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Abstract: In the current research work, electrical resistance tomography (ERT) was employed for mon-
itoring and visualization of crystallization processes. A first-of-its-kind MATLAB-based interactive
GUI application “ERT-Vis” is presented. Two case studies involving varied crystallization methods
were undertaken. The experiments were designed and performed involving calcium carbonate
reactive (precipitative) crystallization for the high conductivity solution-solute media, and the cooling
crystallization of sucrose representing the lower conductivity solution–solute combination. The
software successfully provided key insights regarding the process in both crystallization systems. It
could detect and separate the solid concentration distributions in the low as well as high conductivity
solutions using the visual analytics tools provided. The performance and utility of the software were
studied using a software evaluation case study involving domain experts. Participant feedback indi-
cated that ERT-Vis software helps by reconstructing images instantaneously, interactively visualizing,
and evaluating the output of the crystallization process monitoring data.

Keywords: electrical resistance tomography; visualization; crystallization process monitoring;
process operation

1. Introduction

Crystallization is a key process extensively used in many pharmaceutical product man-
ufacturing and chemical applications. The process monitoring and control of crystallization
techniques in industry have been subjects of study for many years [1]. There are primarily
four types of crystallization methods: cooling crystallization, evaporative crystallization,
anti-solvent based crystallization, and reactive crystallization [2]. These different types
of crystallization processes involve various physical principles in the purification and
separation processes.

The growing industrial demand for reactive type crystallization (also known as precipi-
tation) is primarily due to the increasing demand for process intensification, yield efficiency
enhancements, and lower energy consumption requirements [3]. In reactive crystallization
processes, the main driving force is a fast chemical reaction [4]. Due to chemical reactions,
crystal nucleation and growth phenomena are very fast, requiring an immediate response
from process monitoring systems [3]. In reactive crystallization, instantaneous reactions
cause differences in the density gradient within the reactor and the resultant solid product
causes local variations in conductivity distribution within the suspension.
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Due to the underlying physical and chemical differences, and certain operational
challenges, various instrumentation has been employed to monitor the course of crystalliza-
tion processes [5,6]. Collectively, crystallization monitoring and particle characterization
techniques are known as process analytical technology (PAT) [7,8]. A range of PAT-based
monitoring and feedback-control approaches have been utilized to investigate laboratory
and industrial scale crystallization processes [9,10]. Widely used PAT instruments include
particle vision microscopy (PVM) with image and data processing algorithms [11,12], vis-
ible light spectroscopy [13], impedance spectroscopy [14,15], focused beam reflectance
measurement (FBRM) [16,17] and Raman spectroscopy [18]. These PAT tools significantly
improve the design of unit operations and are valuable for crystal morphology assessments,
including chord length and crystal count measurement.

Crystallization measurement tools such as IS and FBRM can obtain useful one-dimensional
(1-D) and point-based information from the process. Alternatively, tomographic sensors
have the potential to provide multi-dimensional data using reconstructed images [19].
Fast tomographic imaging techniques have important applications in industrial process
control [19]. Tomographic techniques using hard field imaging and soft field imaging have
been studied for crystallization monitoring. Hard field tomographic imaging uses ionizing
radiation, and soft field tomographic imaging involves non-ionizing radiation. Hard field
imaging techniques such as X-ray microtomography, and X-ray diffraction tomography
have also been utilized to study microparticulates and crystallization processes [20,21].
Soft field tomographic imaging techniques, such as ultrasound computed tomography
(USCT) [22] and electrical capacitance tomography ECT [23], have been widely described for
monitoring crystallization progress. In batch and semi-batch chemical processes involving
stirred tank reactors, it is important that the reconstructed images provide quantitative
and accurate visualizations of the process. Continuous measurement can improve the
implementation of process control.

As a complementary technique, tomography has the potential to provide useful
information regarding qualitative determination of the spatial distribution of solid particles
in a reactor, and to be utilized as a real-time fault detection and monitoring tool.

Electrical resistance tomography (ERT) is an inexpensive, fast, and non-destructive
method for evaluating crystallization process. Because ERT depends on the inverse imaging
methodology for reconstruction, there is a possibility of difference in sensitivity within
the batch reactor at different distances from the sensor. The final results determining
accurate yield estimation and solid concentration distributions within the region of in-
terest can be affected by variation in the parameters for image reconstruction or image
segmentation. The quantitative evaluation of the crystallization progress and the factors
affecting crystallization monitoring using ERT have been discussed extensively [24,25]. It
was shown that multiple factors such as sensor size, reconstruction technique, conductiv-
ity of the solution under evaluation, elements in the Finite Element Model (FEM) mesh,
and the image processing method utilized all affected the quantitative evaluation of the
non-conductive regions.

It is a repetitive and time-consuming process to choose various parameters for different
conductivity media for ERT image reconstruction. It is important that the acquired results
be repeatable and that the evaluation protocol can be implemented to solutions with
different conductivity profiles. The conductivity profile of the crystallization process in
turn depends on the chemical and physical properties of the reactions involved. For
instance, a reactive crystallization typically has fast kinetics in a high conductivity solution,
while the sucrose crystallization by comparison has slow kinetics in a low conductivity
medium. Hence, it is necessary to implement an ERT sensor which can provide resolution
within the conductivity range of the given crystallization process [26].

