
����������
�������

Citation: Iqbal, Y.; Tahir, S.; Tahir, H.;

Khan, F.; Saeed, S.; Almuhaideb,

A.M.; Syed, A.M. A Novel

Homomorphic Approach for

Preserving Privacy of Patient Data in

Telemedicine. Sensors 2022, 22, 4432.

https://doi.org/10.3390/s22124432

Academic Editors: Yogachandran

Rahulamathavan and Beibei Li

Received: 5 May 2022

Accepted: 9 June 2022

Published: 11 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Homomorphic Approach for Preserving Privacy of
Patient Data in Telemedicine
Yasir Iqbal 1,† , Shahzaib Tahir 1,*,† , Hasan Tahir 2,† , Fawad Khan 1 , Saqib Saeed 3 ,
Abdullah M. Almuhaideb 4 and Adeel M. Syed 5

1 Department of Information Security, College of Signals, National University of Sciences and Technology
(NUST), Rawalpindi 46000, Pakistan; yasiriqbal.engr@gmail.com (Y.I.); fawadkhan@mcs.edu.pk (F.K.)

2 School of Electrical Engineering and Computer Science, National University of Sciences and Technology
(NUST), Islamabad 44000, Pakistan; hasan.tahir@seecs.edu.pk

3 SAUDI ARAMCO Cybersecurity Chair, Department of Computer Information Systems, College of Computer
Science and Information Technology, Imam Abdulrahman Bin Faisal University,
Dammam 34212, Saudi Arabia; sbsaed@iau.edu.sa

4 SAUDI ARAMCO Cybersecurity Chair, Department of Networks and Communications, College of Computer
Science and Information Technology, Imam Abdulrahman Bin Faisal University,
Dammam 34212, Saudi Arabia; amalmuhaideb@iau.edu.sa

5 Department of Software Engineering, Bahria University, Islamabad 44000, Pakistan; adeel@bahria.edu.pk
* Correspondence: shahzaib.tahir@mcs.edu.pk
† These authors contributed equally to this work.

Abstract: Globally, the surge in disease and urgency in maintaining social distancing has reawakened
the use of telemedicine/telehealth. Amid the global health crisis, the world adopted the culture of
online consultancy. Thus, there is a need to revamp the conventional model of the telemedicine system
as per the current challenges and requirements. Security and privacy of data are main aspects to be
considered in this era. Data-driven organizations also require compliance with regulatory bodies,
such as HIPAA, PHI, and GDPR. These regulatory compliance bodies must ensure user data privacy
by implementing necessary security measures. Patients and doctors are now connected to the cloud
to access medical records, e.g., voice recordings of clinical sessions. Voice data reside in the cloud and
can be compromised. While searching voice data, a patient’s critical data can be leaked, exposed to
cloud service providers, and spoofed by hackers. Secure, searchable encryption is a requirement for
telemedicine systems for secure voice and phoneme searching. This research proposes the secure
searching of phonemes from audio recordings using fully homomorphic encryption over the cloud. It
utilizes IBM’s homomorphic encryption library (HElib) and achieves indistinguishability. Testing and
implementation were done on audio datasets of different sizes while varying the security parameters.
The analysis includes a thorough security analysis along with leakage profiling. The proposed scheme
achieved higher levels of security and privacy, especially when the security parameters increased.
However, in use cases where higher levels of security were not desirous, one may rely on a reduction
in the security parameters.

Keywords: fully homomorphic encryption (FHE); cloud; searchable encryption; phoneme/audio
searching

1. Introduction

‘Telemedicine’ was a phrase coined literally to mean ‘remote healing’ in the 1970s [1].
Through the use of communication technology, telemedicine could assist health practition-
ers in obtaining medical information about patients. To distinguish between telehealth and
telemedicine, the author in [2] offer the following definition: ‘The telemedicine is a part of
telehealth that specifically offers clinical services remotely.’ The word ‘telehealth’ refers
to a wide range of technologies that improve healthcare delivery systems and provide
non-clinical services, such as medical education, training, administrative meetings, etc.
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Researchers believe that telemedicine can solve many problems when a global health crises,
such as a pandemic or epidemic, is at hand, but to our knowledge, its potential has not been
widely explored due to security concerns associated with telemedicine. Moreover, the in-
creasing number of patients in hospitals, remote healthcare for the elderly, and pandemics
have highlighted the need for telemedicine services. Many people are isolated during
hospitalization or while quarantining at home, so telemedicine services must be adopted.
According to the researchers, simple e-health solutions may allow seriously ill patients
to communicate with one another and acquire relevant health information more quickly.
Figure 1 describes the detailed model of the telemedicine system in the current scenario.
In this architecture, our focus is on a patient-centric approach. The e-health records of the
patients from all digital gadgets are stored in the cloud. The e-health records are in the
form of audio/video/images. All authorized stakeholders of the system can access these
data from the cloud.

Figure 1. Overview of telemedicine architecture.

The surge in the adoption of cloud computing in the telehealth sector raises many
security and privacy challenges. As per the report [3], there was a 40.63% increase in data
breaches of healthcare records in February 2021. A patient died due to a ransomware
cyberattack in Germany that disrupted the hospital facility system [4].

