
Citation: Jeong, Y.; Son, S.; Lee, B.;

Lee, S. The Braking-Pressure and

Driving-Direction Determination

System (BDDS) Using Road

Roughness and Passenger Conditions

of Surrounding Vehicles. Sensors 2022,

22, 4414. https://doi.org/10.3390/

s22124414

Academic Editor: Arturo de la

Escalera Hueso

Received: 15 May 2022

Accepted: 7 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

The Braking-Pressure and Driving-Direction Determination
System (BDDS) Using Road Roughness and Passenger
Conditions of Surrounding Vehicles
YiNa Jeong 1, SuRak Son 1, ByungKwan Lee 1 and SuHee Lee 2,*

1 Department of Software, College of Engineering, Catholic Kwandong University, Gangneung 210-701, Korea;
lupinus07@nate.com (Y.J.); sonsur@naver.com (S.S.); bklee@cku.ac.kr (B.L.)

2 Department of Beauty Design, College of Media & Art, Catholic Kwandong University, Gangneung 210-701, Korea
* Correspondence: lshkn0102@cku.ac.kr; Tel.: +82-033-649-7160

Abstract: A fully autonomous vehicle must ensure not only fully autonomous driving but also the
safety and comfort of its passengers. However, the self-driving technology that is currently completed
focuses only on perfect driving and does not guarantee the safety and comfort of passengers. This
paper proposes a braking-pressure and driving-direction determination system (BDDS), which
computes the brake pressure and steering angle optimized for passenger safety by utilizing more
diverse information than existing autonomous vehicles. The BDDS proposed in this paper consists of
two modules. The road roughness classification module (RRCM) classifies the roughness of the road
by using the pressure data applied to the suspension and the K-NN algorithm and computes the
optimal brake pressure. The passenger recognition and sharing module (PRSM) identifies the current
occupant status of the vehicle by using a body pressure sensor and CNN, shares the information with
surrounding vehicles, and computes the optimal steering angle using passenger information and
road information. As a result of the simulations described in this paper, the parameters of AI models
were optimized. In addition, the RRCS was about 7% more accurate than the K-means clustering
algorithm, and PRS was about 9% more accurate than the existing seat recognition system.

Keywords: roughness classification; K-nearest neighbor; braking pressure; steering angle;
convolutional neural network; AI and deep learning; control; optimization; prediction

1. Introduction

Self-driving cars have made a leap in development thanks to the efforts of companies
such as Google and Tesla. The typical use of autonomous vehicles for widespread use on
public roads is likely to be possible in a few years, but these vehicles are already being used
in “constrained” applications such as open pit mining and agriculture. Among the many
technologies that enable autonomous vehicles are a combination of sensors and actuators,
sophisticated algorithms, and powerful processors that run software [1]. With advances in
autonomous vehicle testing from companies such as Google, Apple (in USA), Tesla (in Toronto,
Brooklyn etc.), Uber, and Lyft (in USA), the first signs of a driverless future were seen [2].

Autonomous vehicles respond to various situations by using the vehicle’s electronic
control unit (ECU), actuators, and various sensors. In addition, the autonomous vehicle
communicates not only with the vehicle itself but also with surrounding vehicles and road-side
unit (RSU) through cellular networks, Wi-Fi, etc. Through this communication, the current
autonomous vehicles can detect a crisis (for example, another vehicle approaching suddenly
in the vicinity, a pedestrian, icy road, etc.) and send an alert to the user. These vehicles may
also be configured with mechanisms that take active steps to avoid these hazards [3].

After the completion of Level 3 autonomous driving technology, an autonomous
driving technology for Levels 4 and 5 must now ensure not only the driving situation but
also the comfort of the passengers. However, current autonomous driving technology
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cannot fully guarantee a passenger’s comfort. To ensure passenger comfort, it is necessary
to use several items of data as well as visual information currently being collected (LiDAR,
front camera). Therefore, this work aimed to calculate the optimal braking pressure and
steering angle while driving a vehicle using the data on the seat pressure inside the vehicle
and the pressure data on the suspension.

This paper proposes the braking-pressure and driving-direction determination system
(BDDS). The BDDS collects pressure data from the vehicle’s suspension to classify the
roughness of the road and accurately identifies the passenger status of itself and surround-
ing vehicles through body pressure sensors and V2V. Next, The BDDS uses road roughness,
passenger conditions, driving information, and weather information to determine the opti-
mal brake pressure strength and steering angle. The BDDS consists of the road roughness
classification module (RRCM), which determines the roughness of the current road by
receiving the pressure of the three axes as frequencies from the vehicle’s suspension; the
passenger recognition and sharing module (PRSM) to classify the condition of passengers
inside the vehicle into luggage, children, and adults by using a body pressure sensor,
determine what it is, and then share the information with surrounding vehicles; and the
brake pressure and direction determination module (BPDDM), which uses the output of
RRCM and PRSM to determine the optimal brake pressure and steering angle.