Finally, the importance of advanced visualization for fast industrial tomographic pro-
cesses to analyze objects under consideration has increased to a significant extent [27,28].
Therefore, there is a need to develop comprehensive and easy-to-use graphical-user-
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interface-based software with functionality of data acquisition, image reconstruction, image
segmentation, and solid concentration distribution visualization.

This work aimed to demonstrate the versatility and capability of ERT for visualizing
crystallization processes with different conductivity profiles and physical principles. In
this work, an original software application called ERT-Vis was developed using MATLAB
(Release R2021) with a novel approach for crystallization process monitoring and ERT
data visualization. The applicability of the software for crystallization process monitoring
was successfully tested using two experimental case studies, involving reactive crystalliza-
tion and sucrose cooling crystallization, and a software evaluation case study involving
domain experts.

The software development and experimental work were performed within the frame-
work of the European Union Horizon 2020 TOMOCON project (smart tomographic sensors
for advanced industrial process control) [19,29]. The primary focus of the project was to
study fast tomographic methods and create a multi-sensor network to monitor, visualize
and implement control for batch crystallization processes [29]. The present work is a
collaborative effort from three partner universities within the TOMOCON project. The
Lodz University of Technology (Poland) developed the ERT-Vis software and demonstrated
the case study involving sucrose crystallization, Lappeenranta University of Technology
(Finland) carried out a case study involving the precipitation of calcium carbonate, and
Chalmers University of Technology (Sweden) performed the evaluation of the ERT-Vis
software in a case study involving domain experts.

2. ERT System and Methods
2.1. Process Engineering Workflow Using ERT

The process engineering workflow for a PAT method based on tomographic image
analysis can broadly be divided into five major segments, as shown in Figure 1. The factors
determining quantitative accuracy using ERT evaluation fall into these five segments. The
workflow starts with acquisition, where the selection of the number of electrodes, materials
used for making an electrode, sensor shape, and frame rate of acquisition is determined.
Any process analysis using ERT must include these steps in order to assess progress quanti-
tatively. It is important for a process engineer that the control of these areas is provided
separately so that the calibration and quantification can be performed systematically.

Figure 1. Process engineering ERT workflow (left to right): data acquisition, image reconstruction,
image segmentation, 2D/3D visualization, and process analyses for control and monitoring.

2.2. General ERT System

The ERT systems consists of a complex set of sensors and data acquisition technology,
and employ inverse imaging techniques to generate images and information from the
acquired voltage or current levels. The systems are primarily based on Ohms law stating
that the material poses resistance to the path of electric current. There are two ways in
which data acquisition takes place: voltage induced and current measured (VI), and current
induced voltage measured (IV).
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Figure 2 depicts the ERT setup schematic around a reactor tank. This setup can be
categorized into three modular components: data acquisition, data processing, and data
visualization. The data acquisition component consists of ERT electrodes placed on the
circumferential periphery of the reactor. The sensor array consists of 16 steel electrodes.
These electrodes operate as emitters (source) as well as receivers (sink) for the electrical
signals. The cables carry the electrical signals via field programmable grid array (FPGA)
boards. The FPGA boards remove any electronic noise received, by implementing filtering
algorithms as a pre-processing strategy. The data processing such as image reconstruction
and image processing techniques can be applied to the incoming data in real-time or in
offline mode. The resulting images are visualized and analyzed, and the signals are sent
back to implement the control strategy in the reactor.

Figure 2. A schematic ERT system setup for reactive crystallization with data acquisition, data
processing, and data visualization sections.

2.3. Related Works for ERT Software Development

Soft field tomography involves reconstruction based on inverse imaging. It includes
various non-ionizing tomographic methods such as ERT, ECT, USCT, microwave tomogra-
phy and optical coherence tomography (OCT). Various software solutions from research
labs and industry have been developed for analysis of ERT or ECT data. A short com-
parison of ERT software based on the available modules for process analysis is shown
in Table 1. PyEIT is open access software for ERT reconstructions [30]; it is based on the
Python programming language and offers simple 2D and 3D meshing. GREIT is software
based on EIDORS for the monitoring of the thoracic region [31]. It is worth noting that
GREIT is capable of reconstructing non-regular shapes, which could be beneficial in the
vertical monitoring of batch reactors or irregular shapes. The ITS Reconstruction tool suite
is an ERT software development for use with ITS industrial-grade ERT instruments [32]. It
offers multiple reconstruction algorithms for the comparison of process data. Real-time
3D ECT was developed to obtain fast reconstructions of ECT images [33], using efficient
GPU and CPU memory allocations for fast rendering of the 3D volumetric images obtained.
TomoKIS studio is a software application developed at Lodz University of Technology [34].
TomoKIS can be connected to multiple ERT and ECT instruments in the process tomogra-
phy laboratory, so that fast and efficient rendering of 2D and 3D images can be visualized
at real time. It also supports multiple reconstruction algorithms for ECT data. EIDORS is
an open source extensible software package for ERT and OCT reconstruction [35–38].

Table 1. Comparison of ERT software based on the availability of different modules.

Software Acquisition Reconstruction Segmentation Visualization Researcher’s Open Access

pyEIT No Yes No Limited Yes
GREIT No Yes No Limited Yes

ITS Reconstruction Tool-Suite Yes Yes Limited Limited No
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Table 1. Cont.

