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Abstract: Fast determination of satellite visibility with respect to a target area is important for satellite
navigation and positioning. In this paper, we propose an adaptive interpolation algorithm based
on vertex protection to solve the satellite visibility period problem more accurately and quickly,
where “vertex” refers to the local extremum point. The algorithm can avoid the error in the visibility
period calculation caused by skimming the vertices when fitting the multi-hump visibility function
under certain fitting accuracy requirements with the traditional adaptive interpolation method. The
algorithm does not need to construct a cubic polynomial in each subinterval to determine whether
the satellite is visible or not; it only constructs a cubic polynomial to solve the problem if the visibility
function of that subinterval is judged to have a solution from the existence theorem of zero points,
which can improve the computational efficiency. For the lunar navigation problem, a solution to
satellite–Moon visibility calculations based on a vertex-protected adaptive interpolation is given,
and the experimental results show that the computation time of the algorithm can be reduced by
approximately 98% compared with the brute force method and by approximately 30% compared
with the traditional adaptive interpolation algorithm.

Keywords: satellite-to-Moon visibility; rapid determination; adaptive interpolation; vertex protection;
lunar navigation

1. Introduction

Artificial satellites provide important support for global observation services, such
as global navigation and remote sensing. As data must be transmitted within a certain
visibility range [1,2], the critical foundation for providing services is that the region of
interest must be visible from the viewpoint of the satellite. Satellite orbit analysis and
constellation coverage analysis are directly related to satellite-to-site visibility [3,4]. The
accuracy and speed of satellite coverage are determined by calculating the visible period of
the satellite. Task scheduling optimizations, which can reduce service costs by avoiding ex-
cessive rescans, require satellite-to-ground visibility predictions [5,6]. At least four satellites
need to be used for positioning using navigation satellites, so satellite-to-site visibility is an
important indicator of the ability to use satellites for navigation and positioning. Satellite
visibility is very important in all aspects of satellite analysis.

The most primitive way to calculate the satellite-to-site visibility is to track the satel-
lite’s trajectory and then to determine the visibility at each moment [5], which is the
traditional brute force method. This method is often used as a comparison standard for
improving subsequent algorithms. Although the brute force method is accurate, it is very
time-consuming. Lawton et al. [7] developed an algorithm for calculating the visible period
of a low eccentricity satellite orbit using iteration and a Fourier transform, which greatly
improved the calculation speed compared with the brute force method. Alfano et al. [8]
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used the parabolic blending technique to construct the waveform of the visibility function
at equal intervals and used the root of the local cubic polynomial to represent the rise and
set times of the satellite. The algorithm is applicable to all satellite orbit types. Sun et al. [9]
improved Alfano’s method and proposed an adaptive Hermite interpolation method in
order to solve the satellite visibility problem. This method determines the interpolation
step by checking the consistency of the second derivative and comparing the extreme value
variance. Based on this work, Han et al. [5] derived an adaptive Hermite interpolation
technology in a strict sense, which uses the fourth derivative to control the approximation
error and achieve a better balance between the accuracy and efficiency. Han et al. [10] used
a radial basis function to fit the satellite visibility function and accelerated the calculation
of satellite visibility according to the interval contraction strategy. Wan et al. [11] designed
a metamodeling framework based on adaptive interpolation and used different metamodel
technologies, such as the radial basis function, Kriging, and support vector regression, to
solve the satellite visibility problem.

The return to the Moon program has been proposed [12], and it has been realized that
precise Moon position information is of great importance for an in-depth exploration of
the Moon. In addition, the Magnetospheric Multiscale (MMS) mission proposed by NASA
has also confirmed that satellite signals can acquire the position information of spacecraft
located beyond the Earth’s orbit [13]. In recent years, the application of Global Navigation
Satellite System (GNSS) technology to lunar navigation has attracted the attention of
scientists. Kar-Ming et al. [14] simulated lunar navigation with GPS, GLONASS, Galileo,
etc., using weak satellite signals for positioning with an accuracy of 200–300 m. The
European Space Agency’s proposed Moonlight initiative will carry an advanced satellite
signal receiver and perform the first satellite navigation and positioning mission in lunar
orbit [15]. In order to carry out navigation and positioning on the Moon, the visibility
of the Moon from satellites is an issue that must be analyzed and studied. Both the ESA
and NASA have performed detailed analyses of the expected visibility of GNSS signals
at Moon altitude [16]. A high-precision and efficient method for determining satellite-to-
Moon visibility can provide a theoretical basis for achieving navigation and positioning on
the Moon.