The communication modes in telemedicine between patients and doctors are video
links, voice calls, voice notes, and text messages. Multiple third-party clinical service
applications [5,6] are now fully operational, and many new companies have been formed
to deliver remote healthcare services. These third-party services provide features to fa-
cilitate communication and store the recordings of clinical sessions on the cloud. Those
clinical services or electronic health platforms must comply with regulatory bodies, e.g.,
the Health Insurance Portability and Accountability Act (HIPAA). Due to this, data security
and privacy are crucial while storing data off-premise. The data residing in cloud service
providers (CSPs) invite cyber threats. Besides common security threats against confidential-
ity, integrity, and availability, other threats related to CSPs are co-tenancy, cross-VM attacks
using side channels, and loss of physical controls [7–9]. The design goals that are being
achieved through this research are discussed below.

1.1. Design Goals

• Data confidentiality—the conventional mechanism for achieving confidentiality is
storing data in encrypted form [10]. Therefore, data must be confidential before
uploading to the cloud.
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• Searching capability—there is a need for a mechanism to search over the cloud without
decryption, and a need for retrieving or downloading only the desired file.

• Authorized person searching—only the authorized person who has keys should
generate the trapdoor and search requests.

• Privacy-preserving—while sending the search query request to the server, the ad-
versary should not know any information about the query. The trapdoor should be
probabilistic, so the ciphertext will differ each time the request is made.

• Search pattern hiding—the outcome of the searching should be probabilistic, such that
a keyword being searched repeatedly should be indistinguishable, hence hiding the
search pattern.

• Cloud deployable—the searchable encryption scheme should be deployable in a client–
server architecture using any cloud service, and it should be able to integrate into an
existing enterprise network.

1.2. Contributions

The following contributions are made through this research:

• This research focuses on phonemes/audio searching over the cloud without decrypt-
ing the audio files. As discussed earlier, the audio files of conversations between
health professionals and patients are usually stored in the cloud.

• This research proposes a mechanism to search for the desired phoneme keyword
among the encrypted audio files in the cloud. This proposed scheme does not need to
maintain any index table. Thus, it avoids several other data leakages and reduces the
attack surface.

• For this purpose, the medical voice dataset was used; the proposed mechanism was
deployed and tested in a public cloud platform, “Contabo”, using the client/server
architecture. This paper also presents a comprehensive security and performance
analysis of the proposed scheme, which verifies the fulfillment of privacy preservation.

The organization of this paper is as follows: Section 2 discusses the related articles,
and Section 3 presents the preliminaries and the system model. Section 4 presents the
security definitions for the proposed scheme. Section 5 presents the proposed phoneme
searching framework. Section 6 performs the security analysis of the proposed scheme.
Section 7 illustrates the performance analysis, and Section 8 discusses the scheme. The
conclusions and future work are presented in Section 9 of the paper.

2. Literature Review

Our literature review is divided into three sections. The first section sheds light on
secure audio/voice processing, the second section focuses on privacy preservation in
telemedicine, and the third section explores the existing searchable encryption approaches.

2.1. Secure Voice Processing

Research has been conducted on secure voice processing using homomorphic encryp-
tion. The paper [11] proposed a novel approach based on the Newton iterative method
to redesign the mechanism of the speaker verification system using fully homomorphic
encryption. This way, the privacy of voice data is achieved while the efficiency is increased.
The proposed algorithm is tested on a speech dataset using SEAL and TenSEAL libraries.
The dataset description shows that each recording lasts for 3 s maximum, which is very
small and suitable for the verification systems (biometric). However, when we talk about
searching across files of variable lengths, the performances may vary and the usability
of the system at a large scale may give rise to usability concerns. A paper published
by Microsoft [12] proposed a mechanism for the detection of a suicidal idea from phone
conversations while preserving privacy using a homomorphic evaluation of neural net-
works. This research work was also evaluated using the SEAL library. However, it lacked a
discussion of the proposed scheme’s security definitions or security analysis. The authors
in [13] presented research on the privacy-preserving of phonetic searching over voice data.
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The proposed scheme is based on index-based searching, while the encryption is also
deterministic, which increases the security leakages. The paper [14] provides detailed
insights into privacy-preserving speech data.

2.2. Privacy-Preserving Approaches in Telemedicine

Several different approaches have been proposed in the literature to make telemedicine
secure and ‘privacy-preserving’. For instance, Zhang, in [15], proposed a solution for pri-
vacy preservation in electronic health records based on blockchain technology. Furthermore,
their proposed system uses pairing-based cryptography to prevent the EHR data from
being altered. The paper presented the privacy-preserving method with blockchain tech-
nology following five phases to achieve privacy in e-health. For example, they used a
signature with a password for authentication, a secure key exchange protocol for key
sharing, and the signature before performing encryption for electronic health record (EHR)
generation, hashing with a transaction signature for tamper-proof record generation, and
a smart contracts method for secure payments. An article [4] published in 2020 during a
pandemic situation focused on the information and privacy of telemedicine systems. This
article emphasized using cybersecurity measures with modern technologies, e.g., artificial
intelligence and the internet of things (IoT) to detect cyberattacks.