Software Acquisition Reconstruction Segmentation Visualization Researcher’s Open Access

Real-time 3D ECT Limited Yes No No No
TomoKIS Studio Yes Yes No Limited No

EIDORS No Yes No Limited Yes
ERT-Vis Limited Yes (EIDORS) Yes Yes Yes

3. Experimental Setup and Crystallization Process Description

The Rocsole ERT device (supplied by Rocsole Ltd., Kuopio, Finland) was utilized
during the experimental works. The ERT device was a voltage induced and current
measured type. It was manufactured by Rocsole Ltd., Finland. A specific type of FPGA-
based signal acquisition and transmission sensor unit was used to evaluate the signals in the
low conductivity solutions (supplied by Rocsole Technology Centre, Rocsole Ltd., Kuopio,
Finland). Sensors were mounted around the perimeter of the reactor with a diameter of
200 mm to monitor the calcium carbonate reactive crystallization.

Two case studies were performed to test the ERT-Vis software utility. The first case
involved the CaCO3 reactive precipitation crystallization experiment, which used a higher
conductivity medium. The second case study was the cooling crystallization process
using the super-saturated sucrose solution with a relatively lower conductivity medium.
Table 2 shows the difference between certain parameters for the investigated crystallization
methods. The experimental setup is explained in Sections 3.1 and 3.2.

Table 2. Case studies and experimental configuration to demonstrate the application of ERT-Vis
software in different crystallization processes.

Parameter CaCO3 Reactive
Crystallization

Sucrose Cooling
Crystallization

Size of Reactor 200 mm diameter 63 mm internal diameter
Number of Electrodes 16 16

Type of Reactor polypropylene Glass jacketed
Acquisition Frame Rate 16 Hz 12 Hz

Reconstruction Algorithm Gauss-Newton Gauss-Newton
Total Time for Experiment 10 min 15–20 min

Type of Crystallization Reactive crystallization Cooling crystallization
Stirrer Speed 100 rpm No stirrer

Input Induced Voltage 3 V 3 V
Range of Currents detected 0–0.1 µA 0.1–1.75 mA

Transducers Frequency 156 KHz 156 KHz

3.1. Process Description of CaCO3 Reactive Crystallization

The CaCO3 reactive crystallization occurs by the addition of aqueous CO2−
3 into a

stirred tank reactor containing a known concentration of calcium ions (calcium chloride
was used as the calcium ion source). The governing chemical reaction is as follows:

CO2−
3(aq) + Ca2+

(aq) → CaCO3(s) ↓ (1)

The rapid liquid-phase chemical reaction results in the formation of a non-conductive
solid phase in the reactor. The initial solution volume inside the reactor was 3 L, as
shown in Figure 3. The CO2−

3 reagent addition volume was 0.4 L (feed pipe diameter was
2 mm). For all the investigated cases, CaCl2 (purity > 98%, Merck, Darmstadt, Germany)
concentration was 1.6 g L−1, mixing speed was 100 RPM (tip speed of 0.37 m s−1) and the
feed addition rate was 40 mL min−1. The aqueous CO2−

3 was prepared by injecting CO2
gas (purity > 99.9%) into sodium hydroxide (NaOH, Purity > 98%, Merck) solution—a
detailed experimental procedure is provided in [39].
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Figure 3. (1) Reactor with the ERT sensor unit mounted; (2) Rushton plastic turbine; (3) ERT device
for data acquisition and process monitoring; (4) feed pipe for the reagent addition.

Experiments were performed at a temperature of (20 ± 2) ◦C. The reactive crystalliza-
tion experiments and the associated ERT-based measurements were repeated at least three
times to ensure the reliability of the results.

3.2. Process Description for Sucrose Crystallization

Sucrose (C12H22O11) crystallization using the cooling crystallization method involves
the cooling of the saturated sucrose solution [40]. The coefficient of supersaturation k is
expressed by the ratio

k =
Wsucrose
Wwater in given solution at T ◦C

Wsucrose
Wwater in the saturated solution at T ◦C

(2)

where Wsucrose is weight of the sucrose in the solution, Wwater is weight of the water in the
solution, and T is the temperature of the solution. Experimental data on the solubility of
sucrose in pure and impure solutions at various temperature has been widely reported in
the literature [41,42].

Percentage of mass of soluble sucrose up to 100 ◦C is given as in [41]

wS = 64.447 + (0.08222 × T) + (1.66169 × 10−3 T2) − (1.558 × 10−6 T3) − (4.63 × 10−8 × T4), (3)

where wS is the percentage in the mass of soluble sucrose and temperature in ◦C is given
by T. Using the jacketed glass beaker as shown in the Figure 4a, a design was proposed to
perform the cooling of the saturated sucrose solution. As the name suggests, the jacketed
beaker has a temperature-maintaining glass jacket around the reactor. The outer height and
the outer diameter of the beaker measured 195 mm and 120 mm, respectively. The inner
height and the inner diameter of the beaker measured 175 mm and 95 mm, respectively. A
challenge of using the glass reactor involved the difficulty of drilling holes for ERT sensor
placement as used in the reactor made from polymer material. Hence, a novel design for
the placement and insertion of the ERT sensor unit was 3D printed, as shown in Figure 4b.
The sensor was placed within the beaker’s circumference. Black non-conducting paint
was applied on the reverse to prevent leakage of current. The MCX coaxial connectors
were connected to the Rocsole device. The coaxial cables were soldered to the sensor and
a rubber insulation was provided to avoid any contact with the supersaturated solution,
which would result in noise in the acquired signal.
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Figure 4. (a) Jacketed beaker with supersaturated sucrose solution inside the ice bath (coaxial cables
are numbered from 1 to 16); (b) 3D printed sensor insert, to mount the ERT electrodes.