Since there are almost no existing algorithms for satellite-to-Moon visibility, this paper
draws on the idea of satellite-to-site visibility calculations and identifies a problem when
applying the adaptive interpolation algorithm to the satellite-to-Moon visibility calculation
(explained in detail in the next section). To avoid this problem, an adaptive interpolation
algorithm based on vertex protection is proposed, which is applicable not only to satellite-
to-site visibility, but also to satellite-to-Moon visibility. At present, this paper might be
the first to provide a fast solution for determining satellite-to-Moon visibility data. In
Section 2, the satellite-to-Moon visibility model, which includes the elevation angle model
and the Earth occultation model, highlights the drawbacks that arise from directly using
the traditional adaptive interpolation algorithm to solve the satellite-to-Moon visibility
problem. In Section 3, an adaptive interpolation algorithm based on vertex protection is
introduced, and a specific scheme for calculating the satellite-to-Moon visibility using an
adaptive interpolation algorithm based on vertex protection is described. In Section 4,
the algorithm given in Section 3 is used to experimentally analyze the BDS satellite data.
Section 5 concludes this paper.

2. Mathematical Models
2.1. Elevation Angle Function

Since the radius of the Moon is small, approximately 1738 km on average, and the
distance from the satellite to the Moon can reach more than 350,000 km, the Moon is
abstracted as a point for analysis in the following model.

Due to the ionospheric effect, tropospheric effect, etc., the satellite must first be consid-
ered under the condition of meeting a certain elevation angle with the station in order to
achieve a good positioning effect. The elevation angle criterion is thus given as follows:
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V(t) =
∆r · rs

‖∆r‖ · ‖rs‖
> sin θ0 (1)

where ∆r = rm − rs and rs represent the coordinate vectors of the satellite and rm represents
the coordinate vector of the Moon. The calculation of the satellite visibility at a certain
elevation angle can also be approximated as the problem of solving V(t)− χ = 0, where χ
is the cosine of elevation angle threshold θ0. The solution to this equation can be used for
the time points of the satellite’s rise and set with respect to the Moon.

2.2. Earth Occultation

Since satellites are designed to serve the Earth, they rotate around the Earth and are
oriented towards the Earth, so when applying satellites to the Moon, the Earth occultation
problem needs to be considered. As shown in Figure 1, when the vertical distance between
the satellite and the Moon is less than the radius R of the Earth, the satellite’s line of sight
to the Moon is blocked by the Earth, and the satellite is not visible to the Moon. The above
problem can be described mathematically as follows:

L(t) =
||rs × ∆r||
||∆r||R < 1 (2)

where rs is the coordinate vector of the satellite in an Earth-centered, Earth-fixed coordinate
system, and ∆r = rm − rs. When L < R, the line of sight from the satellite to the Moon is
unobstructed at this time, and it is obscured by the Earth in all other cases.
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Figure 1. Geometric illustration of satellite-to-lunar visibility.

2.3. Adaptive Interpolation Algorithm

As seen in Figure 2, where C01 represents a BDS GEO satellite, both the rise and set
functions of the satellite-to-Moon visibility and the period function of the Earth occultation
between the Earth and the Moon are multi-hump functions, which are irregular and do
not have specific analytical expressions. It is known from previous work [5,10] that the
solution to a similar function can be approximated using the idea of segment interpolation.

