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Abstract: Although the application of a wide range of sensors has been generalized through the
development of technology, the processing of massive alerts generated through data analysis and
monitoring remains a challenge. This problem is also found in cyber security because the intrusion
detection system (IDS) produces a tremendous number of alerts. Massive alerts not only significantly
increase resources for analysis, but also make it difficult to analyze the overall situation of the system.
In order to handle massive alerts, we propose using an indicator as a frequency-based representation.
The proposed indicator is generated from categorical parameters of alerts that occur within a unit time
utilizing frequency and is used for situational awareness with machine learning to detect whether
there is a threat or not. The advantage of using indicators is that they can determine the situation for
a period without analyzing individual alerts, which helps security experts to recognize the situation
in the system and focus on targets that require in-depth analysis. In addition, the conversion from the
categorical parameters which is highly related to analysis to numeric parameter allows for applying
machine learning. For performance evaluation, we collect data from an HAI testbed similar to
real critical infrastructure and conduct experiments using indicators and XGBoost, a classification
machine learning algorithm against five famous vulnerability attacks. Consequently, we show that
the proposed method can detect attacks with more than 90 percent accuracy, and the performance is
enhanced using heterogeneous intrusion detection systems.

Keywords: intrusion detection systems; IDS alerts; information representation; situational awareness;
machine learning

1. Introduction

The technical enhancement, cost reduction of sensors, and the development of the
Internet of Things (IoT) have led to the wide adaptation of sensors. This huge trend has also
triggered progress in the industrial domain to introduce the concept of a cyber-physical
system (CPS) to achieve a higher level of operational efficiency and productivity as the
objective of Industry 4.0 [1]. Several terms define the adoption of sensor networks in the
industry, such as industrial control systems (ICS), Industrial Internet of Things (IIoT), CPS,
and smart grid. Although each term describes a different aspect of this adoption in terms
of scope, domain, or condition, it is clear that sensors can monitor industrial assets and
production processes elaborately [2]. The IIoT monitoring architecture, which consists of
a sensor monitoring agent, gateway monitoring agent, monitoring logger, management
agents, and management system [3], is also generally adopted.

One of the widely known challenges in IoT is cyber security [4]. The common issues
with IoT, such as privacy issues, vulnerability in protocols, authentication, and authoriza-
tion, are still present in the industrial domain [5]. In addition, it is much more important
in industry because the damage due to malicious attacks can be considerable compared

Sensors 2022, 22, 4417. https://doi.org/10.3390/s22124417 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124417
https://doi.org/10.3390/s22124417
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2240-0892
https://doi.org/10.3390/s22124417
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124417?type=check_update&version=2


Sensors 2022, 22, 4417 2 of 15

to personal loss. However, the protocols in the industry are not designed to protect them-
selves from malicious attacks [6–8]. To defend this vulnerability in protocols, ICS applies
an additional component, the intrusion detection system (IDS), which includes a function
to detect systemic threats [9]. In order to detect threats, IDS obtains information such as
system logs, host data, network traffics, and sensor measurements with domain knowledge.
There are various types of detection rules in IDS. One is misuse-based detection, which
checks whether there is any violation of the rules established by the domain knowledge.
The other is anomaly-based detection, which identifies unusual behavior compared to
normal status [8].

Many studies for intrusion detection have been published, and, recently, advanced
machine learning and data mining techniques are also being employed in studies on
IDS [10]. Although many studies improve the accuracy of detection by adopting machine
learning models such as linear regression, clustering, k-nearest neighbor (KNN), and deep
neural network (DNN), the problem of high false alert rate arises [11]. In addition, the
tremendous increase in alerts causes difficulty in deciding the actual threat of the situation.
Thousands of alerts in a short time require analysts to spend considerable time to conclude
whether there is an occurrence of an actual intrusion or the alert is a result of excessive
caution [12]. Some studies have attempted to extract alerts with pattern mining [13,14],
correlation of alerts [15], flood sequence [16], etc. However, they also require supplemental
setup as IDS reduces some false alerts even if it is set up appropriately. In industrial
environments, IDS runs with a default setup in most cases [11]. In this situation, we explore
a method to refine the massive alerts generated to other forms that can indicate the status
of the period. Inspired by the histogram, which is used as an input of machine learning to
illustrate the status of a network connection, we adopt statistical values as indicators.