The 3D sensor insert was designed using Blender version 2.79b software. It was
3D-printed using Ultimaker version 3 Extended software with an accuracy of 1 mm, with
the help of Cura 4.6 software. The sensor insert was printed using acrylonitrile butadiene
styrene (ABS) material. The jacketed beaker was filled with water at 0 ◦C and placed in an
ice bath to maintain constant temperature. Saturated sucrose solution weighing 400 g was
prepared from Polski Cukier sugar crystals and tap water. The solution was heated to 90 ◦C
and poured inside the beaker, and measurements were taken at reducing temperatures of
90 ◦C, 45 ◦C, 40 ◦C and 35 ◦C.

4. Development of the Software ERT-Vis

Electrical Resistance Tomography (ERT) can provide 2D/3D images supporting ana-
lytic tasks for chemical process analysis. Effective use of such images is critically reliant
on the choice of reconstruction parameters and the flexibility to change them quickly. We
systematically studied such parameters for analyzing non-conductive materials in the low
conducting media [25]. For cylindrical chemical batch crystallization reactors, a conven-
tional parameterization approach relies on testing and comparing the number of iterations,
finite element model mesh structure, hyperparameter values, and tolerances, using simula-
tions and phantoms. We conjecture that the interactive parameterization of segmentation
methods and morphological image processing will be critical for evaluating the spatial
accuracy of reconstructions in low conductivity environments. A visual analytics-based
software ERT-Vis is presented, for visualizing reconstructed ERT images and applying
run-time image processing techniques. This software consists of four modules for ERT
data analyses: acquisition, reconstruction, segmentation, and visualization. A software
evaluation case study involving domain experts was also conducted.

There has been an imperative need to develop a versatile software to help address
the unique requirements of the process engineer. Such software must be able to acquire
data from ERT, to reconstruct an image according to the flexible parameters chosen by
the process engineer, to perform the image processing tasks and provide flexibility to
visualize data in the requisite format, depending on the type of crystallization experiment
performed. The human–computer interaction was an essential part of the experiment, as
the requirements of the process engineer vary for different crystallization methods. The
developed software was tested with the involvement of domain experts from the field of
tomography. Based on the common feedback from the domain experts, a special module
for generating videos was added.
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4.1. Development of the Application Modules and GUI

ERT-Vis is a MATLAB-based software application created using the MATLAB app-
designer toolbox. The GUI tool ‘UIAxes’ was extensively used to display plots, panels, and
reconstructed and segmented images. A general selection header strip can be seen across
all the software modules for interactive selection, activation of modules, and navigating
through image frames either sequentially or to a specified frame. The START ERT-Vis push
button must be pressed to initialize the ERT-Vis software from the general selection header
strip before beginning to use the application to initialize the libraries.

Four modules were implemented in the prototype software, in line with the data
workflow in the ERT data acquisition and analysis system. These modules differed in
their functions and were assimilated into separate tabs for better accessibility. In the
current version of the ERT-Vis software, a researcher option has been added for enabling
and disabling the four modules by pressing the activate push buttons in the general
selection header strip. This saves time by reducing the number of computations required
to update the displayed plots and images. With the “Activate Acquisition” button, the
acquisition module tab is rendered functional. Using the “Activate Reconstruction” button,
the reconstruction capabilities of the ERT-Vis software in the reconstruction tab are switched
on. With the “Activate Segmentation” button, the image-processing capabilities from
the MATLAB image processing toolbox are utilized to segment and process the data.
With the “Activate Visualization” button, users have the capability to visualize the data
in various available colormaps of the extracted individual RGB channels of the image,
and can implement binarization on the extracted images by grey-level thresholding or
flood-fill segmentation.

The general selection header also consists of the reconstruction status LED indicator.
This LED blinks red prior to the execution of the reconstruction algorithms and turns green
when the reconstruction is completed. The default status of the reconstruction LED is
yellow. Using the “Frame Select” slider, the current frame under observation can be moved
to the desired location. The range of the “Frame Select” slider value is set from 0 to 900
and can easily be changed via the MATLAB App designer. Alternatively, researchers can
automate the process, using the designated variable to track the number of frames in the
uploaded data. The spinner “Frame Step” accepts the numerical input within the range
of “Frame Select” slider values, and reconstructs the user-defined frame. This feature is
convenient for observing minor changes that occur within microseconds of the process
with fast kinetics, acquired using a high frame-rate ERT acquisition device one frame step
at a time.

4.2. Module 1: Data Acquisition

In this tab, data can be acquired using the ERT device online over a Wi-Fi connection
or via LAN connection. The “Data Acquisition” tab can be seen in Figure 5. The “Data
Acquisition” module of the ERT-Vis was tested as an independent module using the
Rocsole device at Lodz University of Technology. At the LUT University the ERT device
was connected with LAN connectivity. At the Lodz University of Technology the ERT
data was obtained by forwarding it via the in-house TomoKIS Studio software [34], which
was physically connected to the Rocsole device through an internet router. Rocsole Ltd.
provided DLLs for enabling the connection of the ERT device to the TomoKIS studio
software. The case study evaluations for cooling crystallization using the ERT-Vis were
carried out using the recorded data.

