated by
aggregating (e.g., averaging) the scores of all the segments obtained from the feature.

3. The Proposed Method

The proposed method alleviates the problem of the conventional method that the
available information at one time is limited because CNN takes only one segment Fi at one
time. The proposed method consists of two steps: (1) bidirectional feature segmentation
(cf., unidirectional feature segmentation in the conventional method) and (2) bi-point input
(cf., one-point input in the conventional method).

3.1. Bidirectional Feature Segmentation

In the conventional feature segmentation described in Section 2, a feature is decom-
posed along only one direction: the positive time direction. In contrast, in the proposed
method, a feature is decomposed along two opposite directions: the positive and negative
time directions. It is inspired by the bidirectional recurrent neural network (BRNN) [32].
BRNNs are developed to increase the amount of available information. They can obtain
twice as much information as standard RNNs, using the information in both the forward
(responsible for the positive time direction) and backward (responsible for the negative
time direction) sequences.

Figure 2 and Algorithm 2 illustrate the overview and pseudocode of bidirectional
feature segmentation. Given a feature X = [x0, . . . , xT−1], bidirectional feature segmentation
is processed in two steps: forward and backward steps. The forward step is identical to
conventional feature segmentation. In the forward step, X is divided by moving the sliding
window, of which the length and shift interval are M(≤ T) and L, respectively, along
the positive time direction (i.e., from 0 to T − 1) to obtain N forward segments {Fi}N−1

i=0 .
The i-th forward segment Fi is [xiL, . . . , xiL+M−1], as explained in Section 2. In contrast,
in the backward step, X is divided by moving the sliding window along the negative
time direction (i.e., from T − 1 to 0). After the backward step is complete, we can obtain

N backward segments {Bi}N−1
i=0 . Let

~
X = [xT−1, . . . , x0] be the flipped order of X. The i-th

backward segment Bi is [xT−iL−1, . . . , xT−iL−M], where iL + M ≤ T for all i.

Sensors 2022, 22, 4483 6 of 21Sensors 2022, 22, x FOR PEER REVIEW 6 of 22

Figure 2. The overview of the proposed bidirectional feature segmentation when (left) 𝑀 < 𝑇 and
(right) 𝑀 > 𝑇, where 𝐗 = ሾ𝐱଴, … , 𝐱்ିଵሿ is a feature with the length of 𝑇, 𝑀 is the segment length,
and 𝐅௜ and 𝐁௜ are the 𝑖-th forward and backward segments, respectively.

Algorithm 2 Pseudocode of Bidirectional Feature Segmentation
Input
 𝐗 = ሾ𝐱଴, … , 𝐱்ିଵሿ: A feature with the length of 𝑇 𝐗෩ = ሾ𝐱்ିଵ, … , 𝐱଴ሿ: The flipped order of 𝐗
 𝑀: The segment length
 𝐿: The shift interval for segmentation
Output
 S: A list of the segment pairs
1. if 𝑇 > 𝑀:
2. S = ሾ ሿ # Empty list
3. 𝑁 = ቔெ்ቕ # The quotient
4. 𝑟 = mod(𝑇 − 𝑀, 𝐿) # The remainder
5. for 𝑖 = 0 to 𝑁 − 1:
6. 𝐅௜ = ሾ𝐱௜௅, … , 𝐱௜௅ାெିଵሿ # The 𝑖-th forward segment
7. 𝐁௜ = ሾ𝐱்ି௜௅ିଵ, … , 𝐱்ି௜௅ିெሿ # The 𝑖-th backward segment
8. S. append(〈𝐅௜, 𝐁௜〉)
9. if 𝑟 > 0:
10. 𝐅ே = ሾ𝐱்ିெ, … , 𝐱்ିଵሿ # The last 𝑀 frames of 𝐗
11. 𝐁ே = ሾ𝐱ெିଵ, … , 𝐱଴ሿ # The last 𝑀 frames of 𝐗෩
12. S. append(〈𝐅௜, 𝐁௜〉)
13. return S
14. else if 𝑇 < 𝑀:
15. 𝐅଴ = pad(𝐗, 𝑀) # Set 𝐗 to have the length of 𝑀
16. 𝐁଴ = pad൫𝐗෩, 𝑀൯ # Set 𝐗෩ to have the length of 𝑀
17. return ሼ〈𝐅௜, 𝐁௜〉ሽ
18. else: # The case of 𝑇 == 𝑀
19. 𝐅଴ = 𝐗 # 𝐗 itself becomes a forward segment
20. 𝐁଴ = 𝐗෩ # 𝐗 itself becomes a backward segment
21. return ሼ〈𝐅௜, 𝐁௜〉ሽ

When 𝑀 > 𝑇 , one forward segment 𝐅଴ and one backward segment 𝐁଴ can be
obtained without segmentation, as in the conventional method. The method of obtaining
the forward segment 𝐅଴ is identical to the conventional method. The backward segment 𝐁଴ can be obtained as follows. If 𝑀 − 𝑇 < 𝑇, where 𝑀 − 𝑇 corresponds to the number of
additionally required frames, 𝐁଴ is obtained by padding the first 𝑀 − 𝑇 frames of 𝐗෩ at
the end of 𝐗෩, 𝐁଴ = pad൫𝐗෩, 𝑀൯ = ሾ𝐱்ିଵ, … , 𝐱଴, 𝐱்ିଵ, … , 𝐱ଶ்ିெሿ (the first 𝑀 − 𝑇 frames of 𝐗෩
correspond to the last 𝑀 − 𝑇 frames of 𝐗 with the flipped order of frames,

Figure 2. The overview of the proposed bidirectional feature segmentation when (left) M < T and
(right) M > T, where X = [x0, . . . , xT−1] is a feature with the length of T, M is the segment length,
and Fi and Bi are the i -th forward and backward segments, respectively.

Algorithm 2 Pseudocode of Bidirectional Feature Segmentation

Input
X = [x0, . . . , xT−1]: A feature with the length of T
~
X = [xT−1, . . . , x0]: The flipped order of X
M: The segment length
L: The shift interval for segmentation

Output
S: A list of the segment pairs

1. if T > M:
2. S = [] # Empty list
3. N =

⌊
M
T

⌋
The quotient

4. r = mod(T −M, L) # The remainder
5. for i = 0 to N − 1:
6. Fi = [xiL, . . . , xiL+M−1] # The i-th forward segment
7. Bi = [xT−iL−1, . . . , xT−iL−M] # The i-th backward segment
8. S.append(Fi, Bi)
9. if r > 0:
10. FN = [xT−M, . . . , xT−1] # The last M frames of X
11. BN = [xM−1, . . . , x0] # The last M frames of

~
X

12. S.append(Fi, Bi)
13. return S
14. else if T < M:
15. F0 = pad(X, M) # Set X to have the length of M

16. B0 = pad
(

~
X, M

)
Set

~
X to have the length of M

17. return {Fi, Bi}
18. else: # The case of T == M

19. F0 = X
X itself becomes a forward

segment

20. B0 =
~
X

X itself becomes a backward
segment

21. return {Fi, Bi}

When M > T, one forward segment F0 and one backward segment B0 can be obtained
without segmentation, as in the conventional method. The method of obtaining the forward
segment F0 is identical to the conventional method. The backward segment B0 can be ob-
tained as follows. If M − T < T, where M − T corresponds to the number of addition-

ally required frames, B0 is obtained by padding the first M− T frames of
~
X at the end of

~
X,

B0 = pad
(

~
X, M

)
= [xT−1, . . . , x0, xT−1, . . . , x2T−M] (the first M− T frames of

~
X correspond to

Sensors 2022, 22, 4483 7 of 21

the last M− T frames of X with the flipped order of frames, [xT−1, . . . , x2T−M], where

2T−M = T− (M− T)) Otherwise (i.e., M−T ≥ T), B0 is defined as Q =
⌊

M
T

⌋
times repeat of

~
X

followed by the first M−QT frames of
~
X, B0 = pad

(
~
X, M

)
=

[
~
X, . . . ,

~
X, xT−1, . . . , x(Q+1)T−M

]
(the first M−QT frames of

~
X correspond to the last M−QT frames of X with the flipped order of

frames,
[
xT−1, . . . , x(Q+1)T−M

]
, where (Q+ 1)T−M = T− (M−QT)) For the case of M = T,

B0 just corresponds to
~
X itself.

If there are remaining R frames after bidirectional feature segmentation, the last
forward segment FN is defined the same as in conventional feature segmentation. Similarly,

the last backward segment BN is defined as the last M frames of
~
X, BN = [xM−1, . . . , x0].

All the other conditions not described are the same as those in conventional fea-
ture segmentation. For example, the class label of the feature is also shared for all
backward segments.