In this paper, we reveal the problem of legacy IDS systems, especially the difficulty
of situational awareness due to the large number of alerts generated from simulation
environments using emulated attacks on the real IDS. In order to solve this problem, we
propose a machine learning method to recognize a security threat based on statistical values
of the IDS alerts within a specific time window. We verify the performance of the proposed
method under simulation environments with real IDS products, compared with the result
using alert information only. In addition, we propose a heterogeneous method that uses
various alerts from heterogeneous IDSs. The contribution of this paper is summarized
as follows:

• We propose a method to refine massive alerts in specific periods utilizing the frequency
of categorical values as indicators to handle the non-numeric values in each alert.

• We introduce a method for situational awareness with the indicators applying machine
learning techniques and evaluate the performance of indicators using the alert dataset
obtained from a realistic testbed.

• We introduce the usage of a combination of indicators by heterogeneous IDSs and
validate its result.

The remainder of this paper is organized as follows: In Section 2, we present related
work and, in Section 3, we describe the proposed indicators for IDS, which is evaluated
through experiments in Section 4. Finally, we present conclusions in Section 5.

2. Related Works
2.1. Alert Aggregation and Alert Correlation

One of the representative methods for dealing with massive alerts is alert aggregation.
The similarity-based technique is the most widely used method in the domain of alert
aggregation. The similarity between alerts is computed based on one or more fields such as
the IP address of attacker and victim, ports, and types and timestamp of alerts. After the
computation, alerts are reduced by clustering and aggregation based on the similarity. This
reduction implies that similar alerts come from the same causes, and some of them can be
neglected. A clustering technique is one of the most common techniques. The grouping of
alerts that share the same root cause is introduced in [17], where the similarity of two alerts
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is defined to be the sum of the dissimilarity of their attributes. Lin et al. [11] proposed
an improved multi-source heterogeneous alert aggregation method, which divided the
alert aggregation features into attack mode constraints and time interval constraints, and
different attack modes had different time interval constraints. The author used the relative
mean-variance of the time interval proposed in [10]. The dynamic updating coefficient of
time interval sets the average value of the time interval to the threshold of the initial time
interval, thus making the time interval threshold adaptive to the change in the network
attack environment. In [18], the combination of the K-mean algorithm with the genetic
algorithm is proposed. It is applied to overcome the high dependence on the initial values
that reach the local minimum of K-means. Although similarity-based approaches have
less complexity in the algorithm, they also have some weaknesses. It is difficult to find
a suitable metric of similarity, and the accuracy of similarity-based correlation analysis
methods is not high enough. Another prominent approach is the pattern-based technique.
This approach aims to find frequent patterns or sub-patterns to compress massive alerts.
Pattern extraction is conducted based on association rule, sequential mining, or frequent
episode mining. An improved version of the Prefix Span algorithm is applied by Brahmi
and Yah [19] as a method of finding the most frequent patterns by distributing the alerts
and their attributes in multi-dimensional tables. Sequential-based methods are useful for
modeling and analyzing complex attack scenarios from sequences of individual events or
steps that are a part of the same attack scenario. Pre/Post-conditions and graphs are also
typical types of involved technologies [20]. The time-consuming nature of the model results
from a large number of patterns being counted and matched by the system. Moreover,
numerous redundant patterns are discovered with rare and interesting patterns.