Using the “on–off” toggle switch the user can connect to the ERT device over Wi-Fi.
The status of the ERT device connection is indicated using the colored LED “Connection
Status”; disconnection is indicated using red, and the LED status indicator turns green if
the PORT status is open and the device is connected. The default status before the first
reconstruction is yellow. The currents acquired and the voltages of the frame are visualized
in the “Currents” and “Voltages” plot. The numerical streaming data can be seen in the
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table columns below the plots in the MATLAB table. The streaming data is saved into the
text format using the “Record START/STOP” button.

Figure 5. ERT-Vis: Data acquisition module tab at initial condition.

4.3. Module 2: Reconstruction

In this module, the main task of the reconstructions from the ERT data are achieved.
The images obtained after the ERT reconstruction depend on various factors such as
hyperparameter values, the number of iterations, the FEM mesh model structure, the
number of sensors, and the number of pixels in the resultant image. Within this module,
the user has flexibility to choose the reconstruction method and to make fine adjustments
to achieve better results and to visualize results immediately and interactively.

The “Reconstruction” tab is shown in Figure 6. In this version of ERT-Vis, three
reconstruction algorithms have been implemented: the Gauss-Newton (GN) algorithm,
the Total-Variation (TV) algorithm and the Linear Back Projection (LBP) algorithm. These
algorithms have been implemented using EIDORS open-source software. EIDORS version
3.10 is central to the reconstruction module for ERT-Vis [43]. EIDORS is an open-source
MATLAB toolkit for electrical resistance tomography [44]. It approaches nonlinear or
ill-posed problems in electrical resistance or electrical capacitance tomography using a
finite element model (FEM) for forward calculations. A regularized nonlinear solver is
implemented to obtain a unique and stable inverse solution. This includes a derivation
of the formula for the Jacobian matrix or the sensitivity matrix, based on the complete
electrode model.

The “Reconstruction” tab is vertically divided into two sections. This tab is activated
after pressing the “Activate Reconstruction” state button. In the “Recon Check” tab of
the reconstruction module on the left, the reference data and the experimental data can
be imported using the push buttons “Load Reference File” and “Load Experimental Data
File”, respectively. The file names of the imported experiment are displayed and verified in
the Edit Text Field boxes “Reference File” and “Experimental Data File”, respectively. The
reconstruction algorithm can be selected from the four options currently provided in the
button group “Reconstruction Select”. The change in the selection of the “Reconstruction
Select” button group results in the generation of a new image in the “Reconstructed Image”
tab on the right-hand side. The numerical edit text fields “Current Frame Number”,
“Data per Measurement”, and “Number of Frames” display the current frame monitored,
data points in the single measured frame, and the total number of frames in the current
experimental dataset, respectively. In the right-hand side section, as shown in Figure 7,
the 2D reconstructed image is observed in the “Reconstructed Image” tab; this provides
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us with a 2D visualization. In the “Surface Mesh tab”, a 3D surface mesh provides a
3D visualization. Information regarding the induced voltage stability using the average
and standard deviation of the voltages in the frame can be observed numerically in the
“VI-Graphs” tab. Information regarding minimum and maximum current in the frame is
also observed in this tab, to check the sensor capabilities for detecting the currents in the
solution provided.

Figure 6. ERT-Vis Reconstruction module tab.

Figure 7. Reconstruction module: Panel for advanced visualization tabs (a) 2D reconstruction; (b) 3D
surface mesh visualization; (c) graphical and numerical observations.

Additionally, the reconstruction algorithm “Total Variation” can be controlled from the
“Fine TV” tab on the left axes as shown in Figure 8a. Here the number of iterations varies
according to the spinner “Number of Iterations”. The Jacobian background value can be
edited using the numerical edit field “Jacobian Background Value”. The hyper-parameter
value and tolerance can also be varied from 1× 10−5 to 1× 105 with the help of the separate
sliders and the multiplication factor selected from the button group. They are color-coded
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blue and green for easy access. The values set are visible in the numerical edit field boxes
“HP” and “Tol”, respectively.

Figure 8. (a) Reconstruction module: Total Variation algorithm tab (selecting reconstruction parameter
value progression from coarse to fine/detailed); (b) VideoGen function in ERT-Vis.

To observe precipitation as a frame-by-frame video, two new functionalities were
added to the ERT-Vis software in the reconstruction tab, as shown in Figure 8b. These
are called “VideoGen” and “VideoSave”. Using this functionality, a user can generate a
video to observe the progress of the reaction from the saved data, and can save the video
files. This helps fast analysis of raw data using different reconstruction techniques and
application of various image-processing techniques. The user must input the range of
frames for observation, into the “From_Frame” and “To_Frame” numerical input boxes,
and provide the location after pressing the “Save Location” button, in case the video is
required for further analysis.