For the satellite-to-Moon visibility, this paper utilizes the idea of segmented Her-
mite interpolation to construct a cubic polynomial between the subintervals t0 to t1 and
calculates the maximum step from the second-order derivatives of the corresponding
visibility functions, as well as the visibility function values in satisfying a certain error
limit. According to [17], the function of segmented cubic Hermite interpolation can be
written as:

S(t) = f (t0) + f ′(t0)(t− t0) + a(t− t0)
2 + b(t− t0)

3

a = (3 f (t1)− f (t0)
h2 − f ′(t1)+2 f ′(t0)

h )

b = ( f ′(t1)+ f ′(t0)
h2 − 2 f (t1)− f (t0)

h3 )

(3)
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where t0 denotes the starting point for constructing the cubic polynomial, t1 denotes the
end point, and h = t1 − t0. When the fourth-order derivative exists, the approximation
error can be described by:

R(t) = V(t)− S(t) =
V(4)(η)

4!
((t− t0)(t− t1))

2 (4)

where t, η ∈ [t0, t1], R(t), denotes the interpolation error residual term, V(t) denotes the
true function, V(4)(η) is the fourth-order derivative of V(t) and can be obtained using
higher-order Hermite interpolation, and S(t) denotes the constructed cubic polynomial.
The quadratic polynomial of the function can be approximated by the following equation:

V(4)(t) ≈ 120κ5t + 24κ4
κ4 = 4

h4 α− 4
h4 β− 24

h5 χ

κ5 = 24
h5 [V(t0)−V(t1)] +

4
h4

[ .
V(t0)−

.
V(t0 +

h
2 ) +

.
V(t1)

]
α =

[
V(t0) + 4V(t0 +

h
2 ) + V(t1)

]
β =

[ .
V(t0)(2t0 + 3t1) + 10

.
V(t0 +

h
2 )(t0 + t1) + 3

.
V(t1)(3t0 + 2t1)

]
χ = [V(t0)(2t0 + 3t1)−V(t1)(3t0 + 2t1)]

(5)
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Using V(4)(t) to place limits on the errors, the following is obtained:

|R(t)|max ≤ |
V(4)(n)max

4!
|
[
(t− t0)(t− t1)

2
]

max
≤ |5a5n + a4|max(

h2

4
)

2

(6)

Then, the step is:

ĥ = (
16ε

|5κ5η + κ4|max
)

1/4
(7)

The solution for the step is an iterative process, and the termination condition of the
iterative solution is:

|ĥk − ĥk−1|
ĥk−1

≤ u (8)
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From the above equation, it is clear that the first-order derivative of the original
function is required to perform the segmented Hermite interpolation, where the first-order
derivative of the satellite elevation angle is:

.
V(t) =

1
‖∆r‖ (∆

.
r·rs + ∆r· .rs)−

1
‖∆r‖ (∆r·∆ .

r)∆r·rs (9)

The first-order derivative of the Earth occultation model is:

.
L(t) =

(rs × ∆r)·( .
rs × ∆r + rs × ∆

.
r)

‖rs × ∆r‖·‖∆‖ − ∆·
.
∆·‖rs × ∆r‖
‖∆‖3 (10)

where ∆
.
r = vm − vs.

3. Algorithm Design
3.1. Vertex Protection Algorithm

The satellite-to-Moon visibility consists of two aspects: the availability of the satellite
signal is limited by the elevation angle (as deduced in Section 2.1), and the Earth may
obscure the line of sight from the satellite to the Moon (as deduced in Section 2.2). The
algorithm provided in Section 2.3 can calculate the maximum interpolation step while
guaranteeing the fitting accuracy. As shown in Figure 3, under the low fitting accuracy
requirement, when calculating whether the Earth obscures the line of sight between the
satellite and the Moon, an intersection exists between the original visibility function curve
and the threshold, but the fitted curve has no intersection with the threshold, which causes
errors when calculating the Earth occultation period in one cycle (28 days). Such a problem
is related to the threshold selection and fitting accuracy requirement.
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To avoid this problem, in this paper, the basic idea is to try to make the local extremal
points of the multi-hump function the endpoints of the subinterval, where the local extremal
points are the “vertices”. This method not only avoids the visibility calculation error, but
also has the advantage that it can directly determine whether there is a solution to the
original function within that subinterval without constructing a cubic polynomial in each
subinterval. The interpolation method must know the original function values of the two
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endpoints. Then, according to the existence theorem of zero points, only when the two
endpoints’ values corresponding to the function are different must the subinterval exist
within the zero solution. Then, a cubic polynomial is constructed and solved. The vertex
protection algorithm is designed as follows:

(1) Calculate the adaptive step h0 according to the algorithm in Section 2.3, determine
the termination time te according to step h0 and start time ts, and introduce the search
factor σ.