3.2. Bi-Point Input

With bidirectional feature segmentation, we can obtain two sets of segments from an ut-
terance: a set of forward segments {Fi}N−1

i=0 and a set of backward segments {Bi}N−1
i=0 . With

bi-point input, the i-th forward segment Fi forms a pair with the i-th backward segment Bi.
Therefore, there are N pairs of segments. The CNN receives one pair (i.e., two segments,
Fi and Bi) as an input at one time, rather than only one (forward) segment. Therefore,
the amount of available information at one time becomes up to double. The amount of
available information with the bi-point input is usually less than twice the conventional one-
point input method because the time ranges of Fi and Bi could be partially or completely
overlapped for some i (e.g., around the middle of the feature) under our approach. The
wider the overlapped range, the less the gain in the increase in the amount of information
available at one time.

It is reasonable that each pair consists of Fi and Bi, not Fi and the (N − 1− i)-th
backward segment BN−1−i. Recall that the primary purpose of the bi-point input is to
increase the amount of information available at one time. If the i-th pair is made up
of Fi = [xiL, . . . , xiL+M−1] and BN−1−i = [xiL+M−1, . . . , xiL] (for a brief explanation, we
assume there is no remainder frame after segmentation, that is, R = mod(T −M, L) = 0,
but even if R > 0, the increased amount of information available at one time is negligible
and has little effect on reducing the detection error), both segments in each pair (i.e., Fi
and BN−1−i) always cover the exact same time range. The only difference between the two
segments is the frame order. It indicates that both segments in each pair always have the
same information. In this case, therefore, it is difficult to increase the amount of information
available at one time. Even if the detection error is reduced, it may be due to the data
augmentation based on flipping the time order of feature, rather than the increase in the
available information at one time. We will discuss this issue in detail in Section 5.2.

Recall that Fi and Bi have the opposite frame order (explained in Section 3.1), which
not only avoids meaningless operations but also has the side effect of data augmentation.
Although Fi and Bi in a same pair generally cover the different time ranges, there could
be some cases where Fi and Bi cover the same time range at certain i (e.g., around the
middle of the feature), as mentioned above. When Fi and Bi cover the same time range,
their outputs are exactly the same if they have the same frame order. In this case, feeding
Fi and Bi together is merely a redundancy of meaningless operations, which is not the
increase in the available information at one time nor data augmentation. This problem
can be avoided by making the frame orders of Fi and Bi opposite, although the available
information at one time still cannot be increased. As long as the frame orders are opposite,
Fi and Bi can be treated as different features for CNN, even if they cover exactly the same
time range. Notice that the words ‘different features’ do not mean that Fi and Bi have
different information, but mean that they just have (slightly) different output values.

Sensors 2022, 22, 4483 8 of 21

Figure 3 illustrates the overall frameworks of (a) the conventional system (i.e., based
on conventional feature segmentation and one-point input) and (b–d) the proposed systems
(i.e., based on bidirectional feature segmentation and bi-point input). The differences
between the conventional and proposed systems are highlighted in blue shade. In the
proposed systems, both segments in a pair are fed into the same CNN, which indicates
that the CNN parameters are shared across both segments. The results from each of the
segments in a pair are combined before being fed into the classifier. From a pair of two
segments, therefore, we obtain one score value, not two.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 22

Figure 3 illustrates the overall frameworks of (a) the conventional system (i.e., based
on conventional feature segmentation and one-point input) and (b–d) the proposed
systems (i.e., based on bidirectional feature segmentation and bi-point input). The
differences between the conventional and proposed systems are highlighted in blue
shade. In the proposed systems, both segments in a pair are fed into the same CNN, which
indicates that the CNN parameters are shared across both segments. The results from each
of the segments in a pair are combined before being fed into the classifier. From a pair of
two segments, therefore, we obtain one score value, not two.

Figure 3. The framework of (a) conventional and (b–d) proposed systems, where GAP stands for
global average pooling, Combine (b,c) stands for one of the appropriate combination methods
(described in Sections 3.2.1 and 3.2.2, respectively), and 𝐅௜ and 𝐁௜ are the 𝑖 -th forward and
backward segments, respectively. The proposed systems consist of (b) embedding-level
combination, (c) feature-map level combination, and (d) two-channel input. The modules for the
proposed method are marked in blue.

We propose several methods to combine the results from the two segments in a pair,
including the methods used in [8,27,29]. These are designed considering that most CNN-
based models are composed in the following order of modules: CNN, a global average
pooling (GAP) layer, and a classifier. The GAP layer transforms 𝐶 feature maps of size (𝐶 × 𝐻 × 𝑊) into a vector of size 𝐶 by averaging along each channel, where 𝐶 is the
number of channels. The methods are categorized into four methods, depending on where
the combination is performed within the networks.

3.2.1. Embedding-Level Combination
Figure 3b illustrates the embedding-level combination method. We used the output

of GAP layer as embedding. In this method, two embeddings obtained from each pair of
segments are combined to form one embedding. The combined embedding is then fed
into the classifier. We combine the two embeddings with three approaches: concatenating
(denoted as concat), element-wise maximum (denoted as vmax), and element-wise
averaging (denoted as vmean). Let 𝐮 = ሾ𝑢ଵ, … , 𝑢஽ሿ் and 𝐯 = ሾ𝑣ଵ, … , 𝑣஽ሿ் be two
embedding vectors, and 𝐰 = ሾ𝑤ଵ, … , 𝑤஽ሿ் be the output. vmax computes the element-
wise maximum, so the output 𝐰 becomes 𝐰 = max(𝐮, 𝐯), where 𝑤௜ = max(𝑢௜, 𝑣௜). vmean
computes the element-wise average, so the output 𝐰 becomes 𝐰 = 0.5(𝐮 + 𝐯) (i.e., just
vector addition followed by scalar multiplication), where 𝑤௜ = 0.5(𝑢௜ + 𝑣௜) . The
dimensionality of the combined embedding is doubled when using concat, indicating that
the number of parameters for the classifier has doubled. In contrast, when using vmax or
vmean, the combined embedding has the same dimensionality as each original
embedding, so no additional parameter is required.

3.2.2. Feature Map-Level Combination
Figure 3c illustrates the feature-map-level combination method. The output of the

CNN module with the shape of (𝐶 × 𝐻 × 𝑊) corresponds to a set of 𝐶 feature maps,

Figure 3. The framework of (a) conventional and (b–d) proposed systems, where GAP stands for
global average pooling, Combine (b,c) stands for one of the appropriate combination methods
(described in Sections 3.2.1 and 3.2.2, respectively), and Fi and Bi are the i -th forward and backward
segments, respectively. The proposed systems consist of (b) embedding-level combination, (c) feature-
map level combination, and (d) two-channel input. The modules for the proposed method are marked
in blue.

We propose several methods to combine the results from the two segments in a
pair, including the methods used in [8,27,29]. These are designed considering that most
CNN-based models are composed in the following order of modules: CNN, a global
average pooling (GAP) layer, and a classifier. The GAP layer transforms C feature maps of
size (C× H ×W) into a vector of size C by averaging along each channel, where C is the
number of channels. The methods are categorized into four methods, depending on where
the combination is performed within the networks.

3.2.1. Embedding-Level Combination

Figure 3b illustrates the embedding-level combination method. We used the output
of GAP layer as embedding. In this method, two embeddings obtained from each pair of
segments are combined to form one embedding. The combined embedding is then fed
into the classifier. We combine the two embeddings with three approaches: concatenating
(denoted as concat), element-wise maximum (denoted as vmax), and element-wise averaging
(denoted as vmean). Let u = [u1, . . . , uD]

T and v = [v1, . . . , vD]
T be two embedding

vectors, and w = [w1, . . . , wD]
T be the output. vmax computes the element-wise maximum,

so the output w becomes w = max(u, v), where wi = max(ui, vi). vmean computes
the element-wise average, so the output w becomes w = 0.5(u + v) (i.e., just vector
addition followed by scalar multiplication), where wi = 0.5(ui + vi). The dimensionality
of the combined embedding is doubled when using concat, indicating that the number
of parameters for the classifier has doubled. In contrast, when using vmax or vmean, the
combined embedding has the same dimensionality as each original embedding, so no
additional parameter is required.

Sensors 2022, 22, 4483 9 of 21

3.2.2. Feature Map-Level Combination

Figure 3c illustrates the feature-map-level combination method. The output of the
CNN module with the shape of (C× H ×W) corresponds to a set of C feature maps, where
C is the number of output channels of the last convolution layer in the module, and H
and W are the height and width of each feature map, respectively. Two sets of feature
maps can be obtained from two segments in a pair. We combine these two feature maps
using an element-wise maximum (denoted as fmax). We do not consider other operations
for combination, such as concatenating and element-wise averaging per channel, because
concatenating and element-wise averaging at the feature map level produce the same
results as those at the embedding level (i.e., concat and vmean, respectively).