4.4. Module 3: Segmentation

In this module, there are two tabs for segmenting the reconstructed ERT image with
crystal regions. In the “Segment 1” tab there are six panels, as shown in Figure 9. The
output of the EIDORS software provides an indexed image which is mapped onto a ’jet’
colormap and displayed in the “Indexed Image” panel. This indexed image is converted
to an RGB true color image using the function mat2im() [45]. The converted true-color
image is visualized in the “RGB-True Color Image” panel. The indexed image is converted
into a gray image using the MATLAB inbuilt function rgb2gray(). This resulting image
is displayed in the “Gray” panel. OTSU segmentation is applied to this gray image using
the MATLAB function otsuthresh() after evaluating the histogram using the function
imhist. The resulting image is shown in the “OTSU” panel. The “Gray-connected” panel,
displays the result from the flood-fill image segmentation performed using the function
grayconnected() MATLAB function. This is an interactive segmentation method where
the user provides interactive input. Three inputs are required for this segmentation to
operate: The row number, the column number and the tolerance. The row and column
input for the initial seed point are applied using the spinners “Seed Row” and “Seed
Column” within the range of 0 to 64. The tolerance for the range of gray levels can
be controlled within the range 0 to 1 using the slider “Tolerance” below the axis. In
the “Local Adaptive” panel, the results from the MATLAB image segmentation function
adaptthresh() are visualized. The threshold value for the binarization is controlled using
the slider “Threshold” below the axis. In Figure 9a, the Segment 1 tab can be observed with
six image displays showing results of various image processing algorithms. Figure 9b–e
shows the resultant reconstructed images application of image processing algorithms.
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Figure 9. Segmentation module: (a) Segment 1 TAB; (b) indexed image; (c) gray image; (d) OTSU-
segmented; (e) gray-connected segmented image with seed location.

In the “Segment 2” tab of the segmentation module an advanced segmentation method
of K-means clustering is provided. The k-means clustering in MATLAB is implemented
using the function imsegkmeans. This is an advanced segmentation technique which
segments image data using unsupervised learning. The user has the ability to provide the
number of segments as an input. This tab consists of three display panels, as shown in
Figure 10.

The ERT reconstructed image and 16-bit unit gray image can be visualized in the
respective panels. The 16-bit gray image is obtained using the MATLAB function im2uint16.
The Uint16 image is used to implement the K-means clustering. The spinner “Number of
Segments” provides the input values for classifying the image into the various clusters.
This provides the flexibility to classify and extract the cluster region of interest for further
analysis and study. Different clusters are automatically color-coded for better visualization.
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Figure 10. Segmentation module: Advanced segmentation tabs for observing the K-means clusters
for the crystal regions. The reconstructed RGB image and gray image is also displayed in panel.

4.5. Module 4: Visualization

In the “Visualization” tab group there are seven sub-tabs. The first four tabs “RGB”,
“R-Channel”, “G- Channel”, and “B-Channel” are visualization tabs. The next three tabs
“R-Channel-binarize”, “G-Channel-binarize, and “B- Channel-binarize” are for advanced
interactive visualization and segmentation of the extracted image color channels. In the
tab “RGB”, the reconstructed image and the images extracted from the color channels are
shown in four axes; “Reconstructed Image”, “R-Channel Extracted Image”, “G-Channel
Extracted Image”, and “B-Channel Extracted Image”, as shown in Figure 11.

Figure 11. Visualization module: Color channel extraction and visualization subfigure (a) recon-
structed image; (b) R-Channel image; (c) G-Channel image; (d) B-Channel image.
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The ERT-reconstructed RGB true-color images were extracted into the three separate
images and displayed in these panels using the MATLAB function imsplit. The extracted
channels have been mapped to six different MATLAB colormaps; copper, hot, summer,
autumn, winter, and spring [27]. These six colormap images are simultaneously displayed
in six panels in the “R-Channel”, G-Channel, and “B- Channel” tabs. The titles of panels
correspond to the names of the colormaps: “copper”, “hot”, “summer”, “autumn”, “winter”,
and “spring”, as shown in Figure 12a–g.

Figure 12. Visualization module: Simultaneous colormap observations subfigure (a) G-Channel ob-
served with various colormaps, colormaps implemented: (b) copper; (c) hot; (d) summer; (e) autumn;
(f) winter; (g) spring.

The advanced interactive visualization and segmentation tabs have been designed
for every extracted color channel of the image. This is visualized in the tab “G-Channel-
binarize,” as shown in Figure 13. It contains four panels. “RGB Image”, “Gray Scale Image”,
and “G-Channel Image” can be seen on the right vertical strip. The user can interactively
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select the colormap from the button group “G-cmap” to view the extracted color channel.
Using the slider value from “Binarize threshold” as a threshold, the images are binarized
using the MATLAB function imbinarize(). Interactive segmentation of the extracted color
channel operates using the spinners “Seed Row” and “Seed Column” along with the slider
“Tolerance” as input to the MATLAB function grayconnected(). The seed pointer location
could be seen in blue color within RGB image, in red color within gray scale image, and in
green color within the G-Channel image as shown in Figure 13.

Figure 13. Visualization module: Advanced interactive visualization and segmentation tab.