(2) Calculate the values f1, f2, f3, and f4 of the function F(t) at t1 = ts, t2 = ts + σ,
t3 = te − σ, and t4 = te based on the original function (satellite rise and set function or
occultation function, respectively).

(3) Compare the magnitudes of f1, f2, and f4 or f1, f3, and f4. When f2 is smaller than
both f1 and f4, go to step (4), and when f3 is larger than both f1 and f4, go to step (5). When
f2 is greater than both f1 and f4, go to step (6), and when f3 is smaller than both f4 and f4,
go to step (7).

(4) Let t4 = t2, and calculate the corresponding f4. Calculate the corresponding f2
when t2 = t2 + σ. Compare f4 and f2. If f2 < f4, repeat step (4); otherwise, go to step (8).

(5) Let t4 = t3, and calculate the corresponding f4. Calculate the corresponding f3
when t3 = t3 − σ. Compare f4 and f3. If f3 > f4, repeat step (5); otherwise, go to step (8).

(6) Let t4 = t2, and calculate the corresponding f4. Calculate the corresponding f2
when t2 = t2 + σ. Compare f2 and f4. If f2 > f4, repeat step (4); otherwise, go to step (8).

(7) Let t4 = t3, and calculate the corresponding f4. Calculate the corresponding f3
when t3 = t3 − σ. Compare f4 and f3. If f3 < f4, repeat step (5); otherwise, go to step (8).

(8) Calculate when ts = t1 and te = t4 correspond to fs = f1 and fe = f4 and obtain
h = te − ts.

Here, σ denotes the step for searching for the local maxima of the multi-hump function,
which determines the search accuracy and efficiency. The smaller σ is, the more accurate
and slower the local maxima of the multi-hump function will be as the endpoint of the
interpolated subinterval; the larger σ is, the coarser and faster the local maxima of the
multi-hump function will be as the endpoint of the interpolated subinterval.

3.2. Adaptive Interpolation Based on Vertex Protection

The basic idea of adaptive interpolation based on the vertex protection method is
as follows: according to the interpolation error function and the fourth-order derivative
constraints, calculate the interpolation step h0, and then use the obtained step h0 and the
starting time ts in the vertex protection algorithm to obtain h. Next, try to make the vertex
of the multi-hump function the interpolation endpoint, and then, according to step h and
the starting time point t0, determine the termination time point t1 of the subinterval. The
values f0 and f1 corresponding to the original function F(t) at times t0 and t1, respectively,
are calculated to determine whether the original function in this region has a solution. This
shortens the process of constructing a cubic polynomial function for each subinterval in
order to determine whether there is a solution and then solving for it, thereby effectively
reducing the amount of computation. For the satellite-to-Moon visibility problem, the step
calculation is based on the mathematical model in Section 2.3, and the vertex protection
algorithm is the method proposed in Section 3.1. The rise and set periods of the satellite
relative to the Moon are quickly solved using the adaptive interpolation method based on
vertex protection, and then the Earth’s occultation for the line of sight between the satellite
and the Moon is calculated within such periods, which can shorten the Earth occultation
calculated time. The specific computational flow chart of the adaptive interpolation based
on vertex protection is shown in Figure 4 .
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4. Experiment and Analysis

Since the period of the Moon’s revolution around the Earth is approximately 27.32 days,
the period of a geosynchronous Earth orbit (GEO) satellite is approximately 24 h, the period
of an inclined geosynchronous orbit (IGSO) satellite is approximately 24 h, and the period
of a medium Earth orbit (MEO) satellite is approximately 12 h. Satellite data with a period
of 28 days for the Moon’s revolution are used for the analysis. The data used here are
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from the multisystem precision ephemeris file provided by the Analysis Centre of Wuhan
University for 31 December–30 January 2021, which contains the coordinates of each BDS,
GLONASS, and Galileo satellite at five-minute intervals in the geocentric geostationary
coordinate system. The lunar coordinates were calculated using a simplified model [18].