The authors in [16] proposed a solution for electronic health records (EHRs), including
telemedicine. The research goal was to preserve the privacy that utilizes hyperledger
technology and the identity mixer suite. The authorized healthcare professionals can store
health records and allow them to access the documents. Another paper [17] addressed pri-
vacy and authentication-related issues in telemedicine. It proposed a digital watermarking
method to deal with authentication issues.

The researchers of [18] proposed an integrated system that protects the privacy of
different types of information regarding health systems, including telemedicine. This
system combines medical information, such as e-prescriptions, smart cards, e-patient
records, and fingerprint identification, and applies proxy and group signatures. This
research aims to eliminate the paperwork and shift to digitization while protecting all
information. However, this research still does not talk about preserving privacy while
searching the data over the cloud or server.

The authors of [19] discussed the health data used in telemedicine and privacy issues
related to access control mechanisms in hybrid clouds (when the data are uploaded to the
cloud). They used the XACML method for access control in clouds that store healthcare data,
so it needs a secure mechanism with privacy preservation. However, again, a challenge
exists because the (massive amount of) data reside in the cloud, requiring secure searches
of the data without decrypting them.

The authors in [10] presented a review on issues related to the security and privacy of
electronic medical records (EMR) used in telemedicine. They also discussed the solutions
that can solve those issues.

2.3. Searchable Encryption

The user desires to search specific data over the cloud while data remain encrypted
in searchable encryption. For this purpose, the user generates the search query called
trapdoor [20] or a search token [21] and sends it to the cloud server. With this search query,
the server then searches using a searchable encryption scheme over the cloud and sends
the relevant encrypted documents back to the user. For this purpose, different techniques
for searchable encryption have been proposed. The first ranked-based approach in SE was
proposed in [22]. Later, inverted index-based searching schemes were proposed for efficient
searching, which also reduces leakages. Kamara et al. [23] enhanced index-based searching
using homomorphic encryption. The authors encrypted the index pointer with HE to avoid
leakages, but it still had a flaw because of the deterministic trapdoor.

The authors in [24] concealed the search pattern in order to guarantee trapdoor and
keyword privacy. The authors used a particular type of additive homomorphic encryption
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to accomplish the conjunctive keyword searchable encryption. To meet the privacy aims
of the strategy, they proposed two servers: a cloud server and an auxiliary server. They
also used random polynomials to improve user security (by ensuring that the users only
obtain the results they want). Their approach ensures a higher level of protection for
cloud users. Their method runs a parallel search that is independent of the search index.
Y. Wang et al. in [25] employed homomorphic encryption (HE) to perform effective multi-
keyword retrieval. The authors used correlation ratings to provide the cloud user with
reliable and ranked results. They optimized a homomorphic encryption technique to
ensure secure document retrieval. They demonstrated that their method provides keyword
privacy as well as quick retrieval of top-k documents. In comparison to previous ciphertext
retrieval systems, their scheme provides data confidentiality and accurate results to cloud
users. The research paper [26] proposed keyword searching for a multi-user environment
based on homomorphic encryption. The authors claim to optimize the DGHV version
of HE.

The authors in [27] proposed an enhanced version of k-nearest neighbors for searchable
encryption (KNN-SE) to enhance efficiency and reduce leakages. The main features of this
scheme are the support of arbitrary language, a multi-user environment, and improved
security. Another scheme for multi-keyword searching based on a tree-based index was
proposed in [28]. For the searching phase, the proposed system uses the depth-first search
method to find the desired files. The authors in [29] employed the dual embedding space
model (DESM) to produce accurate ranked search results. They also utilized a lightweight
model for practical use. The creation of a DESM index provides faster retrieval of the ranked
results. The authors used an upgraded k-NN to perform a multi-keyword ranked search on
encrypted cloud data. In DESM, they used dimension-reduction to overcome the problem
of index updates. They proved (by analysis) that their method is more efficient and has less
overhead than other multi-keyword-ranked searchable approaches. Furthermore, more
descriptions of proposed schemes, methods, and different topologies are briefly discussed
in [20]. All proposed schemes discussed above are lacking in security and privacy. Some of
them are based on an index that leaks data, some provide confidentiality but do not have
search capabilities. Furthermore, all schemes do not achieve privacy preservation.

NOTE: The schemes discussed in our literature review achieve privacy preservation
in their contexts, so we included them in Table 1. However, as per the definition of
privacy-preserving in searchable encryption [30], privacy-preserving is achieved when the
search pattern is preserved. Hence, not all of the schemes presented in the literature are
privacy-preserving, as per the security definitions we follow.

Table 1. Comparative analysis of different proposed schemes.

Paper Technique Used Confidentiality HE Searching
Capability

Privacy
Preservation

[11] Newton-Raphson X X X
[12] Neural Network X X X X
[13] Index-based X X X
[31] Blockchain X

[32] Attribute Encryption
XACML X X

[16] Hyper-ledger X X

[18] Proxy Signature
Group Signature X X

[15] Blockchain X X X
[24] Index-based X X X
[25] Index-based X X X
[26] DGHV HE X X X
[27] Index-based X X
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Table 1. Cont.