2.2. Security Visualization

Security visualization is another research topic to deal with massive alerts. Security
visualization is one of the specified domains which comes from data visualization to focus
on security-related data. Even though security visualization does not particularly deal
with alerts, some studies mainly consider IDS alerts. The shared goal of these studies is
to support the analysis of alerts and situational awareness. Visual Firewall [21] visualizes
firewall operations, IDS alerts, and overall network statistics through multiple views on
a single screen. The statistics view illustrates the network’s overall throughput using a
colored histogram. Ref. [22] has developed a novel visualization system, IDS RainStorm, to
address the problem of the flourishing number of alerts generated from intrusion detection
systems in large networks. The developed system consists of the main view that displays
an overall representation of the network and a zoomed view that provides a detailed
display of a user-selected range of IP addresses. Shiravi et al. [23] propose Avisa, a security
visualization system that embraces a situation assessment component. The system assigns
scores to hosts based on an accumulation of metrics that reflect the changes in various
aspects related to the alerts received by a particular host in a monitored network.

As part of a method for dealing with massive alerts through the exploration of alert
correlation and security visualization, we recognized the need for integration that can
characterize multiple alerts. In addition, the frequency of alert occurrence and utilization of
categorical information are necessary for a top-down approach that recognizes the overall
situation in the context recognition process. Inspired by this, we propose a method for
generating indicators that can represent the period as a way to recognize a situation by
processing a massive alert, similar to alert aggregation with a time window. In addition,
we introduce a practical use of indicators to achieve situational awareness using machine
learning and extend the application of the proposed method to enhance the performance.

3. Method for Situational Awareness

In this section, we introduce the overall structure of the application for the situational
awareness, the details of the indicators with machine learning for situational awareness,
and extended practical use to enhance performance.



Sensors 2022, 22, 4417 4 of 15

3.1. Overall Structure

As many studies have pointed out, the number of alerts coming from the IDS is usually
substantial. It leads to difficulty recognizing the threat situation even though a security
expert monitors the IDS alerts. The analysis requires support such as the information
visualization [22,24] instead of solely monitoring the alerts to operate the analysis in time.
Although studies related to data aggregation and studies on visualization have different
aspects, they have similar security goals, the detection of intrusion or anomaly from massive
alerts, i.e., the situational awareness. It inspired us to propose an indicator to represent the
status of a specific period as a numeric value to be utilized by machine learning.

The framework of the proposed method to recognize security situations is found
in classification with supervised learning. Therefore, it consists of data processing and
modellng steps. Figure 1 shows the process of situational awareness. Our main idea for
handling massive alerts is transforming input from alerts to indicators. This process incurs
two modules: the indicator generation module and the labeling module. The indicator
generation module generates a value according to the indicator generation rule using raw
alerts as a value for each time period. The labeling module designates the class for the
time–value pair created in the indicator generation module, and it is composed of normal
or abnormal situations. We refer to this labeled result as an indicator dataset and use it as
an input to create a classification model by applying machine learning techniques.

The modeling step is carried out using the indicator dataset created through data
processing. The indicator dataset is a transformed in the form of the collected data and
can be used as a training dataset, but in this study, it was divided into a training dataset
and a test dataset for performance evaluation. For situational awareness with alert as an
input value, it operates by generating an input value using the indicator generation module
with the same settings as the data processing step. The modeling step uses training dataset
to create a model like a typical machine learning technique. The generated model takes
test data as input and returns a class for the situation. Consequently, we can represent
situational awareness through the returned class.

Figure 1. Process of situational awareness.

3.2. Indicators

IDS keeps monitoring the network and generates alerts when when an anomaly occurs.
Although the anomaly is generated with some margin, it should be treated as an actual
anomaly. We were inspired by the fact that continuous monitoring of network packets
and the generation of alerts as a result of monitoring can be handled in the form of time-
series data. Although an alert is generated as a result of a monitored packet to be strictly
classified, the accuracy of this result depends on the time during which the IDS analyzes and
processes the packet. In other words, the relationship between the packet and the alerts can
be replaced with that between the time and the alerts. For the implementation of situational
awareness, which we aim for, the determination of a specific time or period is generally
operated through analysis and classification of alerts for the time. Existing studies use
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alert aggregation, which is a method of excluding overlapping alerts or bundling multiple
alerts with a specific pattern to deal with massive alerts in this analysis process, which is
performed using detailed information on alerts.