3.2.3. Two-Channel Input

Figure 3d illustrates the two-channel input method. Most acoustic features from
utterances in the form of spectrograms, corresponding to a CNN input in many cases,
are in 2D matrix form with the shape of (H ×W). Such a 2D matrix can be viewed
as a 3D tensor with the shape of (1× H ×W), where the number of channels is 1. We
propose the two-channel input method (denoted as 2ch), where two segments in a pair are
concatenated along the channel axis to form one 3D tensor with the shape of (2× H ×W).
This concatenated 3D tensor is then used as a CNN input. For receiving an input with two
channels, the number of kernels of the first convolution layer of the CNN module must be
doubled. Consequently, the number of parameters for the first convolution layer doubles.

The CNN designed for one-channel inputs can also receive two-channel inputs without
increasing the number of kernels by sharing the kernels across all input channels (denoted
as 2ch_s). In this method, therefore, the number of parameters is not changed. However,
we do not consider the 2ch_s method because of its lower gain in reducing detection error.
The comparison of the detection errors of 2ch and 2ch_s will be discussed in the last part
of Section 5.2.

3.2.4. Statistics-Level Combination

The statistics-level combination method is only for an x-vector network [33,34], one of
the models used in our experiments. Because the x-vector network cannot receive inputs
with multiple channels, the feature map-level combination and two-channel input methods
cannot be used with the x-vector network.

Accordingly, we propose another statistics-level combination method (denoted as
statc) that can be used only for the x-vector network. The statistics pooling layer originally
computes the statistics (e.g., mean and standard deviation) over all the M output frames
from one (forward) segment. In contrast, with the statc method, the statistics pooling layer
computes the statistics over 2M output frames, of which some M frames are from a forward
segment and the other M frames are from a backward segment.

4. Experiments
4.1. Database

We used the ASVspoof 2019 database [35]. It includes two task scenarios: logical
access (LA) and physical access (PA).

The LA scenario addresses the spoofing attacks generated by TTS synthesis and
VC. It is divided into the training (2580 genuine and 22,800 spoofed speeches), devel-
opment (2548 genuine and 22,296 spoofed speeches), and evaluation (7355 genuine and
63,882 spoofed speeches) sets. The utterance length is approximately 3.25 s on average
and ranges from 0.47 to 13.19 s with a standard deviation of 1.47. Figure 4a illustrates the
histogram of the utterance lengths in the LA scenario.

Sensors 2022, 22, 4483 10 of 21

Sensors 2022, 22, x FOR PEER REVIEW 10 of 22

ranges from 1.46 to 10.32 s with a standard deviation of 1.2. Figure 4b illustrates the
histogram of the utterance lengths in the PA scenario.

The training sets were used to build spoofing detection systems. The development
sets were used to validate the detection errors of the systems for every epoch. The
evaluation sets were used to evaluate the detection error rates of the system.

Figure 4. The histogram of the utterance lengths in ASVspoof (a) LA and (b) PA scenarios.

4.2. Experimental Setup
We used a 257-dimensional log power spectrogram as input feature for all types of

CNNs used in our experiments. For each utterance, 25 ms frames were extracted at 10 ms
intervals. The frame-level preprocessing was performed in the following order: removing
the DC offset, pre-emphasis filtering with a coefficient of 0.97, and applying the Hamming
window. The number of fast Fourier transform (FFT) points was 512. We performed
neither voice activity detection (VAD) [36] nor cepstral mean and variance normalization
(CMVN) for the spectrogram. The Kaldi toolkit [37] was used to extract the feature.

For segmentation, we set the length of segment 𝑀 to 200 (corresponding to 2 s), 400
(corresponding to 4 s), and 600 (corresponding to 6 s). Approximately 81%, 25%, and 5%
of utterances in the LA subset are longer than 2, 4, and 6 s, respectively. Approximately
99%, 56%, and 8% of utterances in the PA subset are longer than 2, 4, and 6 s, respectively.
The shift interval 𝐿 was half of 𝑀, which is based on the claim in [26] that segmentation
with overlap generally outperforms that without overlap (i.e., 𝐿 = 𝑀).

We used six types of CNN-based models to build spoofing detection systems: SE-
ResNet, x-vector network, dense convolutional network (DenseNet) [38], MobileNetV2
[39], ShuffleNetV2 [40], and MNASNet [41] designed using an approach of automated
mobile neural architecture search (MNAS). All models used in our experiments have a
fully connected (FC) softmax classifier at the top. The number of classes is three (i.e.,
genuine, TTS, and VC) for the LA, and two (i.e., genuine and replayed) for the PA.
AMSGrad [42], a variant of the Adam [43] optimizer, was used to minimize cross-entropy
loss. The hyper-parameters for the optimizer were as follows: a learning rate of 10ିଷ, 𝛽ଵ = 0.9, 𝛽ଶ = 0.999, 𝜖 = 10ି଼, and a weight decay of 10ିସ. All weights were initialized
from the He normal distribution [44] and no bias was used. We trained the networks for
100 epochs with a mini-batch size of 64. PyTorch [45] with the torchvision.models package
was used to implement the systems.

We used the equal error rate (EER) as the evaluation metric. The lower the EER, the
lower the detection error. For the LA, where the number of classes is three, the score of
each segment was defined as the log probability of the genuine class log 𝑝௚(𝑥) ,
corresponding to the log-softmax output for that class. For the PA, where the number of
classes is two, the score of each segment was defined as the log ratio of the spoof

Figure 4. The histogram of the utterance lengths in ASVspoof (a) LA and (b) PA scenarios.

The PA scenario addresses the spoofing attacks generated by replay attack meth-
ods. It is divided into the training (5400 genuine and 48,600 spoofed speeches), develop-
ment (5400 genuine and 24,300 spoofed speeches), and evaluation (18,090 genuine and
116,640 spoofed speeches) sets. The utterance length is approximately 4.28 s on average
and ranges from 1.46 to 10.32 s with a standard deviation of 1.2. Figure 4b illustrates the
histogram of the utterance lengths in the PA scenario.

The training sets were used to build spoofing detection systems. The development sets
were used to validate the detection errors of the systems for every epoch. The evaluation
sets were used to evaluate the detection error rates of the system.

4.2. Experimental Setup

We used a 257-dimensional log power spectrogram as input feature for all types of
CNNs used in our experiments. For each utterance, 25 ms frames were extracted at 10 ms
intervals. The frame-level preprocessing was performed in the following order: removing
the DC offset, pre-emphasis filtering with a coefficient of 0.97, and applying the Hamming
window. The number of fast Fourier transform (FFT) points was 512. We performed neither
voice activity detection (VAD) [36] nor cepstral mean and variance normalization (CMVN)
for the spectrogram. The Kaldi toolkit [37] was used to extract the feature.

For segmentation, we set the length of segment M to 200 (corresponding to 2 s),
400 (corresponding to 4 s), and 600 (corresponding to 6 s). Approximately 81%, 25%, and
5% of utterances in the LA subset are longer than 2, 4, and 6 s, respectively. Approximately
99%, 56%, and 8% of utterances in the PA subset are longer than 2, 4, and 6 s, respectively.
The shift interval L was half of M, which is based on the claim in [26] that segmentation
with overlap generally outperforms that without overlap (i.e., L = M).

We used six types of CNN-based models to build spoofing detection systems: SE-ResNet,
x-vector network, dense convolutional network (DenseNet) [38], MobileNetV2 [39], Shuf-
fleNetV2 [40], and MNASNet [41] designed using an approach of automated mobile neural
architecture search (MNAS). All models used in our experiments have a fully connected
(FC) softmax classifier at the top. The number of classes is three (i.e., genuine, TTS, and VC)
for the LA, and two (i.e., genuine and replayed) for the PA. AMSGrad [42], a variant of the
Adam [43] optimizer, was used to minimize cross-entropy loss. The hyper-parameters for
the optimizer were as follows: a learning rate of 10−3, β1 = 0.9, β2 = 0.999, ε = 10−8, and
a weight decay of 10−4. All weights were initialized from the He normal distribution [44]
and no bias was used. We trained the networks for 100 epochs with a mini-batch size of 64.
PyTorch [45] with the torchvision.models package was used to implement the systems.

We used the equal error rate (EER) as the evaluation metric. The lower the EER, the
lower the detection error. For the LA, where the number of classes is three, the score of each
segment was defined as the log probability of the genuine class log pg(x), corresponding
to the log-softmax output for that class. For the PA, where the number of classes is two, the
score of each segment was defined as the log ratio of the spoof probability to the genuine

Sensors 2022, 22, 4483 11 of 21

probability, log pg(x)− log ps(x). The score of each utterance is computed by averaging
the scores of all the segments in the utterance.

5. Results
5.1. Experimental Results and Discussion

Table 1 presents the EERs of the baseline and proposed systems on the development
and evaluation trials of ASVspoof 2019 LA and PA tasks. For each system (corresponding to
the combination of model and method), we selected the one among 100 epochs that exhibited
the lowest EER in the development trials. As guidance, the lowest EERs in the evaluation
trials (i.e., the oracle EERs) were additionally reported in Appendix A. The Fusion method
indicates the score-level fusion of all the proposed systems using simply summation. Unless
otherwise noted, the explanations are focused on the results of the evaluation trials.