The composition of this paper is as follows. Section 2 describes the existing studies related
to the passengers and road roughness in this paper. Section 3 details the structure and operation
of the BDDS. Section 4 compares it with the existing methods to analyze the performance.
Section 5 discusses the conclusion of the proposed BDDS and future research directions.

2. Related Works

To improve the overall vehicle as well as the autonomous driving, research on pas-
sengers and road statements have been continuously conducted. This section introduces
several studies of passengers and road statements and describes the approach the BDDS
takes to analyze passengers and road statements.

2.1. Passengers of an Autonomous Vehicles

Most of the research on passengers is focused on ensuring the safety of passengers.
Yuxi Guo et al. evaluated the effects of independently designed vehicle driving condition
prompt (DCP) systems on subjective passenger comfort and motion sickness [4]. Before
performing the obstacle avoidance maneuver, the DCP system informed the passenger of
“obstacle avoidance forward” and “deceleration forward” before the deceleration maneuver.
This study demonstrated that passengers’ subjective comfort was improved when riding
with the DCP system.

Petri Launonen et al. investigated whether the attitude of passengers changed in an icy
road environment [5]. The study found that trust, safety, and security were the main factors
influencing people’s positive attitude toward the use of autonomous vehicles. Results for
passengers traveling in harsh winter conditions indicated that winter conditions do not
significantly affect passenger attitudes toward autonomous vehicle use.

Chongfeng Wei et al. evaluated the tolerance for lateral offsets based on the measured
driving performance of real drivers and their responses to various risk factors [6]. The
purpose of this study was to prevent collisions between vehicles and other road users and
road edges, as well as provide stability and comfort to drivers. The experimental results of
this study proved that a vehicle trajectory generation that can ensure the driver’s comfort
on the road is possible through the offsets’ setting.

Sarah Atifah Saruchi et al. proposed the utilization of a fuzzy-proportional integral
derivative (PID) controller for a motion sickness (MS) minimization control structure. In
this study, the interaction of the lateral acceleration and head tilt concept was adopted to
diminish the lateral acceleration [7]. This study aimed to minimize motion sickness through
the controller of an autonomous vehicle. The head movement was used as the controlled
variable to compute the corrective wheel angle. The results showed that the averages of
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motion sickness incidence (MSI) index can be lowered by 3.95% for single lap and 11.49%
for 10 laps.

Yuli Zhao et al. reviewed the recent developments in active seat suspensions for
vehicles [8]. This study and the methods for adjusting the stability of the vehicle seats were
studied, and future research directions were suggested. According to this study, compared
to conventional controllers, an artificial neural network (ANN) control reduces many
modeling and computation steps and simplifies controller design. However, the ANN
training required a large amount of ideal data for backpropagation training. Therefore,
this study proposed combining the ANN system with the existing control system and
using the control results of the existing system to train the ANN controller and increase the
robustness of the system.

Guoqing Geng et al. proposed a route planning method that mimics the lane change
behavior of good drivers for passenger comfort and stability [9]. This study designed a
lane change model by training a genetic algorithm (GA) and backpropagation (BP) neural
network with lane change data from good drivers. As a result of the simulation, it was
confirmed that the route generated by the lane change model proposed in this study was
the same as that traveled by an excellent driver under the same conditions. In other words,
autonomous vehicles can reflect the driving habits of good drivers.

Abu Saleh Md Bakibilah et al. proposed an incentive-based, dynamic ride-sharing
transportation system for smart cities that can share empty seats in privately owned
vehicles [10]. The proposed system aimed to reduce the number of private vehicles in order
to solve the severe traffic congestion occurring in the city. Dynamic ridesharing operates
on a mobile cloud-based system that matches drivers and rides in real time.

Alexandros Leledakis et al. aimed to investigate the effect of various postures of
car front-seat passengers on the kinematic response when a collision occurs at an inter-
section [11]. This study quantified the posture of the occupant using a cross-correlation
method to investigate the effect of occupant posture under various impact conditions.
Experimental results from that study demonstrated that, in a crash, forward leaning poses
more problems for occupant protection than moderately back leaning.