We propose the concept of indicators in order to handle this problem. We assume
that there is a link between the situation and the alert, even though IDS generates massive
alerts, making the analysis difficult. Such correlation is generally performed through the
analysis of individual alert information, but we approached it in terms of the frequency of
alert occurrence, the commonality of multiple alerts, and the analysis of tendencies. An
indicator is a concept introduced to analyze this point and is a numerical value that can
represent the characteristics of multiple alerts. Indicators are statistical values based on
the frequency of multiple alerts and represent characteristics in terms of the volume of
multiple alerts at a specific time or period. The average and standard deviation of the alert
frequency at a specific time is probably the most intuitive example. Since it was expected
that the number of alerts could increase in the event of an anomaly, the initial trial focused
on the frequency of all alerts. However, it is difficult to act on situational awareness simply
through the frequency of alerts that occur. As shown in Figure 2, the frequency of alerts
generated by IDS does not change significantly even in the existence of security threats.

Figure 2. An example of the number of alerts.

In further exploration, we applied the indicator using the detailed field of the alert,
commonly generated in every alert, such as the IP and port number of an attacker and
victim. Since these fields are also generally used to analyze an alert, it was expected that
it would be easy to understand the relationship between the situation and the alert. The
challenge in analyzing these fields is that they consist of non-numeric values. Even though
it is possible to use the non-numeric value itself with one-hot encoding or handling as
categorical value, the treatment of category requires division as an individual case for each
category. This still causes enough burden to demand the support of experts with each
alert. Therefore, we explore the method to generate a value to be utilized with non-manual
from non-numeric values of common fields. For n numeric values, the average value is
generated by adding up the values of each numeric value and dividing by n. However,
since it is impossible to operate between non-numeric values in data with n non-numeric
values, it is burdensome to apply the average operation of numeric values values as is.

We propose the application of a value based on the frequency of occurrence of non-
numeric values per unit time by utilizing the fact that alerts can be converted into values
for time again. We attempt to aggregate data in the bucket of time-period to generate an
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indicator to represent the period. Specifically, an indicator representing the quantitative
characteristics of non-numeric information of alerts in the bucket is generated by using
the sliding window as a bucket for a time unit of a certain size. For example, as shown
in Figure 3, statistical values are generated through information on all alerts for the time
interval 1 to 5 for period T1 and used as an indicator for T1. In addition, the indicators for
T2, T3, and T4 are sequentially generated as a value in which the sliding size, which is a
predetermined unit time, increases.

Figure 3. Example of sliding window as a bucket.

The generation of an indicator using a non-numeric value is calculated using the
frequency of the category of the non-numeric value of the target field within the bucket to
be calculated. In the use of frequency, we impose a few changes in the statistical values to
describe the tendency of the frequency of the alert. We apply five statistical values in order
to generate the indicator: mean, standard deviation, skewness, kurtosis, and entropy. As
shown in (1), we calculate the mean based on the frequency of each category within the
target period. Here, we define ci as the frequency of each category i, and k is the number of
categories in the period.

The generation of an indicator using a non-numeric value is calculated using the
frequency of the category of the non-numeric value of the target field within the bucket
to be calculated. In the use of frequency, we impose a few changes in statistical values
to describe the tendency of the frequency of the alert. We apply five statistical values to
generate the indicator: mean, standard deviation, skewness, kurtosis, and entropy. As
shown in (1), we calculate the mean based on the frequency of each category in the target
period. Here, we define ci as the frequency of each category i, and k is the number of
categories in the period:

Mean(X) =
∑k

i=1 F(ci)

k
= x̄. (1)

Similarly, we compute other statistical values following (2)–(4). In the case of the
entropy, it requires the probability of each category. We calculate p(xi) as the number of
alerts in category i over the total number of occurred alerts:

Std(X) =

√
1

n− 1

n

∑
i=1

(xi − x̄)2, (2)