Paper Technique Used Confidentiality HE Searching
Capability

Privacy
Preservation

[28] Tree-based Index,
Depth-First Search X X X

[33] Public Encryption with
Keyword Search (PEKS) X X X

[29] Dual Word Embeddings,
kNN Scheme X X X

Proposed Fully HE X X X X

3. System Model

In this use case, based on secure, searchable encryption, the proposed system searches
phonemes over encrypted audio files. First, the audio file is passed through the encoder
to generate its phonemes. The client encrypts the audio files in phonemic form and sends
them to the server. The client also generates the trapdoor, the desired searching phonemes,
and sends it to the server. The server then calculates homomorphically over encrypted
phonemes and finds matched audio file(s) without decryption. The server then sends the
searched results to the client. The client receives the file and decrypts it. The original
file, consisting of phonemes, can be found after decrypting it, as shown in Figure 2. The
notations used in this paper are given in Table 2.

Table 2. Notations and descriptions.

Notation Description

Sk Secret key
Pk Public key
λ Security parameter for FHE

hwt Hamming weight
p Plaintext space modulus

m Cyclotomic polynomial-defines phi(m),
this will give a number of slots

r Hensel lifting (default = 1)
bits Number of bits of the modulus chain

c Number of columns of Key-Switching matrix
(default = 2 or 3)

EAudio Encrypted audio files
nthreads Size of NTL thread pool (default =1)

EPh Encrypted phonemes
kq Query

EncR Result after searching phase
X Plain text
F Set of phoneme files

Nv Numerical vector
N Number of input files
Ph Phonemes
C Ciphertext
Q Phonemes (plaintext) query
TE Encrypted trapdoor
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Figure 2. Architecture diagram of phonemes search.

3.1. Definitions

The proposed scheme comprises five phases, as defined below:

3.1.1. KeysGen

(Sk, Pk)← GenSecKey(hwt,p): This is a key generation algorithm run on the client-side.
The algorithm takes a plaintext space modulus (P) and Hamming weight (hwt) as input
and returns the public key Pk and private key Sk.

3.1.2. Encryption

(EPh)← EncP(F,Pk) : This is a probabilistic encryption algorithm run on the client-side.
The algorithm takes plain text phonemes (F) and the public key Pk as input and returns the
ciphertext (C).

3.1.3. Build Trapdoor

TE← Build-Trap(Ph,Pk): This is a probabilistic algorithm run on the client-side. The
algorithm takes phonemes (Ph) and the public key (Pk). The algorithm returns a query or
trapdoor (TE).

3.1.4. Searching

R← Search_Ph(TE, EPh): This is an algorithm for searching phonemes homomorphi-
cally in the encrypted data on the server-side, which takes trapdoor (TE) as input. It
generates output encrypted search results (Enc_R).

3.1.5. Decryption

X ← DecSk (R,Sk): This is a probabilistic algorithm run on the client-side. It takes
the input of the result (R) from the searching phase and recovers/decrypts the original
phonemes file (X).

4. Security Definitions

In this section, definitions of keyword–trapdoor indistinguishability and trapdoor–
document indistinguishability are discussed, which are taken from [30].

4.1. Definition 1–Keyword–Trapdoor Indistinguishability

When an adversary cannot distinguish between the keyword and its trapdoor, the
cryptosystem is secure. Because of the probabilistic nature of the scheme, the ciphertext is
different whenever it is encrypted. The adversary intercepts and fetches the trapdoor to
identify its keyword (plaintext) in polynomial time. The adversary chooses a keyword and
sends it to the challenger. The challenger then generates the trapdoor and sends it back to
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the adversary. This way, the number of trapdoors are generated in polynomial time. After
that, the adversary has to select two keywords and gets its trapdoor from the challenger.
The adversary then guesses and outputs.

Game 1. Adversary A and challenger C are two players in this game. Assume that
there are phonemes Ph = (Ph1, Ph2,....,Phk) and N number of phoneme files F = (F1,F2,...FN).

(Sk, Pk, )← GenSecKey(hwt,p)
Eph ← EncP(Pk, FN)
f or 0 < i < N :

Ti ← Build− Trap(Phi, Pk)
(sA, Q)← A(sA, Ti)

toss← {0, 1};
(sA, Ph0, Ph1)← A(1λ)
TPhtoss ← Build− Trap(Phtoss, Pk)
toss′ ← AN+1(sA, TPhtoss)
TPhtoss

′ ← Build− Trap(Phj, Pk); j ∈ N
i f toss′ = toss; output 1;
otherwise output 0

where SA is the state of the adversary A. The scheme is said to provide keyword–trapdoor
indistinguishability, if the following holds true,

Pr[Kw_TrapA(λ) = 1] ≤ 1
2 + negl(λ)

The challenger begins by generating a set of encrypted documents. The three phases
of this experiment are:
Phase 1: The adversary chooses a keyword of his own choice and sends it to the challenger.
The challenger then generates the trapdoor of this keyword and sends it back to the
adversary. This session continues between adversary and challenger for a polynomial time.
Challenge Phase: In this phase, the adversary chooses any two phonemes (Ph1, Ph2) and
sends them to the challenger. Before generating a trapdoor, the challenger tosses a coin
{0,1}. Then he generates a trapdoor against the keyword corresponding to the coin.
Final Phase: The adversary will now guess the keyword corresponding to the trapdoor. The
challenger will see if the adversary’s guessed trapdoor matches with its keyword. If it is
matched, then the adversary has won the game. As the adversary has to guess from the two
options (Ph1 , Ph2), and if the proposed scheme is probabilistic, the probability of winning
the game is 0.5.