Pier Giuseppe Anselma proposed a multi-target, off-line optimal control method
for estimating the speed of a following vehicle in adaptive cruise control (ACC) [12].
This implemented method relies on the principle of global optimality using dynamic
programming and focuses on improving passenger comfort by minimizing the vehicle’s
energy consumption. As a result of the experiment in this study, it was possible to confirm
an energy saving of 22% and an increase in passenger convenience by 48% in a vehicle that
supports ACC applying this method compared to a conventional vehicle.

As the interior of a vehicle is a confined space, Ju Yeong Kwon et al. designed a
flexible seat layout based on the total space of the vehicle [13]. Since the driver is no longer
present in autonomous vehicles, this study placed the face-to-face seats to make the most
of the vehicle’s space and analyzed the relationship between various factors related to
space. Using mock-up, observational surveys, questionnaires, and the think-aloud research
method within an ethnographic observation framework, they conducted experiments on
three study participants who were aware of the changing concept of autonomous vehicles.
The main result of this study is that a face-to-face seating arrangement generates various
activities of passengers. Therefore, the design of space components based on a face-to-face
seating arrangement only considers the activities of the passengers.

Current studies analyze the driving status of a vehicle, focusing on energy saving,
passengers’ subjective comfort (prevention of motion sickness), and passenger safety based
on passenger conditions. Therefore, the BDDS of this paper focuses on calculating the
optimal steering angle according to the passenger’s condition in an autonomous vehicle,
excluding environmental factors to ensure passenger safety and prevent vehicle accidents.
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2.2. Road Roughness Classification of Autonomous Vehicles

The classification of road roughness has attracted attention as a very important research
topic after the commercialization of Level 3 autonomous driving vehicles. The effect of the
road roughness on tires and suspension must be analyzed in order to determine the braking
method of a fully autonomous vehicle. The following are studies on the roughness of roads.
H.M. Ngwangwa et al. reported the performance of an artificial neural network-based
road condition monitoring methodology on measured data obtained from a Land Rover
Defender 110, which was driven over discrete obstacles and Belgian paving [14]. The neural
network in this study was trained on data computed by Land Rover’s numerical model.
As a result of the experiment in this study, the model trained by dissolving the Land Rover
data showed better quality than the existing handling mode. However, it was observed
that the overall network performance for bumps was impaired due to the poor roll motion
estimation capability of the numerical model and the use of the point-follower tire model.

Shahram Misaghi et al. presented a process for quantifying the effects of truck sus-
pension systems and road surface conditions on pavement damage [15]. The international
roughness index (IRI) was used to simulate road roughness. Additionally, the interaction
between the truck and the pavement was modeled to calculate the load on the pavement.
The main purpose of this study was to present a method by which the interaction between
the road and the vehicle can evaluate the performance of the road pavement. After a
parametric study, it was found that the spring strength of the suspension and the roughness
of the road surface affect the impact of the vehicle. As the vehicle speed increased, the
dynamic impact increased significantly. Moreover, the suspension damping factor had a
significant impact on the vehicle’s speed and diesel direct injection.

Mohammad Arbabpour Bidgoli et al. aimed to develop a new, automated, cost-
effective data collection device for measuring roughness [16]. In this study, a cost-effective
road roughness monitoring system (RRMS) was developed by mounting an additional
accelerometer on the wheel of a vehicle, and the roughness of the pavement was measured
using the RRMS. As a result of the experiment, when calculating the roughness of the road,
the error of the proposed system was less than 10% in RMSE and less than 20% in the
average error percentage.

Konstantina Georgouli et al. presented and discussed currently published relevant
research and findings on the quantification of the wheel wander, both on the negative and
on the positive aspects, and provided potential insightful future areas of enquiry to help
mold and shape future research for this emerging field [17]. This study focused on all the
effects of zero lateral wheel wander of autonomous vehicles on the accumulated damage
on new and existing pavements. As a result of the study, it was proven that autonomous
vehicles using zero wheel wander tend to keep driving in the center of the lane, so the
lifespan of the road is shortened quickly and the damage to the road is accumulated more.

Kevin Herubiel Floreán-Aquino et al. described semi-active modern control schemes
for a quarter-vehicle suspension with a magnetorheological damper (MRD) to attenu-
ate vibrations and simultaneously improve the passenger comfort and the vehicle road
holding [18]. The proposed control schemes were compared with a traditional sky-hook
semi-active control, showing a considerable improvement in the closed-loop system perfor-
mance at the two main vibration modes simultaneously.

Changbai Wang et al. developed an AdaBoost regression (ABR) model to improve
the predictive performance of road roughness and compared it with the linear regression
model of the existing Mechanistic-Empirical Pavement Design Guide (MEPDG) [19]. As a
result, the correlation coefficient (R2) between the measured and predicted values of the
test set increased from 0.5118 to 0.9751, and the mean squared error (MSE) decreased from
0.0245 to 0.0088. Therefore, this study showed that the ABR model is much better than the
LR. The LR was found to be unable to analyze many additional deterministic factors, such
as raveling and bleeding, that affect the international roughness index (IRI).