Skewness(X) =

√
∑n

i=1(xi − x̄)3

(∑n
i=1(xi − x̄)2)

3
2

, (3)

Kurtosis(X) =

√
∑n

i=1(xi − x̄)4

(∑n
i=1(xi − x̄)2)2 , (4)
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Entropy(X) = −
n

∑
i=1

xi log p(xi). (5)

Figure 4 shows a simplified data sample for the generation of an indicator. The alert
data have timestamp and category values. It has two non-numeric fields: IP Attacker and
IP Victim. In cases when the window size is two seconds, the time period A is from time
12:05:05 to 12:05:07. Period A has five alerts, and there are four categories of IP attackers
within the period. The mean of IP Attacker in period A is calculated as follows: The four
categories, 162.168.0.2, 162.168.0.3, 162.168.0.4, and 162.168.0.5, have frequency values of 2,
1, 1, and 1, respectively. The frequency values for each category are summed and divided
by the number of categories for the calculation of the types of categories existing in the
bucket, which is equal to 1.25 by (2 + 1 + 1 + 1)/4 in the example. In entropy calculation,
each category in IP Attackers has a probability of 1/5 except 162.168.0.2, which has 2/5.
Therefore, the entropy in IP Attacker is 2*2/5 + 1*1/5 + 1*1/5 + 1*1/5 = 1.4. Similarly, their
std, skewness, and kurtosis can be calculated. With this process, we derive a pair of the
time and indicators for period A.

Figure 4. A simplified data sample to generate an indicator.

The proposed method to generate indicators is based on the time bucket, which can
be generally considered as a time window. Hence, the sliding of the time window is the
change of the bucket. In this example, period B is the next bucket when the slide size is
one second. The generated indicator is a numeric value based on the frequency of alert
categorical information included in the unit time section, and the value itself expresses the
characteristics of the unit time section. We need another method, Section 3.3 for applying
machine learning using the indicator, for situational awareness.

3.3. Label

Individual alert information is changed to a representative value for the period while
the indicators are generated. The label of the situation is needed to adapt to the changes. In
order to handle this, we need to decide how to match the attack and alert and how precise
the threat situation is partitioned. It is impractical to precisely match the attack packet with
an accurate identifier as an input, and the alert as a response to the packet. However, it is
obvious that there is a relationship between the attack packet and the alerts, even though
there is a time gap and incomplete reactions, such as incorrect alerts and failure to detect.
Even if false alerts occur or a specific attack cannot be detected due to the performance of
the IDS, the indicator represents information indicating the characteristics of the situation,
so it is reasonable to determine the situation in the same IDS as learning.

Hence, we decide to consider every alert in the specific time period as a response to
the attacks. In other words, we handle the alerts in time t as the response to the attack in
time t even though there is a time gap between occurrences of the attack and the alert. We
empirically checked that the time gap is not exceeding a few hundred milliseconds in our
dataset except in a particular case. Although all IDSs monitor the same packet as input, the
response from each IDS is unique in terms of alert type, frequency, and alert fields. The
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declaration of detailed attack type in alerts is not standardized and follows the IDS option.
We classified the attack types into five categories in accordance with the attack scenario,
which will be discussed in Section 4.2.

3.4. Model

A classification machine learning model is required for the situational awareness
method using the proposed indicators. We choose to apply the XGBoost (XGB) method
as the model, widely used in practice and is popularly agreed to provide high capability
in classification performance compared with other machine learning models [25]. Among
several deep learning methods for classification, we selected XGB because it shows the
best performance and suitability for operator resources of tabular data by accommodating
the indicator to situational awareness. There are several deep learning methods for clas-
sification but considering that the performance that generally surpasses XGB for tabular
data does not come out [26], XGB, which has an advantage in terms of operator resources,
was selected. The classification in XGB applies linear regression in the objective function
and root mean square error in the evaluation metric. Although XGB supports multi-class
classification, we decided to apply two-class classification considering that the accuracy of
multi-class classification decreases compared to the two-class classification and consider-
ing that the focus of situational awareness is anomaly detection. Two-class classification
classifies whether the situation is normal or abnormal (i.e., anomaly). We deploy a model
for each attack class for situational awareness of various types of attacks. Table 1 shows the
details of our setup.