Table 1. EERs (%) of systems on the development and evaluation trials of ASVspoof 2019 LA and PA
scenarios. For each model, the lowest EER is highlighted in bold (comparison including Fusion) or is
underlined (comparison excluding Fusion).

Model Method

LA PA

M = 200 M = 400 M = 600 M = 200 M = 400 M = 600

Dev. Eval. Dev. Eval. Dev. Eval. Dev. Eval. Dev. Eval. Dev. Eval.

SE-ResNet

Baseline 0 14.099 0 10.388 0 12.551 2.152 3.197 0.811 1.255 0.519 0.985
concat 0 15.486 0 11.148 0 9.410 1.261 2.641 0.370 0.945 0.612 1.007
vmax 0 13.635 0 12.157 0 10.633 1.279 2.118 0.704 1.327 0.998 1.975
vmean 0 13.637 0 9.081 0 12.211 1.573 3.300 0.593 1.337 0.926 1.702
fmax 0 15.812 0 9.868 0 13.353 1.388 2.875 0.534 1.105 0.484 0.934
2ch 0 13.923 0 11.434 0 12.498 2.538 4.378 0.597 1.063 0.316 0.912

Fusion 0 13.131 0 9.001 0 10.236 0.737 1.940 0.261 0.653 0.168 0.614

X-vector
Network
(TDNN)

Baseline 0.009 17.321 0 13.395 0 6.947 3.965 8.297 1.797 3.538 0.908 1.664
concat 0.009 15.690 0 7.900 0 6.718 1.762 3.964 0.667 1.520 0.834 1.366
vmax 0 14.750 0.002 8.171 0 8.811 1.296 3.936 0.721 1.072 0.721 1.056
vmean 0.082 16.558 0 11.081 0 7.763 2.170 3.897 0.797 1.708 0.856 1.520
statc 0.040 16.927 0 8.620 0.002 12.143 2.037 3.892 0.926 1.752 0.797 1.156

Fusion 0.004 14.451 0 8.389 0 8.552 0.628 2.205 0.444 0.950 0.610 0.902

DenseNet

Baseline 0 16.232 0 10.130 0 9.818 2.296 3.155 0.850 1.360 0.337 0.713
concat 0 12.120 0 7.139 0 11.405 0.854 1.593 0.353 0.658 0.296 0.580
vmax 0 11.109 0 10.744 0 8.743 0.700 1.116 0.366 0.857 0.222 0.492
vmean 0 12.509 0 12.628 0 12.158 1.090 1.708 0.296 0.564 0.238 0.476
fmax 0 14.279 0 14.535 0 11.828 0.630 1.609 0.333 0.845 0.242 0.508
2ch 0 13.963 0 9.258 0 11.951 2.164 2.798 0.370 0.956 0.226 0.542

Fusion 0 11.027 0 7.410 0 10.023 0.444 0.885 0.148 0.425 0.129 0.303

MobileNetV2

Baseline 0 19.511 0 11.299 0 8.292 2.667 4.666 1.076 2.233 0.409 0.785
concat 0 13.584 0 8.307 0 10.414 1.649 3.466 0.667 1.597 0.386 0.878
vmax 0 12.794 0 10.223 0 8.767 1.333 3.217 1.022 2.206 0.279 0.872
vmean 0 12.387 0 8.280 0 10.416 1.185 2.996 0.799 1.873 0.501 1.039
fmax 0 13.433 0 9.950 0 8.768 1.076 3.228 0.756 1.592 0.388 0.928
2ch 0 14.167 0 10.727 0 8.537 1.889 4.533 0.337 0.962 0.279 0.901

Fusion 0 10.809 0 7.815 0 8.363 0.741 2.387 0.407 0.978 0.185 0.520

ShuffleNetV2

Baseline 0 20.479 0 11.748 0 11.051 4.170 4.374 1.392 2.255 0.904 1.382
concat 0 13.664 0 9.433 0 8.849 1.240 2.161 0.462 0.917 0.388 0.867
vmax 0 19.443 0 10.265 0 10.007 1.146 2.102 0.503 0.823 0.388 0.746
vmean 0 17.975 0 9.705 0 9.912 1.390 2.366 0.335 0.869 0.353 0.696
fmax 0 18.204 0 9.571 0 10.048 1.094 2.123 0.514 1.128 0.412 0.779
2ch 0.002 19.798 0 10.472 0.038 9.764 2.168 3.737 0.739 1.260 0.593 0.951

Fusion 0 13.923 0 8.744 0 8.620 0.760 1.581 0.279 0.603 0.207 0.492

MNASNet

Baseline 0 19.050 0 10.608 0 11.205 2.263 5.052 0.834 2.232 0.353 0.995
concat 0 11.652 0 10.249 0 11.624 1.207 3.570 0.255 0.912 0.370 0.614
vmax 0 17.362 0 11.895 0 11.107 1.630 4.416 0.353 1.156 0.168 0.718
vmean 0 14.333 0 7.207 0 8.863 1.316 4.388 0.279 1.321 0.164 0.685
fmax 0 15.894 0 7.570 0 11.327 1.037 3.642 0.316 0.969 0.152 0.615
2ch 0 17.933 0 9.341 0 10.331 1.540 3.687 0.409 1.238 0.240 0.857

Fusion 0 13.705 0 7.029 0 9.463 0.663 2.732 0.148 0.636 0.094 0.359

Sensors 2022, 22, 4483 12 of 21

The experimental results in Table 1 indicate that the proposed method outperforms
the conventional feature segmentation on spoofing detection, both the LA and PA tasks.
In most cases, the proposed method exhibited lower EERs than the baseline with suitable
combination methods, regardless of the type of model, segment length M, and task. There
is an exceptional case where the proposed method failed to reduce EER for MobileNetV2
with M = 600. This result is mainly due to the limitation of the validation (especially for the
LA task), rather than the proposed method’s ineffectiveness at reducing the EER. This issue
is explained in Appendix A. Our experiments provide evidence that the discriminative
attributes between genuine and spoofed utterances are spread across the entire time domain,
rather than concentrated primarily in some specific ranges, as stated in Section 1. The
performance would not be improved with the proposed method if the discriminative
attributes were concentrated in some specific time ranges. However, even if the attributes
are spread over the entire time, we could not get lower EERs if the attributes in different
time ranges do not have distinct information in terms of the detection. Therefore, the
proposed method is efficient for the cases where the distinct information is spread across
the entire time domain, such as spoofing detection.

We discuss the results in Table 1 with respect to the segment length M. The longer
the M, the lower the EERs in most cases for both baseline and proposed systems. It is
consistent with our intuition that the longer segment has more information than the shorter
segment (if M becomes even longer (e.g., thousands of frames or more), EER could become
saturated, but we do not compare with the cases where M is extremely long because it
is rarely considered because of the limited computing power and memory usage). Some
exceptional cases were observed for the LA task where the EERs were increased on average,
although M lengthened from 400 to 600: with SE-ResNet, DenseNet (only with the proposed
methods), and MNASNet. These cases are discussed in Appendix A.

We compared the baseline with a target length Mb and the proposed methods with
the target length Mp shorter than Mb (i.e., Mp < Mb). For Mb = 400 and Mp = 200, it
could be expected that the proposed systems exhibit similar EERs to the baseline systems,
because the total numbers of frames fed at one time are the same. Following the same logic,
it also could be expected for Mb = 600 and Mp = 400 that the proposed systems exhibit
lower EERs to the baseline systems because the total number of frames fed at one time
is greater with the proposed systems than the baseline systems. However, the proposed
systems with Mp = 200 generally exhibited EERs higher than those of the baseline systems
with Mb = 400. The proposed systems with Mp = 400 exhibited slightly lower but similar
levels of EERs as the baseline systems with Mb = 600 on average. Recall that the amount
of information with the proposed method is usually less than twice the amount with the
baseline method because of the partially overlapped time ranges, as described in Section 3.2.
Accordingly, the above results are acceptable and do not undermine our expectation that
the longer M, the more available information at one time, and thus the lower the EERs.