Figures 5 and 6 show a comparison between the adaptive interpolation algorithm
based on vertex protection and the traditional adaptive interpolation algorithm [5] in fitting
the elevation angle function and the Earth occlusion function from the C01 satellite to the
Moon when ε = 0.1 and σ = 0.2. From the two figures, it can be seen that the adaptive
interpolation algorithm based on vertex protection can make the local extreme points of
the multi-hump functions, such as the elevation angle function and the Earth occlusion
function, the endpoints of the interpolation sub-interval (to the greatest extent possible),
and the fit is good.
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The period of visibility from the satellite to the Moon is calculated as the true value
using the brute force method, including the solution for the rise and set moments of the
satellite with respect to the Moon and the period of the Earth’s line-of-sight obscuration
between the satellite and the Moon.
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Table 1 shows a comparison between the adaptive interpolation based on the vertex
protection algorithm, the conventional adaptive interpolation algorithm, and the brute
force method in solving the number of periods of visibility between the satellite and the
Moon; that is, the times of the satellite’s rise and set with respect to the Moon and the
times of the Earth’s occultation. For example, for the C01 satellite at fitting errors ε = 0.1
and ε = 0.01, the C06 satellite at fitting error ε = 0.1, and the C11 satellite at fitting error
ε = 0.1, the solved Earth occlusion times do not match the real times, which are errors that
cannot occur in practical applications. Adaptive interpolation based on vertex protection
can accurately solve the Earth occlusion count for satellites C01, C06, and C11 when the
search factor in the protection vertex algorithm is σ = 0.2 for the fitting errors ε = 0.1,
ε = 0.01, and ε = 0.001.

Table 1. Satellite visibility times.

Satellite Methods ε Rise and Set Times Occlusion Times

C01
GEO
Satellite

Brute force method

0.1 28 6

0.01 28 6

0.001 28 6

Self-adaptive interpolation technique
without vertex protection

0.1 28 4

0.01 28 5

0.001 28 6

Self-adaptive interpolation technique
with vertex protection

0.1 28 6

0.01 28 6

0.001 28 6

C06
IGSO
Satellite

Brute force method
0.1 28 3

0.01 28 3

0.001 28 3

Self-adaptive interpolation technique
without vertex protection

0.1 27 1

0.01 28 3

0.001 28 3

Self-adaptive interpolation technique
with vertex protection

0.1 28 3

0.01 28 3

0.001 28 3

C11
MEO
Satellite

Brute force method

0.1 53 13

0.01 53 13

0.001 53 13

Self-adaptive interpolation technique
without vertex protection

0.1 53 12

0.01 53 13

0.001 53 13

Self-adaptive interpolation technique
with vertex protection

0.1 53 13

0.01 53 13

0.001 53 13

The efficiency of the adaptive interpolation method based on vertex protection pro-
posed in this paper is compared to that of the traditional adaptive interpolation method
when applied to the satellite-to-Moon visibility calculation in Tables 2–4. For satellites C01,
C06, and C11, under the limits of interpolation accuracies of 0.1, 0.01, and 0.001, respectively,
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the number of step calculations, the number of times the algorithm actually constructs a
cubic polynomial for the solution, and the time efficiency improvement (compared with
the brute force method) are compared.

Table 2. Comparison of the C01 satellite visibility solving efficiencies.

Case ε=0.1
After/Before

ε=0.01
After/Before

ε=0.001
After/Before

Step calculation times 248 295 404 539 1104 1611
Resolution times 71 295 69 539 70 1611

Run time 98.34% 98.8% 98.03% 98.2% 96.5% 94.6%

Table 3. Comparison of the C06 satellite visibility solving efficiencies.