Table 1. XGBoost setup.

Item Setup

Model Classifier

Max depth 4, 6, 8, 10

Learn rate 0.1, 0.15, 0.2, 0.01

Selected Fields protocol, IPAttacker, IPVictim, portVictim, portAttacker

Window size 30

Sliding size 2

3.5. Combination of Indicators from Heterogeneous IDS

We dealt with the creation and utilization of indicators for the unit time period by
grouping alerts on packets. In this process, the form was changed to a time–value pair,
and it was converted into situation information for a unit time bucket regardless of IDS.
We propose a method to converge and utilize information among heterogeneous IDSs that
can further improve performance. We found that the detection performance of each IDS
varies and has pros and cons although the detection performance of each IDS is different.
It is expected to enhance the effectiveness to utilize the indicators of heterogeneous IDSs
together if each IDS monitors the same network. Because the alert of each IDS is information
about the unit time period, the indicators from different IDSs can be utilized together. We
have demonstrated experimentally improved performance of the combination of indicators
from heterogeneous IDSs, which will be presented in the following section. Even though it
is hard to install the real product, the additional utilization of virtual IDS is relatively easy.
We expect that the mixture utilization of alerts in heterogeneous IDSs can be adopted in the
form of a mixture of physical products and virtual tools in the field.

4. Experiments and Results

This section describes the experimental results and their interpretation.
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4.1. Dataset

The dataset comes from the HAI testbed [27], which implements real control systems
used for critical infrastructure. The testbed includes a physical attack tool, network attack
tool, and network aggregator to collect events [28,29]. As shown in Figure 5, the testbed
contains three systems: a boiler process, a turbine process, and a water treatment process.
Each system collects data through a separate controller, and the data collected from each
controller are passed to an aggregator. An attacker tool forges a physical attack by sniffing
the transmitted data or creates a vulnerability attack. The aggregator delivers the aggre-
gated data including attack data to each IDS to perform detection. As a result of these steps,
the alerts are generated from the commercial IDSs and open source-based IDSs with an
attack scenario. Table 2 shows the details of IDSs.

Figure 5. Outline of HAI testbed.

Table 2. Collectable security logs from five systems.

ID Vender Type Installation ACL Signiture

I A IDS/IPS Physical ! !

II B IDS/IPS Physical ! !

III C IDS/IPS Physical ! !

IV Open-source Snort Virtual ! !

V Open-source Suricata Virtual ! !

4.2. Configuration of Attack Scenario

We select attacks in order to generate the alert dataset following the attack scenario
in the control systems. Attackers who aim to execute offensive actions to control systems
must obtain information on system operation and environment. If they do not acquire
prior information about the system, exploration of assets is generally the first step in
obtaining the information about the system. After the asset exploration, searching the
service, discovering the vulnerability, and attacking the weak point can be executed in a
sequence. Otherwise, attackers can choose to execute the Denial of Service (DoS) attack in
case they cannot find the vulnerability or every other attack fails. We designed a realistic
scenario to attack the control system in the testbed and followed the above-mentioned
steps against the attacks. The selected target of attack and the attack methods are listed
as follows:

• Web-based Management. The Wireless HART gateway and system for web manage-
ment are targeted by attacks to HTTP vulnerability;

• Database. Database server is targeted by attacks to database vulnerability;
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• Operating System. Engineering Workstations (EWS) and Operator Workstations (EWS)
based on window OS are targeted by attacks to SMB vulnerability;

• Remote Procedure. Modules for remote control and procedure call are targeted by
vulnerability attacks such as DCERPC and VNC.