The above results illustrated that the effectiveness of the proposed method on reducing
EERs depends on M. We empirically found that the proposed method was more effective
at reducing EER as M was closer to the average length. For M = 200, 33 out of the
35 proposed systems (including Fusion) exhibited lower EERs than the baseline in both the
LA and PA tasks. The EERs were reduced on average by approximately 17.2% (−12.1% to
44.6%) for the LA task and 35.6% (−36.9% to 73.4%) for the PA task. For M = 400, 28 and
33 out of the 35 proposed systems exhibited lower EERs than the baseline in the LA and PA
tasks, respectively. The EERs were reduced on average by approximately 13.4% (−43.5% to
41%) for the LA task and 43.8% (−6.5% to 73.3%) for the PA task. When M is longer than
the average, the proposed method exhibited a lower gain in reducing EER. For M = 600,
18 out of the 35 proposed systems exhibited higher EERs than the baseline for the LA task.
The EERs for the LA task increased on average by approximately 2.7% (i.e., decreased
approximately −2.7%, range from −74.8% to 25%) when using the proposed method. For
the PA task, 27 out of the 35 proposed systems exhibited lower EERs than the baseline. The
EERs were reduced on average by approximately 18.2% (−100.5% to 64.4%). The proposed

Sensors 2022, 22, 4483 13 of 21

method was most effective for reducing EER when M = 200 for the LA task and when
M = 400 for the PA task. These results can be interpreted as follows. For the features longer
than M, the proposed method enables the CNN to consider more information at one time.
In contrast, the proposed method has a negligible effect for features shorter than M because
the CNN already considers the information of the complete feature at one time for these
short features, even without the proposed method. Thus, for the features shorter than M,
there is no longer room to increase the amount of information available at one time.

We provide a rough guidance to set a proper M when using the proposed method
without evaluation by defining the additional gain α = Mρ, where ρ is the proportion
of the number of the features longer than M in the dataset (stated in Section 4.2). For
the LA dataset, where the average number of frames is 325, α = 200× 0.81 = 162 when
M = 200 (i.e., 81% of features have frames more than 200), α = 400× 0.25 = 100 when
M = 400 (i.e., 25% of features have frames more than 400), and α = 600× 0.05 = 30 when
M = 600 (i.e., 5% of features have frames more than 600). The average EER reductions are
approximately 17.2%, 13.4%, and −2.7% (i.e., the EERs were increased by approximately
2.7% on average) when M = 200, M = 400, and M = 600, respectively. For the PA dataset,
where the average number of frames is 428, α = 200× 0.99 = 198 when M = 200 (i.e., 99%
of features have frames more than 200), α = 400× 0.56 = 224 when M = 400 (i.e., 56% of
features have frames more than 400), and α = 600× 0.08 = 48 when M = 600 (i.e., 8% of
features have frames more than 600). The average EER reductions are approximately 35.6%,
43.8%, and 18.2% when M = 200, M = 400, and M = 600, respectively. It is reasonable to
infer that the higher the α, the higher the efficiency of the proposed method on reducing
EER. Therefore, we recommend considering α to find a proper value of M when using the
proposed method.

Next, we discuss the results in terms of the combination method. Contrary to our
prediction that some specific combination methods would achieve lower EERs than others,
there is no consistent tendency in terms of the combination method. Instead, the optimal
combination method (i.e., the methods that showed the EER underlined in Table 1) differed
for each case. Furthermore, in many cases, there were mismatches in the optimal combina-
tion method between the development and evaluation trials, although the other conditions
(e.g., model, M, and task) were the same. Although Fusion achieved the lowest EER in most
cases or EERs close to the lowest, it is inefficient because it requires multiple networks with
different combination methods. Therefore, it is encouraged to develop a new combination
method to achieve stable performances (e.g., consistent tendency across trials/conditions),
left for future research.

5.2. Ablation Study

Throughout this paper, we have claimed that the proposed method reduces detection
errors by increasing the amount of information available at one time. In this section, we
support this claim through additional experiments in the following three factors: time
range, flipping, and randomness of target length. We set the segment length M to 400 for
all the experiments.

In Section 3.2, we doubted whether the proposed method still can reduce the detection
errors when two segments in a pair always cover the same time range. To solve this
doubt, we first compared the EERs between the proposed systems and its variations
where both segments in a pair always cover the same time range (denoted as ST). Table 2
illustrates the oracle EERs of systems with the proposed method and ST for the LA and
PA tasks, respectively. We focus on the results in the evaluation trials. If the detection
errors are reduced even with ST, as with the proposed method, we no longer claim that
the mechanism of the proposed method reducing the errors is to increase the amount of
information available at one time. Instead, it might be because flipping the frame order has
an effect of data augmentation, which led to the error reduction.

Sensors 2022, 22, 4483 14 of 21

Table 2. Oracle EERs (%) of systems on the development and evaluation trials of ASVspoof 2019 LA
and PA scenarios, with the proposed and ST methods. For each model, the lowest EER is highlighted
in bold.

Model Method

LA PA

Proposed ST Proposed ST

Dev. Eval. Dev. Eval. Dev. Eval. Dev. Eval.

SE-ResNet

concat 0 7.967 0 8.484 0.370 0.708 1.329 1.835
vmax 0 9.517 0 8.989 0.704 1.327 0.983 1.520
vmean 0 9.081 0 9.012 0.593 1.156 0.945 1.414
fmax 0 7.576 0 8.893 0.534 1.105 1.238 1.913
2ch 0 9.261 0 7.941 0.597 1.040 1.403 1.896

average 0 8.680 0 8.664 0.560 1.067 1.180 1.716

X-vector
Network
(TDNN)

concat 0 6.352 0 8.267 0.667 1.493 1.760 3.108
vmax 0.002 6.741 0.004 8.674 0.721 1.027 1.630 2.665
vmean 0 7.804 0 10.524 0.797 1.497 1.817 3.814
statc 0 6.309 0 9.488 0.926 1.581 1.630 2.924

average 0.001 6.802 0.001 9.238 0.778 1.400 1.709 3.128

DenseNet

concat 0 6.868 0 6.472 0.353 0.542 0.908 1.194
vmax 0 6.717 0 6.499 0.366 0.719 1.133 1.414
vmean 0 7.981 0 7.108 0.296 0.564 1.148 1.587
fmax 0 7.628 0 5.944 0.333 0.702 0.908 1.332
2ch 0 7.828 0 7.548 0.370 0.796 0.737 0.961

average 0 7.404 0 6.714 0.344 0.665 0.967 1.298

MobileNetV2

concat 0 6.067 0 6.717 0.667 1.398 1.004 2.034
vmax 0 7.439 0 5.710 1.022 2.150 0.595 1.731
vmean 0 7.533 0 8.239 0.799 1.847 1.037 2.311
fmax 0 6.186 0 6.172 0.756 1.371 0.815 1.979
2ch 0 6.242 0 7.738 0.337 0.935 0.980 2.217

average 0 6.693 0 6.915 0.716 1.540 0.886 2.054

ShuffleNetV2

concat 0 6.609 0 9.166 0.462 0.885 1.649 1.924
vmax 0 7.032 0 6.564 0.503 0.823 1.630 2.299
vmean 0 6.405 0 7.136 0.335 0.869 1.353 2.278
fmax 0 7.454 0 7.330 0.514 1.061 1.294 1.869
2ch 0 8.786 0 8.144 0.739 1.227 1.702 2.846

average 0 7.257 0 7.668 0.511 0.973 1.526 2.243

MNASNet

concat 0 6.080 0 6.079 0.255 0.774 0.908 1.974
vmax 0 5.398 0 5.452 0.353 0.818 0.651 1.951
vmean 0 5.384 0 7.098 0.279 0.923 0.963 2.427
fmax 0 4.840 0 4.756 0.316 0.846 0.776 2.095
2ch 0 6.840 0 6.349 0.409 1.039 0.926 2.869

average 0 5.708 0 5.947 0.322 0.880 0.845 2.263

For the LA task, the proposed method exhibited lower EERs than ST, approximately
3.2% on average (−30.3% to 33.5%). Compared with the baseline, the proposed method
exhibited lower EERs, approximately 8.2% on average, where 23 out of 29 proposed systems
(except average) achieved the lower EERs. ST exhibited lower EERs than the baseline,
approximately 2.5% on average, where 14 out of 29 systems exhibited the lower EERs
with ST. Contrary to our prediction, there was no dominant performance gap between the
proposed method and ST, albeit these results are still in accordance with our claim on the
mechanism of the proposed method.

Unlike in the LA task, ST does not helpfully reduce EER at all for the PA task. The
proposed method exhibited considerably lower EERs than ST for all cases, except the
system of the MobileNetV2 with vmax. The EERs of the proposed methods are significantly
lower than those of ST, approximately 46% on average (−24.2% to 64.5%). Moreover,
compared with the baseline, the 27 out of 29 systems exhibited lower EERs when using the

Sensors 2022, 22, 4483 15 of 21

proposed method, approximately 43.2% on average, whereas 13 out of 29 systems exhibited
lower EERs when using ST than the baseline, approximately merely 6.3% on average.

To further analyze the effect of the flipping the frame order, we conducted additional
experiments to compare the oracle EERs between the baseline, proposed, backward-only
(denoted as BO), and data-augmented (denoted as Augment) systems. BO is a variant of
the baseline where only the backward segments Bi were used in both the training and
evaluation phases, not the forward segments Fi. Augment is identical to the baseline, but
the total quantity of data is exactly twice the baseline in both the training and evaluation
phases. These doubled amounts of data correspond to all the forward and backward
segments, obtained by bidirectional feature segmentation. Augment treats two segments in
each pair as individual data, not receiving them at one time. Therefore, the baseline, BO,
and Augment have the same amount of information available at one time.