Vidas Žuraulis et al. proposed that the existing pavement quality evaluation indexes
be analyzed and a methodology for adapting them for roads with gravel pavement be
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created [20]. The goal of this study was to develop the methodology for gravel road quality
evaluation concerning pavement deterioration and vehicle dynamic response, providing
an appropriate maintenance indication for this pavement type. In this study, the roughness
of gravel pavement 160 m was measured three times on different environments using
the 3 m straightedge method. The first condition was after 2 days of road blading, the
second condition was after 3 weeks of pavement maintenance, and the third condition was
the worst condition before maintenance. Measurements have shown that the rougher the
pavement, the sharper the quality of the road.

Vaidas Lukoševičius et al. examined the vehicle stability dynamic models and develop
a refined methodology for estimating the key parameters of these models [21]. Additionally,
this study produced a revised tire smoothing function model that takes into account tread
deflections. Finally, they investigated vertical dynamics models and develop recommenda-
tions for their use in vehicle stability studies.

Aurimas Čerškus et al. proposed a method to detect the profile characteristics of a
road using an acceleration value that can be easily measured using a mount sensor [22].
This study estimated the spectral density of the road profile for wheel hub acceleration
using a transfer function. The power spectral density (PSD) allows for the adjustment of
a vehicle driving mode in the case of driver assistant systems or fully automated driving
mode, which sets damping parameters for adjustable shock absorbers or provides driving
hints for the driver.

Georgios Papaioannou et al. aimed to minimize tire wear, ensure occupant comfort,
and optimize parameters to improve vehicle handling [23]. This study used optimization
as a tool to identify and highlight the balancing relationships between various parameters.
Therefore, parameters were applied to specific tires, optimized for the vehicle while corner-
ing on different Classes A and B road roughness profiles. In this study, comfort illustrates
the same conflicting relation with wear as with vehicle stability.

Qingxia Zhang et al. proposed a road roughness estimation method using the fre-
quency response function (FRF) of a vehicle [24]. In this study, the equation for the vehicle
response, road roughness, and vehicle FRF was deduced andset up in a linear equation
system; hence, road roughness can be estimated using the vehicle FRF and the measured
vehicle responses. The vehicle FRF can be calculated by a direct estimation of the measured
vehicle accelerations using the least squares method. Moreover, the shape function method
can be used to eliminate the singular and noisy parts of the estimated FRF and to improve
the accuracy of the estimated road roughness profile. The road roughness can be estimated
online with a few seconds of time delay.

As above, current studies analyze the effect of road roughness on tires and suspension
to make autonomous vehicles drive optimally. Therefore, the BDDS proposed in this study
classifies the road roughness in detail for fully autonomous driving and calculates the
optimal brake pressure based on the road roughness and road information.

3. A Design of the Braking-Pressure and Driving-Direction Determination System (BDDS)

3.1. Overview

Currently, autonomous vehicles are being commercialized after testing. However,
although autonomous vehicles have not yet been fully commercialized, 81 accidents have
occurred; the driving method of vehicles to avoid accidents relies heavily on LiDAR. In
addition, most studies to avoid them are conducting experiments using limited conditions.
In order to achieve Level 4 autonomous vehicles, the environment an autonomous vehicle
can perceive must be expanded, which must influence driving decisions. Therefore, this
paper proposes the braking-pressure and driving-direction determination system (BDDS)
using road roughness and passenger conditions of surrounding vehicles to improve the
driving stability of autonomous vehicles. The BDDS accurately recognizes the roughness
of the road on which the vehicle is driving, including road information and weather
information, which are pieces of information collected from existing autonomous vehicles,
as well as the condition of the vehicle itself, its passengers, and passengers in surrounding
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vehicles and determines the vehicle’s driving direction so that it can maintain optimal
driving and brake pressure.