5. Results
5.1. Software Evaluation Case Study
5.1.1. Case Study

We demonstrated ERT-Vis with a case study involving four domain experts performing
several tasks to evaluate the effectiveness of our application. The four participants are
denoted as P1, P2, P3, and P4 respectively, and their individual domain backgrounds are
elaborated below. The case study was successfully organized across various countries with
the involvement of domain experts. Online co-ordination was achieved using MS-Teams
software from Microsoft. One issue arising during the study was the limitations of the
software on Mac computers. To overcome this, the domain experts were given remote
access to the author’s laptop to conduct the tasks.

P1: PhD student who has been working with ERT for three years.
P2: Associate professor with over 15 years of experience in ERT technology.
P3: Professor with more than 20 years of experience in tomography.
P4: PhD student with almost three years of hands-on tomographic experience.

The case study comprised three parts: a preparation meeting, separate implementation
with real-time feedback from each participant, and a post-feedback session. To start, each
participant attended an initial session online and consented to be recorded over the whole
process. In the preparation meeting, we clarified the relevant issues and then demonstrated
a tutorial of ERT-Vis. Next, every participant was assigned a time slot and requested to
perform an ERT visual analytics task including seven microtasks as illustrated below. Each
expert received the same task list, but they obtained distinct results since they were asked
to select different images at the beginning (denoted with “X” in the illustration). After
completion, the participants had another opportunity to provide extra post-feedback, after
previously having given real-time comments.



Sensors 2022, 22, 4431 16 of 22

5.1.2. The ERT Visual Analytics Task

Task-1: Load the reference data, then load the experimental data.
Task-2: Choose the frame number X using the slider.
Task-3: Check various image reconstructions. Check the 2D images and 3D meshes-V-I
numerical data in different tabs.
Task-4: Observe the segmentation results. Switch to any other segmentation methods.
Task-5: Observe the histograms of the images.
Task-6: Observe the separated R, G, and B channels of ERT images.
Task-7: Select and change the colormaps of the extracted R, G, and B channels.
Task-8 (optional): Conduct binarization using the threshold and visualization for the
gray-connected seed row/column.

The comments from participants regarding the various tasks were recorded as shown
in Table 3.

Table 3. Comments from various experts for the assigned tasks.

Expert Task Comment

P1 Task-1 Loading files is very immediate, which is not common in the similar tools I used before.
P2 Task-3 It is straightforward for users to have an overview of the whole application.

P4 Task-3
It is considerably more convenient to simultaneously check both 2D and 3D visualizations in the same
panel. Putting reconstruction as the first module is valuable for domain users to better understand
the problems.

P2, P3 Task-4 The segmentation methods are diverse, and selection is easy.

P1 Task-5 It’s very time-saving to observe the histograms of the images as they took only a short time to
be displayed.

P2 Task-7 ERT-Vis possesses a consistent and coherent workflow which makes it comfortable for users to follow. It
was advisable to implement it in real time experiments.

P3 Task-8 Amazed by the content contained in a single application as it supports multi-modal visual analysis.
P1 Task-1 Loading files is very immediate, which is not common in the similar tools I used before.
P2 Task-3 It is straightforward for users to have an overview of the whole application.

5.1.3. Insights

Timesaving: The primary characteristic reported by the participants regarding ERT-Vis
was immediacy. They noticed that there were no built-in iterative algorithms to make
the application display the results after changing the arguments. Different from other
applications, ERT-Vis adopts a simple algorithm selection–result display strategy, ensuring
that users can simultaneously choose the desired method then obtain the corresponding
result in a short time. Based on the quick response time throughout the applications, the
efficacy and efficiency of tasks improved remarkably.

Descriptive: The participants referred to the descriptive information included in
ERT-Vis. Most of them indicated that ERT-Vis offers parallel analysis of data acquisition,
reconstruction, segmentation, and visualization, which is a significant breakthrough in
comparison to other tomography-related visual analytic tools they had used previously.
The specific enrichment of each module was appreciated, as there are multiple approaches
supplied in every module. For example, the users had the capability to choose diverse
reconstruction and segmentation methods when carrying out the hands-on analyses. The
workflow was well designed to support comprehensive visual analysis for ERT-related
decision-making. In particular, P1 noted that he was astounded by the ’seed segmentation’
part, as it enables the users to gain a deeper understanding of the domain problems.

User-friendly: Overall, ERT-Vis was deemed a user-friendly application by the partici-
pants. They reported that the design of the GUI is intuitive and comprehensible, and agreed
that ERT-Vis was easy to use throughout the whole operation period. The conciseness
and transparency of the interface gave them a clear overview of each module, enabling
them easily to grasp the functionality to proceed with their work. In particular, P4 was
especially satisfied with the layout of ERT-Vis showing several output images side by side
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in the same interface. He felt it was straightforward and convenient to compare the results
under such settings. The capacity of the system to toggle different reconstruction methods,
segmentation methods, and visualization categories was highlighted by every participant.

Limitations: Certain limitations regarding ERT-Vis were pointed out by the domain
experts. Common requests included the facility to generate videos from entire frames
and the possibility of saving images. More specifically, P3 indicated that the VI-graph
should be designed as a tunable panel, which would allow users to better interact with
the visualization results. P4 requested inclusion of a timestamp over the reconstructed
image tab for comparison with future imaging modalities. As the frame rates increase,
microsecond display would inform the user of the status of crystallization within time
differences of microseconds. Prior smoothness selection has not yet been included. The
3D reconstruction modules and algorithms have not yet been implemented and will be
incorporated in future iterations.