Table 3 presents the oracle EERs of the baseline, proposed, BO, and Augment systems
in the development and evaluation trials of the LA and PA tasks. For the proposed
systems, we presented the average of the EERs obtained with each combination method
(excluding Fusion).

Table 3. Oracle EERs (%) of systems in the development and evaluation trials of ASVspoof 2019 LA
and PA, with four different methods (i.e., baseline, BO, Augment, and proposed). For each model, the
lowest EER is highlighted in bold.

Model Method
LA PA

Dev. Eval. Dev. Eval.

SE-ResNet

Baseline 0 8.211 0.811 1.255
BO 0 8.347 1.279 1.763

Augment 0 7.940 1.316 2.443
Proposed 0 8.680 0.560 1.067

X-vector
Network
(TDNN)

Baseline 0 8.157 1.797 3.538
BO 0 9.557 1.464 2.858

Augment 0 10.415 1.595 4.145
Proposed 0 6.802 0.778 1.400

DenseNet

Baseline 0 9.095 0.850 1.360
BO 0 6.705 1.131 1.581

Augment 0 6.947 1.094 1.713
Proposed 0 7.404 0.344 0.776

MobileNetV2

Baseline 0 7.695 1.076 1.885
BO 0 7.791 0.945 1.763

Augment 0 7.043 0.926 2.521
Proposed 0 6.693 0.716 1.540

ShuffleNetV2

Baseline 0 7.303 1.392 2.102
BO 0 8.985 1.514 2.024

Augment 0 6.293 1.499 2.549
Proposed 0 7.257 0.511 0.973

MNASNet

Baseline 0 6.092 0.834 2.224
BO 0 6.960 0.834 2.100

Augment 0 7.400 0.867 2.632
Proposed 0 5.708 0.322 0.880

For the evaluation trials of the LA task, both BO and Augment exhibited higher EERs
than the proposed systems on average, higher by approximately 14.9% (−9.4% to 40.5%)
and 10% (−13.3% to 53.1%), respectively. Compared to the baseline systems, BO ex-
hibited higher EERs, approximately 5.2% (−26.3% to 23%) on average. Augment ex-
hibited almost the same EERs on average as the baseline, lower by only approximately
0.01% (−27.7 to 23.6%).

For the PA task, the proposed method always exhibited the lowest EERs by large mar-
gins. In the development trials, BO exhibited higher EERs on average, by approximately

Sensors 2022, 22, 4483 16 of 21

11.5% (−18.5% to 57.7%) and 138.8% (32% to 228.8%) than the baseline and proposed
systems, respectively. Augment exhibited higher EERs on average, by approximately
12.9% (−13.9% to 62.3%) and 141.7% (29.3% to 218%) than the baseline and proposed sys-
tems, respectively. In the evaluation trials, BO exhibited higher EERs on average, by
approximately 3.6% (−19.2% to 40.5%) and 89% (14.5% to 138.6%) than the baseline and
proposed systems, respectively. Augment exhibited higher EERs on average, by approxi-
mately 35.2% (17.2% to 94.7%) and 145.1% (63.7% to 199.1%) than the baseline and proposed
systems, respectively.

As presented in Tables 2 and 3, it can be observed that the proposed method generally
exhibited lower EERs than ST, BO, and Augment in both the LA and PA tasks. In the LA task,
the average performance gains with ST, BO, Augment, and the proposed method compared
to the baseline are 2.5%, −5.2%, 0.01%, and 8.2%, respectively. In the evaluation trials of the
PA task, the average performance gains with ST, BO, Augment, and the proposed method
compared to the baseline are 6.3%, −3.6%, −35.2%, and 46%, respectively. These results
support the claim that it is important to increase the amount of available information at
one time for robust spoofing detection. The proposed method can satisfy this requirement,
which is difficult, by merely flipping the frame order.

The next experiment compares the EERs of 2ch and 2ch_s, introduced in Section 3.2.4.
Table 4 presents the oracle EERs of systems on the development and evaluation trials of the
LA and PA tasks. The x-vector network was excluded in this experiment because it cannot
receive a multi-channel input, as explained in Section 3.2.3.

Table 4. Oracle EERs (%) of systems (excluding the x-vector network) in the development and
evaluation trials of ASVspoof 2019 LA and PA, with the methods of 2ch and 2ch_s. For each model,
the lowest EER is highlighted in bold.

Model Method
LA PA

Dev. Eval. Dev. Eval.

SE-ResNet
2ch 0 9.261 0.597 1.040

2ch_s 0 8.226 0.996 1.731

DenseNet
2ch 0 7.828 0.370 0.796

2ch_s 0 9.257 1.203 1.527

MobileNetV2
2ch 0 6.242 0.337 0.935

2ch_s 0 8.267 0.869 1.863

ShuffleNetV2
2ch 0 8.786 0.739 1.227

2ch_s 0 7.775 1.538 1.958

MNASNet
2ch 0 6.840 0.409 1.039

2ch_s 0 8.620 0.869 1.885

For the LA task, 2ch_s exhibited higher EERs than 2ch in the evaluation trials, by
approximately 10.8% on average (−11.2% to 32.4%). Three of the five models exhibited
lower EERs with 2ch than with 2ch_s.

For the PA task, 2ch_s exhibited distinctly higher EERs than 2ch, regardless of the
model. It exhibited approximately 134.1% (66.8% to 225.1%) and 79.7% (59.6% to 99.3%)
higher EERs in the development and evaluation trials, respectively. 2ch exhibited lower
EERs than 2ch_s. Consistent with our expectation, this is due to the additional parameters
that provide different modeling from the existing parameters at the input feature level.

The last experiments were conducted to demonstrate that the proposed method is
better than on-the-fly data loader on spoofing detection, as introduced in Section 1. Table 5
illustrates the oracle EERs of the baseline, on-the-fly data loader (denoted as OTF), and
proposed systems in the development and evaluation trials of the LA and PA tasks. For
the on-the-fly data loader, we sampled the target length for each iteration from a uniform
distribution on the interval [200, 600] to match the average number of frames that CNNs
take at one time with the baseline.

Sensors 2022, 22, 4483 17 of 21

Table 5. Oracle EERs (%) of systems in the development and evaluation trials of ASVspoof 2019 LA
and PA, with three different methods (i.e., baseline, OTF, and proposed). For each model, the lowest
EER is highlighted in bold.

Model Method
LA PA

Dev. Eval. Dev. Eval.

SE-ResNet
Baseline 0 8.211 0.811 1.255

OTF 0 9.626 1.292 1.787
Proposed 0 8.680 0.560 1.067

X-vector
Network
(TDNN)

Baseline 0 8.157 1.797 3.538
OTF 0.002 8.158 1.723 3.455

Proposed 0 6.802 0.778 1.400

DenseNet
Baseline 0 9.095 0.850 1.360

OTF 0 7.162 1.111 1.393
Proposed 0 7.404 0.344 0.776

MobileNetV2
Baseline 0 7.695 1.076 1.885

OTF 0 7.163 1.111 2.498
Proposed 0 6.693 0.716 1.540

ShuffleNetV2
Baseline 0 7.303 1.392 2.102

OTF 0 10.200 1.589 2.493
Proposed 0 7.257 0.511 0.973

MNASNet
Baseline 0 6.092 0.834 2.224

OTF 0 5.914 0.996 2.709
Proposed 0 5.708 0.322 0.880

For the evaluation trials of the LA task, the proposed systems showed relatively
10.3% (−3.4% to 28.9%) lower EERs than OTF on average. Compared to the baseline sys-
tems, OTF exhibited higher EERs, approximately 4.3% (−21.3% to 39.7%) on average,
whereas the proposed systems exhibited lower EERs, approximately 8.2% (−5.7% to 18.6%),
than the baseline systems on average.

For the PA task, the proposed method showed relatively 58.6% (35.6% to 69%) and
51.8% (38.4% to 67.5%) lower EERs than OTF on average in the development and evalu-
ation trials, respectively. Compared to the baseline systems, OTF exhibited higher EERs,
approximately 20.4% (−4.1% to 59.3%) and 19.2% (−2.3% to 42.4%) on average, in the
development and evaluation trials, respectively. In contrast, the proposed systems showed
significantly lower EERs, approximately 50.9% (30.9% to 63.3%) and 41.8% (15% to 60.4%)
on average, in the development and evaluation trials, respectively.