4.2. Definition 2–Trapdoor–Document Indistinguishability

In searchable encryption, the user generates the trapdoor against the keyword he
wants to search for over encrypted data. After searching for a keyword, the output is
a relevant encrypted document or file. If an adversary cannot distinguish between the
trapdoor and its resulting file, the searchable encryption scheme is secure and termed to be
privacy-preserving.
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Game 2. Let us play a game between a challenger and an adversary. Assume that
there are phonemes Ph = (Ph1, Ph2,....,Phk) and N number of phoneme files F = (F1,F2,...FN).
There are three phases of this game:

(Sk, Pk, )← GenSecKey(hwt,p)
Eph ← EncP(Pk, FN)
f or 0 < i < K :
(sA, TE)← A((sA, Ph1, Ph2, ...Phk)); Fi ← Search_Ph(TE, EPh, N)

toss← {0, 1};
(sA, TE0 , TE1)← A(1λ)
F′ ← Search_Ph(TEtoss, EPh, N)
toss′ ← Ak+1(sA, F′);
Ttoss′ ← Build− Trap(kqj, Pk); j ∈ N)
i f toss′ = toss; output 1;
otherwise output 0

where SA is the state of the adversary A. The scheme is said to provide trapdoor–document
indistinguishability if the following holds true,

Pr[Trap_FileA(λ) = 1] ≤ 1
2
+ negl(λ)

The challenger begins by generating a set of encrypted files. The three phases of this
experiment are:
Phase 1: The adversary chooses a keyword of his own choice and sends it to the challenger.
The challenger then generates this keyword’s trapdoor and searches the relevant encrypted
document. The challenger sends a trapdoor and encrypted file to the adversary. This
session continues between the adversary and a challenger for a polynomial time.
Challenge Phase: In this phase, the adversary now chooses any two phonemes (Ph′1, Ph′2)
and sends them to the challenger. The challenger tosses a coin (0,1) before generating a
trapdoor and searching a relevant file. Then he generates two trapdoors and searches two
corresponding files against those two keywords.
Final Phase: In this phase, the adversary now chooses any two Phonemes (Ph′1, Ph′2) and
sends them to the challenger. The challenger tosses a coin (0,1) before generating a trapdoor
and searching a relevant file. Then he generates two trapdoors and searches two corre-
sponding files against those two keywords.
NOTE: The research paper [34] discusses the search pattern leakages. The author elaborates
that the search pattern is accessible in deterministic schemes. However, even in the proba-
bilistic nature of the scheme, the search pattern can still be disclosed using the entries in
the index. Our scheme is based on fully homomorphic encryption, which does not require
keeping an index table for searching the query. The searching was conducted based on a
probabilistic trapdoor. Therefore the search pattern is not revealed in our scheme.

5. Proposed Phoneme Searching Framework

The proposed scheme ingests HElib operations presented in [35]. The proposed
scheme is presented below:

5.1. Setup Phase

The setup phase takes several parameters as input and initializes the context. The con-
text further generates the key pair (public and secret keys). The secret key then computes
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key switching matrices. The setup phase is shown in the Algorithm 1.

Algorithm 1: Setup Phase.
(1) Input: m,p,r,c,nthreads,bits
(2) map.arg(input)
(3) Initialize the context // Object holding information about the scheme’s algebra
context(m,p,r,bits,c)
EA← context() // Obtain the encrypted array of the context
(4) Generate keys:
keys Sk,Pk: GenSecKey(context)
(5) Compute key-switching matrices:
addSome1DMatrices(Sk)
(6) Output: Sk, Pk

5.2. Encryption Phase

The algorithm for the encryption phase conducts the encryption of multiple phoneme
files using the public key. The algorithm first chooses one file and reads each line from the
file that is converted into plain text representation by using a string to integer conversion.
Finally, it performs encryption and saves to the vector. In this way, the algorithm will pick
all the files one by one, and will encrypt. The encryption phase is shown in the Algorithm 2.

Algorithm 2: Encryption Phase.

(1)Input: set of phoneme files (F), public key (Pk)
(2)Read file:
for 1<= File < N: do

// Read each line of the file
while (getline(File,Ph) do

// Plain text representation
for 0<= i < Ph.size: do

X[i]=Ph[i]
end
// Encryption
let EPh ← EncP(X,Pk)
// Save to Vector
let EPh_Vec← push(EPh)

end
// Write to file let Enc_file← write(EPh_Vec)

end
(3)Output: Enc_file to server

5.3. Build Trapdoor Phase.

This algorithm generates a probabilistic trapdoor against the query keyword given
by the client. It takes the query keyword and public key as input, converts the query into
integer form, and performs encryption to generate a meaningful trapdoor. The generated
trapdoor will be sent to the server for the searching phase. The trapdoor generation phase
is shown in the Algorithm 3.