5.2. Results for CaCO3 Precipitative Crystallization Using ERT-Vis

Initially, a metallic impeller was utilized in the experimental setup. The reconstructions
with the metallic impeller included significant noise during the acquisition of ERT signals.
Therefore, a plastic-fabricated Rushton impeller was utilized for agitation. Using the ERT-
Vis software, detection and resolution of the noise issue in reconstructed images were
swiftly resolved, which optimized the overall time required for experimentation. Quick
analysis prior to the start of the experiments provided us with an added advantage in
performing closed-loop control experiments [26].

Figure 14 shows reconstructed images of plastic, metal, and plastic–metal together,
along with the surface mesh. The images were reconstructed using the one-step Gauss-
Newton reconstruction method. The difference between the metal and the plastic stirrer is
observable. The metallic stirrer included noise in the ERT single electrode acquisition and
in the reconstructions, hence the plastic stirrer was utilized. For the process engineer, this is
important information to help avoid noise generated by the metallic stirrer.

Figure 14. Reconstructed images and 3D surface mesh of (a,d) plastic stirrer, (b,e) metallic stirrer, and
(c,f) plastic and metal stirrer together.

The evaluation of the changes in electrical current due to the changes in the concen-
tration of calcium chloride in the solution was tested. Figure 15 shows the changes in the
average electrical current from 0 gL−1 to 66.7 gL−1. It was noted that the current changed
from 0.02 µA to 0.1 µA. These tests proved that the FPGA signal conditioning units of



Sensors 2022, 22, 4431 18 of 22

the ERT device could resolve minor conductivity changes in highly conductive solutions
involving calcium chloride.

Figure 15. Average electrical current measurements evaluated for 100 frames for different concentra-
tions of CaCl2 solutions with no stirrer motion.

Further tests using ERT-Vis software were conducted to evaluate the detection of
calcium carbonate CaCO3 inside the reactor. For this purpose, the VideoGen tool was
used and the images were saved. The images prior to the addition of any crystal additives
consisted of noise due to motion of water and the amplification of minor differences by
the Gauss-Newton reconstruction algorithm, as shown in Figure 16a. Powdered calcium
carbonate weighing 100 g (VWR, purity > 99%) was put inside the reactor and the images
were reconstructed using the Gauss-Newton algorithm. The changes in the reactor were
visible and the color of the reactor turned opaque. The solid microparticles of calcium
carbonate appeared as a non-conducting region, as shown in Figure 16b.

Figure 16. (a) Water inside reactor; (b) CaCO3 insertion detected using ERT (blue region indicated
by arrow).

Final tests were completed using the ERT-Vis software to detect the presence of calcium
carbonate in the base solution of NaOH and calcium chloride, to detect the presence
of calcium carbonate crystals. Figure 17 shows the ERT reconstructed images for the
observation of the settling of CaCO3 within the reactor. The calcium carbonate CaCO3
particles can be observed in the red colored areas. As the time progresses, we can see the
precipitation bolus move downwards in the reactor.
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Figure 17. Observation of settling of CaCO3 in the suspension at various stages of the experiment.
Red regions indicate the CaCO3 crystal regions.

To determine the calcium carbonate presence in the solution using the unsupervised
learning method, K-means clustering segmentation was implemented. Figure 18a–d
shows the effects of changing the number of clusters in the image to two, three, four,
and five clusters.

Figure 18. Segmentation module: Interactive observation of the K- means cluster regions (a) two
clusters; (b) three clusters; (c) four clusters; (d) five clusters.

5.3. Results for Sucrose Crystallization Using ERT-Vis

The results for temperatures from 90 ◦C to 18 ◦C are presented in Figure 19a–d. It can
be seen that at 90 ◦C, the measurements showed a certain discontinuous region inside the
reactor. These regions indicate the onset of crystallization over the electrodes. At 45 ◦C,
some low conductivity regions were visible, but the reconstructed images had significant
noise. At 40 ◦C and 35 ◦C the sensors were completely blocked by crystal formation over
the electrodes and no electrical signal could pass through.
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6. Discussion

In this contribution, ERT-Vis has been presented as a novel interactive application
designed to facilitate Electrical Resistance Tomography (ERT) data visualization and eval-
uation. ERT-Vis is an open-source MATLAB-based application software. The ERT-Vis
software is versatile and extensible; it addresses a range of ERT process engineering and
data visualization purposes. The primary contribution of ERT-Vis is that it enables rapid
prototyping of different conductivity profiles, acquired using an ERT device. This is useful
when searching for the most efficient reconstruction–segmentation–visualization workflow
for a new liquid media or solid–liquid mixture.

The presented application case study involving domain experts proved to be useful in
determining the utility of the application for crystallization process monitoring. We envi-
sion numerous possibilities using refined ERT-reconstructed image data for data processing
and implementation of control models and machine learning models. ERT-Vis can help
researchers in streamlining tasks at hand quickly and enable them to focus more on their
analysis of the process data acquired. Based on responses from the case study, a tool was de-
veloped for obtaining a video file for the selected range of frames. We foresee implementing
further EIDORS functions into ERT-Vis, as well as analyses based on unsupervised learning.
Such functionality will be offered as a user-friendly GUI for process applications. We also
foresee keeping the software open-source for further developments. This software has the
potential to be further developed as a cloud-based service for industrial applications.
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