In the scenario, attackers first explore the assets and the system environments. Then,
they try vulnerability attacks to target Web-based Management, Operating systems, Database,
Remote Procedures, ICS-specific Protocols, and Time Synchronization in sequence. After
every vulnerability attack, Distributed Denial of Service (DDoS) is performed. Table 3
provides information on the attacks included in the scenario. The attacks included a total
of 316 vulnerabilities and malware attacks and 13 types of DDoS attacks. Details of each
type of attack are as follows. There are 152 types of HTTP attacks, 18 types of MySQL
attacks, 81 types of SMB attacks, and 65 types of DCEPRC attacks. The interval between
each vulnerability attack is 10 s from the start of each attack. The DDoS attack has an attack
time of 5 min for each type, and has an interval sufficient to resolve the delay problem of
the logs.

Table 3. Summary of attacks in scenario.

Category Service
Affected Testbed

Type Attack Duration
Boiler Turbine Water

Web HTTP ! ! 152 25 min 14 s
Database MySQL ! 18 2 min 21 s
OS SMB ! ! ! 81 13 min 29 s
Remote Procedure DCERPC ! ! 65 10 min 55 s
DDoS 13 1 h 5 min

Total 329 1 h 56 min 59 s

4.3. Results

Before evaluating the classification performance, we introduce the reduction of the
number of instances through data processing using indicators. As shown in Table 4,
each attack generates a large number of alerts according to the IDS. Before applying
alert aggregation, the number of each alert is the same as the number of instances during
training, but when an indicator is used, it has a value for each time window, thus generating
instances proportional to the amount of time. As a result, for each attack, HTTP, MySQL,
SMB, DCEPRC, and DDoS have 757, 70, 404, 327, and 1950 instances, respectively. The
normal class was collected for the period one hour before the attack to represent the section
other than the attack. In evaluation of classification performance, we used accuracy as a
performance matrix with 5-fold cross-validation. The entire dataset is divided into five
bundles and one of the bundles is selected as a test set and the other ones become training
sets in the 5-fold validation process.

Table 4. Instance reduction of applying indicators.

Class
Number of Alerts Number of Instances

with IndicatorsIDS I IDS II IDS III IDS IV IDS V

HTTP 4056 25,062 281,515 31,845 3605 757
MySQL 336 2132 25,725 397 23 70
SMB 2262 11,778 148,418 2315 141 404
DCERPC 1610 10,043 122,927 3488 135 327
DDoS 17,174 99,268 632,560 197,090 140,348 1950
Normal 8819 51,082 658,427 11,903 493 1800

In evaluation of classification performance, we used accuracy as a performance matrix
with 5-fold cross-validation. The entire dataset is divided into five bundles and one of
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the bundles is selected as a test set and the other ones become training sets in the 5-fold
validation process. In addition, we evaluated the performance with refined data randomly
selected that is one-on-one matched to comparing classes to avoid a bias toward a specific
class. For example, in testing a model for two-class classification for whether it is normal
(i.e., non-attack) or abnormal (i.e., attacks), the data in the attack class are selected equally
to normal from HTTP, MySQL, SMB, DCEPRC, and DDoS. If the model uses entire data
from the dataset, which means that the class of normal data in the entire dataset occupies a
large portion of train and test data, it brings biased results. These biased results improve
accuracy, which is one of the performance evaluation indicators, whereas precision and
recall are low. Such results are found in Figure 6, which shows the performance of IDS
III when the data between the two classes are not balanced. In the case of HTTP, MySQL,
SMB, and DCEPRC, the accuracy is all higher than 0.9, but in the case of HTTP, the recall of
attacks is 0.187, which is very low, and in the case of MySQL, the precision and recall of
others are 0.2 and 0.028, respectively. It indicates that increasing the accuracy of the attack
class may give a bias in the classification because normal cases are treated as an attack even
if they are not an attack.

Figure 6. Performance of the unbalanced dataset.