Algorithm 3: Build trapdoor phase.
(1) Input: Query(kq, Pk)
(2) Convert query to a numerical vector:
let Nv ← NumVect(kq) //Encrypt the query
TE← EncP(Nv,Pk)
(3) Output: Transmit TE to server
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5.4. Searching Phase

The algorithm for the searching phase is executed on the cloud side against the
received trapdoor. The algorithm is designed in such a way that it searches for the desired
keywords in all encrypted files. This algorithm will work when the client requests the
query, as described in the build trapdoor phase. Once the trapdoor is received from the
client, the cloud server will execute the search algorithm. The input arguments of this
search algorithm are the trapdoor and encrypted files stored in the cloud. The algorithm
picks one file at a time, reads each encrypted line (phoneme), and matches with the query
homomorphically. Since we are performing a search on multiple files, the algorithm will
search the required query on all the files stored in the cloud server. The main steps of
the database searching phase in HElib include calculating the difference by subtraction,
then power function, negating the ciphertext, and adding the constant. The setup phase is
shown in the Algorithm 4.

Algorithm 4: Searching phase.
(1) Input: TE , Files (F) (2) Performing search (Search_Ph(TE)): // Read each line

of the file getline(File,buffer)
for 1 <= i < size of buffer: do

getphonemes(buffer,Enc_phonemes) // Read phonemes from file
end
mask_entry=Enc_phonemes // Copy the word
mask_entry - = kq // Calculate the difference
mask_entry.power() // All other words become E(1) mod p
mask_entry.negate() // Negate the ciphertext: So, E(0) for keyword, E(-1) for the
rest mask_entry.addConstant() // Create a vector of copies of mask

for 1 < i <(rotated_mask(EA.size,mask_entry)) do
EA.rotate(rotated_masks[i], i) // Rotate each of the masks
multiply(mask_entry,rotated_mask) // Multiply each of the masks
let mask_Vec← push(mask_entry) // Save to Vector

end
for 1 < i < mask.size: do

let EncR← + = mask_Vec[i] // Aggregation
end
(3) Output: Result(EncR)

5.5. Decryption Phase

After searching for the desired result, the response is also probabilistically encrypted,
which needs to be decrypted when received on the client-side. This algorithm is performed
at the client-side, which takes the response from the cloud side as input. The decryption
phase is shown in the Algorithm 5.

Algorithm 5: Decryption phase.
(1) Input: result(R)
(2) Decryption:
X← DecSk (R,Sk)
(3) Output: Search result in plaintext (X)

6. Security Analysis

Several previous research works on searchable encryption accepted the leakage of
information either due to index-based searching or deterministic encryption [23,30,36].
Since our scheme is neither based on index nor deterministic encryption, it reduces the
leakages compared to the state-of-the-art. The leakage profiles of the proposed scheme are
presented below:
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6.1. Leakage Profiling

Our goal was to analyze and present any leakage in our proposed model that may be
encrypted/decrypted or meaningful/meaningless. The leakage profiling was performed
against all five phases of the scheme presented in Section 4, and we considered all the
artifacts evolving. The following leakages were determined:

(1) Leakage L1: This leakage discusses the encrypted files stored in the cloud server.
The data owner encrypts the audio files at the client end and uploads them to the cloud.
The cloud server cannot distinguish the underlying data because the files are encrypted.
However, the CSP will be able to know the size of the encrypted files. Although the
encryption provided by HElib is probabilistic, each time, the file size is different. The cloud
server cannot guess the original file but can only know the size. Moreover, CSP only can
see the number of files stored in the cloud. Leakage L1 is defined as:

L1 =
{

EAudio, (number o f EAudio), (size o f EAudio)
}

(2) Leakage L2: This leakage focuses on the trapdoor generated at the client-side and
sent to the cloud. The encryption is performed on the query and generates the trapdoor.
Again, the encryption is probabilistic, so the trapdoor is different and reveals no information
to the cloud server about the phoneme being searched. Leakage L2 is defined as:

L2 =
{

EncPk (NumVect(Kq)
}

The above leakage shows that the trapdoor is probabilistically encrypted. The encryp-
tion function of the trapdoor generation takes two arguments as input: one is a numerical
representation of the plaintext query and the second is the public key.

(3) Leakage L3: This leakage discusses the searching process evaluated over the cloud
server. The cloud server performs the searching of phonemes and returns the relevant
audio files. The cloud server can know about the returned file after searching but cannot
know what we searched for. Leakage L3 is defined as:

L3 =
{

EncR
}

In the above equation, the EncR possesses the final search result in the encrypted form.
The result is also probabilistically encrypted, so it does not leak information after searching.
NOTE: The definitions and leakages discussed above are aligned, verifying that the pro-
posed scheme does not reveal any valuable information. In this way, we achieved pri-
vacy preservation.