6. Conclusions

We proposed a bi-point input method based on bidirectional feature segmentation.
It enables CNNs that receive variable-length inputs to increase the amount of available
information at one time. Each feature is decomposed into two sets of segments (i.e., for-
ward and backward segment sets) along two directions (i.e., positive and negative time
directions). Then, the CNN receives a pair of two segments (i.e., one forward segment
and one backward segment) as an input at one time. We also evaluated various combina-
tion methods. The results from both segments are combined using one of the proposed
combination methods before being fed into the final classifier to aggregate the information
from both segments. The proposed method achieved lower EERs than the conventional
method on both the LA and PA tasks of ASVspoof 2019, while minimizing changes in the
network structure. Based on these results, we claim that the proposed method with suitable
combination methods can function as robust spoofing detection systems by increasing the
amount of information available at one time. We also provided a rough guidance to set a
proper segment length without evaluation.

Sensors 2022, 22, 4483 18 of 21

In the future, we will extend the proposed method to receive more than two segments
at one time, for a further reduction in detection errors. To achieve a stable performance
without the fusion, we will investigate how to aggregate the information in all the pairs of
segments more efficiently. Moreover, we will apply our proposed method to different tasks,
such as speaker verification, acoustic scene classification, and others that use different types
of time-series input other than audio. We predict that the proposed method would also
benefit tasks where the discriminative attributes between the classes are spread across the
entire time domain, like spoofing detection.

Author Contributions: Conceptualization, S.Y.; methodology, S.Y.; formal analysis, S.Y.; investigation,
S.Y.; writing—original draft preparation, S.Y.; writing—review and editing, H.-J.Y.; supervision, H.-J.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a research grant from Kongju National University in 2022.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. The Oracle Evaluation Results

Table A1 presents the oracle EERs of the baseline and proposed systems in the eval-
uation trials, where each system is the one among 100 epochs that exhibited the lowest
EER in the evaluation trials rather than the development trials (i.e., Table 1). As already
depicted in Table 1 in Section 5.1, almost all of the development EERs of the LA task were
zero, even though the evaluation EERs were considerably far from zero. Furthermore, most
systems easily achieved zero development EER for the LA task for most epochs. These
results indicate it is easy to achieve zero EER for the development trials of the LA task, even
with inadequate systems in the evaluation trials. Therefore, especially for the LA task, there
is a limitation that model selection based on the development EER could be prone to failing
to choose adequate systems in the evaluation trials. Consequently, even if the proposed
system selected based on the development EERs presents a worse EER than the baseline in
the evaluation trials, it is difficult to assert that the increase in the EER with the proposed
method is due to whether the method is ineffective or a poor-performing system is chosen.
Therefore, it is encouraged to interpret the results from the validation in the development
trial (Table 1) with reference to the oracle results (Table A1), especially for the LA task.

In Section 5.1, we saw that there were exceptional cases for the LA task with SE-ResNet,
DenseNet, and MNASNet. The first two cases are due to the limitation of the validation.
Contrary to the EERs depicted in Table 1, the oracle EERs (i.e., in Table A1) were lower
when M = 600 than when M = 400, like most other cases. For the case of MNASNet,
however, even the oracle EERs were still higher when M = 600 than when M = 400. Further
investigations should be conducted to understand this exception case. On average, the
oracle evaluation EERs are relatively lower than the evaluation EERs shown in Table 1, by
approximately 29.2% (18.4% to 46.2%) and 10% (2.1% to 21.6%) for the LA and PA tasks,
respectively. It means that the validation based on the development trials has the limitation
to select proper systems for the LA task, as our expectation. Overall, similar trends were
observed between Tables 1 and A1. For example, the proposed method shows lower EERs
than the baseline with suitable combination methods, but there is no consistent tendency
in terms of the combination method. In addition, the proposed method is more effective
to reduce EER as M is closer to the average length. These are common trends observed
in both Tables 1 and A1. There is one opposite trend with Table 1 on the LA task that
the proposed method showed higher oracle EERs than the baseline for SE-ResNet with
M = 600, regardless of the combination method.

Sensors 2022, 22, 4483 19 of 21

Table A1. Oracle EERs (%) of systems on the evaluation trials of ASVspoof 2019 LA and PA scenarios.
For each model, the lowest EER is highlighted in bold (comparison including Fusion) or is underlined
(comparison excluding Fusion).

Model Method
LA PA

M = 200 M = 400 M = 600 M = 200 M = 400 M = 600

SE-ResNet

Baseline 11.655 8.211 7.195 3.197 1.255 0.901
concat 10.156 7.967 7.956 2.127 0.708 1.007
vmax 10.102 9.517 7.480 2.118 1.327 1.503
vmean 10.605 9.081 8.226 2.599 1.156 1.526
fmax 10.536 7.576 10.510 2.304 1.105 0.896
2ch 11.543 9.261 8.019 3.282 1.040 0.790

Fusion 10.335 8.038 7.313 1.643 0.619 0.553

X-vector
Network
(TDNN)

Baseline 13.680 8.157 5.830 8.297 3.538 1.408
concat 12.618 6.352 5.820 3.964 1.493 1.166
vmax 11.013 6.741 7.396 3.936 1.027 1.028
vmean 13.068 7.804 6.349 3.626 1.497 1.248
statc 12.071 6.309 7.028 3.555 1.581 1.156

Fusion 10.428 6.171 5.112 1.879 0.885 0.768

DenseNet

Baseline 10.986 9.095 7.127 2.675 1.360 0.702
concat 10.129 6.868 6.378 1.393 0.542 0.557
vmax 8.484 6.717 6.841 1.116 0.719 0.492
vmean 10.075 7.981 7.699 1.708 0.564 0.469
fmax 9.762 7.628 6.881 1.470 0.702 0.493
2ch 9.966 7.828 6.497 2.510 0.796 0.486

Fusion 8.688 5.901 5.626 0.763 0.392 0.276

MobileNetV2

Baseline 9.939 7.695 7.507 4.223 1.885 0.785
concat 8.513 6.067 7.775 2.593 1.398 0.878
vmax 8.987 7.439 5.138 2.769 2.150 0.714
vmean 9.029 7.533 7.599 2.587 1.847 0.967
fmax 9.720 6.186 5.806 2.029 1.371 0.874
2ch 9.669 6.242 8.279 3.344 0.935 0.692

Fusion 7.017 5.748 4.961 1.664 1.006 0.510

ShuffleNetV2

Baseline 17.919 7.303 6.744 4.374 2.102 1.283
concat 12.101 6.609 6.812 2.102 0.885 0.790
vmax 14.004 7.032 7.939 2.102 0.823 0.691
vmean 15.892 6.405 6.637 2.366 0.869 0.696
fmax 12.397 7.454 8.840 2.123 1.061 0.768
2ch 15.309 8.786 6.706 3.444 1.227 0.951

Fusion 10.904 6.578 5.695 1.542 0.579 0.485

MNASNet

Baseline 9.384 6.092 8.064 4.019 2.224 0.857
concat 8.554 6.080 9.680 3.097 0.774 0.614
vmax 8.403 5.398 5.682 3.384 0.818 0.526
vmean 9.027 5.384 5.970 2.935 0.923 0.525
fmax 8.539 4.840 7.709 3.185 0.846 0.525
2ch 8.403 6.840 7.575 3.582 1.039 0.452

Fusion 6.839 4.690 5.998 2.188 0.542 0.321

References
1. Wu, Z.; Kinnunen, T.; Evans, N.; Yamagishi, J.; Hanilci, C.; Sahidullah, M.; Sizov, A. ASVspoof 2015: The first automatic speaker

verification spoofing and countermeasures challenge. In Proceedings of the Sixteenth Annual Conference of the International
Speech Communication Association, Dresden, Germany, 6–10 September 2015; pp. 1–5.

2. Kinnunen, T.; Sahidullah, M.; Delgado, H.; Todisco, M.; Evans, N.; Yamagishi, J.; Lee, K.A. The ASVspoof 2017 challenge:
Assessing the limits of replay spoofing attack detection. In Proceedings of the 18th Annual Conference of the International Speech
Communication Association, Stockholm, Sweden, 20–24 August 2017; pp. 1–6.

3. Todisco, M.; Wang, X.; Vestman, V.; Sahidullah, M.; Delgado, H.; Nautsch, A.; Yamagishi, J.; Evans, N.; Kinnunen, T.; Lee, K.A.
ASVspoof 2019: Future horizons in spoofed and fake audio detection. arXiv 2019, arXiv:1904.05441.

Sensors 2022, 22, 4483 20 of 21

4. Yamagishi, J.; Wang, X.; Todisco, M.; Sahidullah, M.; Patino, J.; Nautsch, A.; Liu, X.; Lee, K.A.; Kinnunen, T.; Evans, N.; et al.
ASVspoof 2021: Accelerating progress in spoofed and deepfake speech detection. In Proceedings of the 2021 Edition of the
Automatic Speaker Verification and Spoofing Countermeasures Challenge, Online, 16 September 2021; pp. 47–54.

5. Kamble, M.R.; Patil, H.A. Novel energy separation based instantaneous frequency features for spoof speech detection. In
Proceedings of the 2017 25th European Signal Processing Conference, Kos, Greece, 26 October 2017; pp. 106–110.