Therefore, in the following experiments, we applied a method of balancing the number
of data between attack and non-attack classes during training. The accuracy of classification
for each attack and each machine is exhibited in Figure 7a. The accuracy of classification for
each IDS is above 90 percent, except for DDoS attacks. Even though there is some difference
in overall performance among IDSs, IDS II exhibits the best accuracy, 0.988 in HTTP, 0.970
in DCEPRC, and 0.96 in DDoS attack type. Other IDSs also show that each of them detects
certain attack types very well; e.g., IDS I detects SMB with high accuracy (0.936), IDS III
detects DCEPRC (0.981), and IDS IV and IDS V detect HTTP (0.962 and 0.994, respectively).
Because the indicators are refined parameters from alerts, their performance depends on
the detection performance. These results provide an insight that integrating numerous
alerts gives good performance in detecting attacks from heterogeneous IDSs.
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(a) (b)

(c) (d)

Figure 7. Performance of classification for each attack type: (a) Accuracy; (b) Precision; (c) Recall;
and (d) F1-Score.

The additional performance evaluation metrics such as precision, recall, and F1-score
are shown in Figure 7b–d, respectively. The precision has a higher value as the ratio of the
prediction by the algorithm to the actual correct answer is higher. Precision represents the
ratio of the prediction by the algorithm to the actual correct answers, and recall represents
the ratio of correct guesses made by the algorithm among the actual positive values. Both
precision and recall evaluate the performance of how well the algorithm predicts positives,
and both performances are expressed by F1-score at once. IDS II shows the highest F1-score
and F1-score of each attack is 0.98, 0.89, 0.92, 0.97, and 0.95. In contrast, MySQL in IDS I
and DCERPC in IDS IV show a low F1-score of 0.64. Through the above results, we confirm
that two-class classification using indicators work well without any bias toward any class
through precision, recall, and F1-score. Furthermore, each IDS detects a specific attack type
with a high performance.

To explore further performance enhancement with the same dataset, we attempt to
extend the proposed method for heterogeneous IDSs. IDS I shows high accuracy in SMB
and DDoS attack but not in other attacks, while IDS III has high accuracy in DCERPC, and
IDS IV and IDS V have high accuracy in HTTP attack types. Figure 8 shows the accuracy of
classification with a combination of indicators of different IDSs, especially IDS I, IDS II, and
IDS IV. By using both indicators of each IDS, it is expected that the performance is improved
by the strong points of each IDS. The results in Figure 8 confirm further enhancement in
performance. The accuracy of every class is enhanced over the highest performance of each
IDS. The accuracy of HTTP attacks in the combination of IDS I + IV becomes 1, and in the
combination of IDS III + IV becomes 0.998. Both combinations achieve an accuracy higher
than 0.962 that of IDS IV. The performance of other classes is also improved. We conclude
that the combination of indicators of different IDSs enhances performance.
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(a) (b)

(c) (d)

Figure 8. Performance of classification for each attack type in the setup of combination of het-
erogeneous IDS: (a) Accuracy, Accuracy of Heterogeneous IDS field; (b) Precision, Precision of
Heterogeneous IDS field; (c) Recall, Recall of Heterogeneous IDS field; and (d) F1-Score, F1-Score of a
Heterogeneous IDS field.

5. Conclusions

IDS generates tremendous alerts, and representation of such alerts remains a challenge
for anomaly detection. To handle this issue, in this study, we proposed a method to classify
the state of the selected period by generating indicators with IDS alerts. The indicators
are statistical values based on the frequency of alerts from IDS to represent a selected
period. Through experiments that apply the practical alert data from the testbed, including
real IDS products and attack tools to explore the feasibility in a realistic environment, we
revealed that the refinement of alerts based on frequency could be utilized as a meaningful
value. Furthermore, the experiments confirm that a combination of alerts in IDSs that
monitor an identical packet improves the performance of classification. This method can
be applied in fields wherein virtual IDS are installed in addition to deployed commercial
IDS products. In future works, it is worth (i) determining the labels in the classification of
threat situations considering the time gap and relationship of alert data, and (ii) exploring
the deeper correlation between the indicators and alerts.
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