6.2. Parameters Setting and Analysis

The performance results are based on parameters that Gentry defined in [37]. The
author described the homomorphic evaluation of the advanced encryption standard (AES)
using non-bootstrapping and bootstrapping implementation. The following are the security
parameters on which security is based:

Q is the largest modulus, σ is the noise variance, while the security depends on the
ratio of Q/σ.

N ≥ ((log Q/σ)k + 110)
7.2

where N is the dimension and this value depends upon Q/σ, which determines the secu-
rity level.

For bootstrapping: the parameter sets are: m = 28,679 , Φ(m) = 23,040. Using these
parameters, Gentry achieved 123-bit security in 23 computations.

For non-bootstrapping: the parameter sets are: m = 53,261, Φ(m) = 46,080. Using these
parameters, Gentry designed it to work on 40 computations. Setting such parameters was to
achieve two AES rounds during the re-encryption phase. The computation and evaluation
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were performed by using a non-bootstrapping method. We performed operations, e.g.,
encryption and searching, using different values of m to analyze the different security levels.
Table 3 shows the computation and evaluation results. The different plaintext file sizes are
used. The table also shows that by increasing the security levels, the ciphertext file sizes are
increased, thus increasing the search time as well.

Table 3. m parameter for different security levels.

Serial Number 1 2 3 4

’m’ value 53,261 28,679 14,339 12,169
Security Level 93.77 36.8 12.63 9.22

Plaintext File Size (Bytes) 54 179 179 179
Number of Phonemes 10 30 30 30

Enc Time (sec) 1.19 1.63 0.8 0.77
Ciphertext File Size (MBs) 297.2 445.6 255.8 229.3
Search Query Time (sec) 2736 1880 110.7 174.7

7. Performance Analysis

In this section, the performance analysis is discussed, starting with the dataset
generation, computational complexity, system specifications, and finally, the implementa-
tion results.

7.1. Dataset Generation

This research work utilizes the medical voice recordings dataset provided by medical
speech, transcription, and intent [38]. The total data size was 11 GB. We generated five
different sizes of phoneme files. Each phoneme file was composed of a different number of
audio files. The audio files we took for the purpose were 50, 150, 200, 300, and 500. First,
the audio files were converted to text, then converted to phonemes. The range of phonemes
for a maximum of 500 files was around 5422. The details are discussed below with the
performance results.

7.1.1. Library for Audio to Transcribe

A subroutine was written in Python language based on Google speech recognition.
This function adds multiple audio files and generates one text file, as shown in Figure 3.
x-axis shows the file size in kilobytes while the y-axis shows the time in seconds. It was
observed that with the increase in the file size, the time to convert audio to text also
increased, as expected.

Figure 3. Audio to text conversion performance.
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7.1.2. Library for Text to Phonemize

A Python subroutine was designed based on the Phonemize library [39]. It takes
a single text file as input and generates one phoneme file, as shown in Figure 4. The
x-axis shows the file size in kilobytes while the y-axis shows the time to convert the text to
phonemes in seconds. With the increase in the file size, the time required for the conversion
also increases.

Figure 4. Text to phoneme conversion performance.

7.2. Computational Complexity

In this section, the computational complexities of different cryptosystems, including
HElib, which we used, are presented in Table 4. The time complexity of this scheme based
on HElib is shown in Table 5 in terms of asymptotic notations for every algorithm. The
setup phase was composed of initialization and key generation, and the time complexity
was O(1). The encryption algorithm encrypts phonemes (Ph) in the number of audio files
(N), the time complexity is O(NPh ∗ HE), where HE represents the complexity of HElib.
The trapdoor generation algorithm simply encrypts the plaintext query input, so the time
complexity is O(HE). The time complexity of the searching algorithm is O(NTE) because
it searches the query in all files (N). Similarly, the time complexity of decrypting search
results and files is O(N ∗ HE).

Table 4. Computational complexity.

Basic Paillier (PPHE) O(|n3|)
CRT-PHES [40] O(|n2||α|)
NC-PHES [41] O(log(n))

HElib [35] O(nLlog2 p)
DGHV O(n12)

Table 5. Time Complexity of HElib.

Setup O(1)
Encryption O(NPh ∗ HE)

Trapdoor Generation O(HE)
Searching O(NTE)

Decryption O(N ∗ HE)
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7.3. Client-Side System Specification

The client’s side simulations were carried out on OS Ubuntu 18.04.5 LTS (64 bits) with
16 GB RAM, Intel Core i7-7700 CPU @ 3.6 GHz × 8, and 1 TB SSD storage, as shown in
Table 6.

7.4. Cloud Side System Specification

The Contabo public cloud service was used to carry out our search phase on the
server-side. The operating system was Ubuntu 20.04. The detailed client and server-side
specifications are shown in Table 6

Table 6. Specifications.