6. Yoon, S.-H.; Koh, M.-S.; Park, J.-H.; Yu, H.-J. A new replay attack against automatic speaker verification systems. IEEE Access
2020, 8, 36080–36088. [CrossRef]

7. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

8. Yoon, S.; Yu, H.-J. Multiple-point input and time-inverted speech signal for the ASVspoof 2021 challenge. In Proceedings of
the 2021 Edition of the Automatic Speaker Verification and Spoofing Countermeasures Challenge, Online, 16 September 2021;
pp. 37–41.

9. Tomilov, A.; Svishchev, A.; Volkova, M.; Chirkovskiy, A.; Kondratev, A.; Lavrentyeva, G. STC antispoofing systems for the
ASVspoof2021 challenge. In Proceedings of the 2021 Edition of the Automatic Speaker Verification and Spoofing Countermeasures
Challenge, Online, 16 September 2021; pp. 61–67.

10. Chen, X.; Zhang, Y.; Zhu, G.; Duan, Z. UR channel-robust synthetic speech detection system for ASVspoof 2021. In Proceedings
of the 2021 Edition of the Automatic Speaker Verification and Spoofing Countermeasures Challenge, Online, 16 September 2021;
pp. 75–82.

11. Benhafid, Z.; Selouani, S.A.; Yakoub, M.S.; Amrouche, A. LARIHS ASSERT reassessment for logical access ASVspoof 2021
challenge. In Proceedings of the 2021 Edition of the Automatic Speaker Verification and Spoofing Countermeasures Challenge,
Online, 16 September 2021; pp. 94–99.

12. LeCun, Y.; Bottou, A.; Orr, G.B.; Muller, K.R. Efficient backprop. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 9–48.

13. Lai, C.; Abad, A.; Richmond, K.; Yamagishi, J.; Dehak, N.; King, S. Attentive filtering networks for audio replay attack detection.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brighton, UK,
12–17 May 2019; pp. 6316–6320.

14. Wang, H.; Dinkel, H.; Wang, S.; Qian, Y.; Yu, K. Cross-domain replay spoofing attack detection using domain adversarial training.
In Proceedings of the Interspeech 2019, Graz, Austria, 15–19 September 2019; pp. 2938–2942.

15. Yoon, S.-H.; Yu, H.-J. A simple distortion-free method to handle variable length sequences for recurrent neural networks in text
dependent speaker verification. Appl. Sci. 2020, 10, 4092. [CrossRef]

16. Cai, W.; Wu, H.; Cai, D.; Li, M. The DKU replay detection system for the ASVspoof 2019 challenge: On data augmentation,
feature representation, classification, and fusion. In Proceedings of the Interspeech 2019, Graz, Austria, 15–19 September 2019;
pp. 1023–1027.

17. Lavrentyeva, G.; Novoselov, S.; Tseren, A.; Volkova, M.; Gorlanov, A.; Kozlov, A. STC antispoofing systems for the ASVspoof2019
challenge. In Proceedings of the Interspeech 2019, Graz, Austria, 15–19 September 2019; pp. 1033–1037.

18. Alzantot, M.; Wang, Z.; Srivastava, M.B. Deep residual neural networks for audio spoofing detection. In Proceedings of the
Interspeech 2019, Graz, Austria, 15–19 September 2019; pp. 1078–1082.

19. Wu, H.; Liu, S.; Meng, H.; Lee, H. Defense against adversarial attacks on spoofing countermeasures of ASV. In Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020;
pp. 6564–6568.

20. von Platen, P.; Tao, F.; Tur, G. Multi-task Siamese neural network for improving replay attack detection. In Proceedings of the
Interspeech, Shanghai, China, 26–29 October 2020; pp. 1076–1080.

21. Parasu, P.; Epps, J.; Sriskandaraja, K.; Suthokumar, G. Investigating Light-ResNet architecture for spoofing detection under
mismatched conditions. In Proceedings of the Interspeech, Shanghai, China, 26–29 October 2020; pp. 1111–1115.

22. Monteiro, J.; Alam, J.; Falk, T.H. A multi-condition training strategy for countermeasures against spoofing attacks to speaker
recognizers. In Proceedings of the Odyssey Speaker Language Recognition Workshop, Tokyo, Japan, 1–5 November 2020;
pp. 296–303.

23. Halpern, B.M.; Kelly, F.; van Son, R.; Alexander, A. Residual networks for resisting noise: Analysis of an embedding-based
spoofing countermeasures. In Proceedings of the Odyssey Speaker Language Recognition Workshop, Tokyo, Japan, 1–5 November
2020; pp. 326–332.

24. Chettri, B.; Kinnunen, T.; Benetos, E. Subband modeling for spoofing detection in automatic speaker verification. In Proceedings
of the Odyssey Speaker Language Recognition Workshop, Tokyo, Japan, 1–5 November 2020; pp. 341–348.

25. Cai, W.; Chen, J.; Zhang, J.; Li, M. On-the-fly data loader and utterance-level aggregation for speaker and language recognition.
IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1038–1051. [CrossRef]

26. Lai, C.; Chen, N.; Villalba, J.; Dehak, N. ASSERT: Anti-spoofing with squeeze-excitation and residual networks. In Proceedings of
the Interspeech 2019, Graz, Austria, 15–19 September 2019; pp. 1013–1017.

27. Yoon, S.-H.; Yu, H.-J. Multiple points input for convolutional neural networks in replay attack detection. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020;
pp. 6444–6448.

http://doi.org/10.1109/ACCESS.2020.2974290
http://doi.org/10.1109/5.726791
http://doi.org/10.3390/app10124092
http://doi.org/10.1109/TASLP.2020.2980991

Sensors 2022, 22, 4483 21 of 21

28. Wang, Q.; Lee, K.A.; Koshinaka, T. Using multi-resolution feature maps with convolutional neural networks for anti-spoofing in
ASV. In Proceedings of the Odyssey Speaker Language Recognition Workshop, Tokyo, Japan, 1–5 November 2020; pp. 138–142.

29. Yoon, S.-H.; Koh, M.-S.; Yu, H.-J. Phase spectrum of time-flipped speech signals for robust spoofing detection. In Proceedings of
the Odyssey Speaker Language Recognition Workshop, Tokyo, Japan, 1–5 November 2020; pp. 319–325.

30. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 770–778.

32. Schuster, M.; Paliwai, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
33. Snyder, D.; Garcia-Romeo, D.; Shell, G.; Povey, D.; Khudanpur, S. Deep neural network embeddings for text-independent speaker

verification. In Proceedings of the Interspeech, 2017, Stockholm, Sweden, 20–24 August 2017; pp. 999–1003.
34. Snyder, D.; Garcia-Romeo, D.; Shell, G.; Povey, D.; Khudanpur, S. X-vectors: Robust DNN embeddings for speaker recognition. In

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Calgary, AL, Canada,
15–20 April 2018; pp. 5329–5333.

35. Wang, X.; Yamagishi, J.; Todisco, M.; Delgado, H.; Nautsch, A.; Evans, N.; Sahidullah, M.; Vestman, V.; Kinnunen, T.; Lee, K.A.;
et al. ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech. Comput. Speech Lang. 2020, 64,
101114. [CrossRef]

36. Sahidullah, M.; Kinnunen, T.; Hanilci, C. A comparison of features for synthetic speech detection. In Proceedings of the
Interspeech, Dresden, Germany, 6–10 September 2015; pp. 1–6.

37. Povey, D.; Ghoshal, A.; Boulianne, G.; Burget, L.; Glembek, O.; Goel, N.; Hannemann, M.; Motlicek, P.; Qian, Y.; Schwarz, P.; et al.
The Kaldi speech recognition toolkit. In Proceedings of the IEEE Automatic Speech Recognition and Understanding (ASRU)
Workshop, Waikoloa, HI, USA, 11–15 December 2011; pp. 1–4.

38. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 4700–4708.

39. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017; pp. 4510–4520.

40. Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

41. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. MnasNet: Platform-aware neural architectures
search for mobile. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019; pp. 2820–2828.

42. Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of Adam and beyond. arXiv 2019, arXiv:1904.09237.
43. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
44. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classifica-

tion. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 1026–1034.

45. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, L.; Antiga, L.; Lerer, A. Automatic differen-
tiation in PyTorch. In Proceedings of the NIPS 2017 Workshop Autodiff Submission, Long Beach, CA, USA, 9 December 2017.

http://doi.org/10.1109/78.650093
http://doi.org/10.1016/j.csl.2020.101114

	Introduction
	Conventional Feature Segmentation
	The Proposed Method
	Bidirectional Feature Segmentation
	Bi-Point Input
	Embedding-Level Combination
	Feature Map-Level Combination
	Two-Channel Input
	Statistics-Level Combination

	Experiments
	Database
	Experimental Setup

	Results
	Experimental Results and Discussion
	Ablation Study

	Conclusions
	Appendix A
	References