Case ε=0.1
After/Before

ε=0.01
After/Before

ε=0.001
After/Before

Step calculation times 218 239 472 745 2990 6083
Resolution times 79 239 63 745 63 6083

Run time 98.6% 99.2% 98.1% 97.6% 93.5% 84.6%

Table 4. Comparison of the C11 satellite visibility solving efficiencies.

Case ε=0.1
After/Before

ε=0.01
After/Before

ε=0.001
After/Before

Step calculation times 467 579 1318 2196 10,539 19,282
Resolution times 135 579 135 2196 135 19,282

Run time 97.5% 98.2% 95.0% 93.6% 76.2% 47.6%

As seen from these tables, the number of step calculations is always lower than that of
the traditional adaptive interpolation algorithm, and the difference in the number of step
calculations is more obvious as the fitting accuracy decreases. The algorithm proposed in
this paper constructs a cubic polynomial for the number of solutions, and a cubic polyno-
mial is constructed for when there is a solution in that subinterval; however, the traditional
adaptive interpolation algorithm requires the construction of cubic polynomials in each
subinterval to determine whether the interval has a solution and then calculate it. These
tables give the percentage improvements in the time efficiency for adaptive interpolation
based on the vertex protection algorithm and traditional adaptive interpolation compared
with the brute force method. Under the requirement of a low fitting accuracy ε= 0.1, the
computational efficiency of the algorithm proposed in this paper and the traditional algo-
rithm are essentially comparable, and both improve by approximately 98% compared with
the brute force method. The higher the requirement is, the more obvious the improvement
in efficiency. When ε = 0.001 and σ = 0.2, it can be seen from the following table that, for
the C11 MEO satellite, the algorithm proposed in this paper improves the computational
efficiency by approximately 30% compared with the traditional adaptive computation.
This affects the accuracy of the vertex protection algorithm when seeking the vertex as
the endpoint of the fitted subinterval, where the larger σ is, the faster the algorithm is
computed under the condition that the overall cycle is computed error-free.

To represent the accuracy of the adaptive interpolation algorithm based on vertex
protection, the percentage normalization error defined by [19] is listed, where the percentage
normalization is specifically defined as follows:

PNE =
|Predicted satellite rise/set time− Acutal satellite rise/set time|

Actual in− view period
× 100 (11)

Figures 7 and 8 show the PNE of the satellite rise and set times and the PNE of the
Earth occultation start and end times, respectively; the red squares indicate the PNE of the
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start time and the green stars indicate the PNE of the end time. The subgraph C01-0.1 in
Figure 7 shows the PNE of the C01 satellite at the rise and set times relative to the Moon
when ε = 0.1. Other subgraphs can also be interpreted in this way. The subgraph C01-0.1
in Figure 8 indicates the PNE values at the start and end times of the Earth occultation for
the line of sight from satellite C01 to the Moon when ε = 0.1. Other subgraphs are also
expressed in this way.
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Figure 7. Graphs of C01, C06, and C11 satellite rise and set times.
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Figure 8. Graphs of Earth occultation start and end times.

5. Conclusions

Due to the existence of the traditional adaptive interpolation de-fitting error, the
solution to the satellite visibility problem results in a cycle calculation error. In this paper, we
introduced an adaptive interpolation algorithm based on vertex protection that makes the
vertices of the multi-hump function the endpoints of the adaptive interpolation subinterval
to the greatest extent possible in order to avoid the period calculation error in the satellite
visibility problem, making the adaptive interpolation algorithm applicable to a wider range
of satellite visibility problems. The first solution for quickly determining the satellite-to-
Moon visibility problem was given, and experiments were conducted using data from three
BDS orbiting satellites to analyze its efficiency and accuracy. The experiments showed that
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the method reduces the computation time by approximately 98% compared to the brute
force method, and the computational accuracy and efficiency of the algorithm proposed in
this paper are better than those of the traditional adaptive interpolation method, with a
reduction in computation time of up to 30%.
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