Specifications Contabo Cloud Client

OS Ubuntu 20.04 Ubuntu 20.04 (64 bits)
CPU Cores 10 vCPU Cores Intel i7-7700 CPU @ 3.6 GHz × 8

RAM 60 GB 16 GB
Storage 1.6 TB 1 TB SSD

Network speed 1 Gbit/s 100 MB/s

7.5. HE Library by IBM

The operations for phoneme searching were carried out using HElib version 2.1.0 [35]
in the Ubuntu operating system. HElib is an open-source programming library that carries
out homomorphic encryption (HE). Brakerski–Gentry–Vaikuntanathan (BGV) was imple-
mented in this scheme with bootstrapping; the Cheon–Kim–Kim–Song (CKKS) approxi-
mate number plan was used alongside numerous enhancements to make the homomorphic
performance quicker. The ciphertext packing technique by Smart–Vercauteren and the
optimization technique by Gentry–Halevi–Smart were also used. Since mid-2018, HElib
has been under broad refactoring for reliability, robustness, serviceability, and performance.
Above all, it supports developers and engineers working on homomorphic encryption.

7.6. Implementation

This section elaborates on the performance of encryption, trapdoor generation, search-
ing, and decryption. For implementation, the client–server architecture was followed. The
encryption, query generation, and decryption were performed on the client-side, while the
searching operation was performed on the cloud side. The final implementation was tested
over a single file while scaling it to multiple files. The value of ‘m’ for the security level
we considered was derived from the author Halevi in [42]. The author used the value of
m = 21,845 while achieving the security level of 76. In this research, we also set m = 21,845
with p = 131 and we achieved a 20.2 security level while lattice dim φ(m) was 16,384. First,
Figure 5 shows all operations while m = 130 and p = 131 for the dataset comprising 200
audio files with a negligible security level. The testing was done in batches of 25 files and
the maximum number of files was 200. The x-axis shows the number of files and the y-axis
shows the time in seconds. The result shows near linearity in performance. Since the search
time was calculated on the cloud side and a response was sent back to the client-side, it
possessed the network latency. Therefore, we also showed the difference in performance
in terms of network latency. The small value of ‘m’ leaves a tiny polynomial ring, which
is prone to several brute force attacks. Even without the secret key, guessing the extra
error (including the point where it is introduced) would allow an adversary to decrypt
the ciphertext. Similarly, the Figure 6, shows all the operations with a security level of
20.2, while the dataset comprised five audio files. The dataset was reduced because as we
increase the security level, the search time increases, which is evident from the search time
graph. The search time is again depicted while taking the latency into account. It can be
observed that with the increase in the security level, the processing time also increases.
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Therefore, depending on the underlying use case and criticality of the data, one may choose
the security level to be used. The number of files is presented along the x-axis; the time in
seconds is presented along the y-axis.

Figure 5. Results of multiple files, when m = 130 and zero security level.

Figure 6. Results of multiple files, when m = 21,845 and 20.2167 security level.

8. Discussion

This section maps our proposed scheme against the design goals that were presented
earlier in the introduction. In this paper, we proposed a scheme that allows a phonetic
search over the encrypted audio data stored in the cloud. The encryption used was HElib,
where only an authorized person is permitted to search over the encrypted data. Fur-
thermore, we generated probabilistic trapdoors using FHE. It resists distinguishability
attacks and search pattern hiding and achieves a privacy-preserving search. We intro-
duced lightweight data structures to allow us to deploy the scheme in a real-world cloud
environment, which has been demonstrated by deploying the scheme over a public cloud—
Contabo. Table 7 summarizes our discussion and shows the description of how we achieved
those goals.

Table 7. Security goals description.

Security Goals Implementation Description

Data confidentiality Is achieved by homomorphically encrypting
the telemedicine data.

Searching capability By presenting a fully homomorphic encryp-
tion searching scheme.

Authorized person searching
Only an authorized person in possession of
the correct cryptographic keys can generate
a search query and decrypt the files.

Privacy-preserving
Probabilistic encryption is introduced, pre-
serving the privacy of the data.

Search pattern hiding
The trapdoors are probabilistic, achieving
search pattern hiding.

Cloud deployable
The proposed scheme is implemented and
tested over the Contabo CSP
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9. Conclusions and Future Work

This paper presents a novel method of preserving the privacy of healthcare audio
data stored in the cloud using fully homomorphic encryption. This research focuses
on phonemes/audio searching over the cloud without decrypting the audio files. For
this purpose, the proposed scheme utilizes a homomorphic encryption library (HElib).
The library is probabilistic encryption with a BGV scheme. We achieved data privacy in
the cloud while querying the phonemes and probabilistically searching the desired file.
Thus, this paper addresses the security concerns regarding search and access patterns.
The datasets utilized in this research work are real-world audio conversations between
doctors and patients. Furthermore, we assessed different security levels and analyzed the
scheme’s performance. Finally, the implementation of the client–server architecture was
performed using multiple audio files while integrating the scheme with the public cloud
platform "Contabo". The analysis shows that the computation time increases with increased
security levels. This research work can be extended through multi-threading to increase
the performance speed, using more audio files with high-security levels, and implemented
using other open-source libraries, e.g., HEAAN, SEAL, and PALISADE. The performance
can also be increased by using a cloud server with high specifications, automatically scaling
up the resources as per the requirements.
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