The BDDS consists of two modules, as shown in Figure 1. The road roughness
classification module (RRCM) collects the pressure of the wheels while driving on the road
by installing three axles on the vehicle’s suspension and classifies the roughness of the road
on which the vehicle is traveling into eight levels by using the pressure. It also calculates
the best brake pressure for the current road environment by using the roughness of the road
and the speed of the surrounding vehicles. The passenger recognition and sharing module
(PRSM) classifies the passenger status of a vehicle more accurately using a body pressure
sensor. The PRSM recognizes whether an adult, child, or cargo is seated on each seat of the
vehicle and stores the recognized passenger status in passenger status information (PSI)
along with the vehicle’s location and vehicle number. By sharing the PSI with surrounding
vehicles through V2V, the vehicle can accurately recognize the location of nearby vehicles
and the status of passengers. The PRSM calculates the steering angle at which the vehicle
can safely travel to its destination based on the position of the surrounding vehicles and
the condition of the passengers.
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3.2. The Road Roughness Classification Module (RRCM)

The road roughness affects various aspects of driving, such as the speed of the vehicle,
the load on the suspension system, and the degree of vibration felt by passengers [25–27].
Knowing the condition of the road is important. Whether the road is wet or bumpy has a
big impact on the vehicle’s braking distance. Especially in emergency situations, the vehicle
must calculate the appropriate braking pressure according to the road conditions. Therefore,
road roughness has not been considered in existing autonomous vehicles that focus on
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avoiding obstacles but must be considered in fully autonomous vehicles that consider both
passenger condition and vehicle stability. In this work, the road roughness classification
module (RRCM) was designed to calculate the optimal braking pressure in order not to
lose the tire grip in various road conditions. The RRCM consists of two submodules.
First, the road roughness classification submodule (RRCS) classifies the roughness of the
road on which the vehicle is traveling into eight levels through K-nearest neighbor (KNN)
clustering, which is one of the machine learning techniques [28,29]. Second, the brake
pressure calculation submodule (BPCS) calculates the most suitable brake pressure for
driving using the roughness of the road classified by the RRCS, the condition of surrounding
vehicles, and the current road condition. Figure 2 shows the overall structure of the RRCM.
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3.2.1. A Design of the RRCS

The RRCS proposed in this paper accurately classifies the roughness of the road on
the driving vehicle through four stages. First, the KNN algorithm is learned using the
training data set scaled between 0 and 1. Because the RRCS uses eight clusters, it uses a
KNN algorithm capable of supervised learning, not K-means in which the initial center
point is arbitrarily set. For the KNN to be classified correctly, the normalized input data set,
the labels for training, and the number of K must be determined. The RRCS scales the data
between 0 and 1 using z-score normalization to remove an abnormal value among pressure
data appearing on the road. However, in the case of data that are not collected numerically,
such as “Is there a speed bump?”, they are converted into a Boolean variable using one hot
encoding. The K number for the KNN is determined through K-fold cross validation.

x′i =
xi −m

δ
, (1)

Equation (1) represents z-score normalization. In Equation (1), xi denotes the collected
data such as in cs and a in Table 1, m denotes the average value of all data, and δ denotes
the standard deviation of all data. Table 1 shows the input values of the training data and
the labels of the classified clusters used for the RRCS.
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Table 1. Input data set and clusters the RRCS.

No. Variable Name Destination

1 cs Current speed
2 ∆s Acceleration for 3 s
3 a Steering angle
4 plt Pressure (left, top)
5 prt Pressure (right, top)
6 plb Pressure (left, bottom)
7 prb Pressure (right, bottom)
8 b A speed bump passed in 3 s
9 d Distance to destination

10 lc Lane change made in 3 s
11 sl The slope of the road
12 C1 Label 1 of clusters (clean roads)
13 C2 Label 2 of clusters (such as highways)
14 C3 Label 3 of clusters (paved roads with irregularities)
15 C4 Label 4 of clusters (old pavement)
16 C5 Label 5 of clusters (roads made of concrete tiles)
17 C6 Label 6 of clusters (A road made of bricks such as tiles)
18 C7 Label 7 of clusters (dirt road)
19 C8 Label 8 of clusters (off road)

Second, the RRCS calculates the pressure applied to each wheel while driving by in-
stalling four three-axes pressure sensors on the suspension for accurate road roughness
analysis. Of the three axes, the vertical axis (y axis) is the same as the frequency data of the
suspension collected from a general vehicle. The y axis ranges from 0.5 to 2.0 Hz and measures
how much the vehicle is lifted up and down. the horizontal axis (x axis) means the left and
right pressure of the vehicle. The RRCS sets the vehicle’s standstill state to 0 Hz on the x axis
and measures the frequency between −2.0 and 2.0 Hz to indicate which direction the vehicle
is leaning, to the left or right. The other horizontal axis (z axis) is the front and rear pressure
of the vehicle. The RRCS sets the vehicle’s standstill state to 0 Hz of z axis and measures
the frequency between −0.3 and 0.3 Hz to indicate which direction the vehicle is leaning,
forward or backward.

Third, the curvature of the road on which the vehicle is currently driving, the speed
bump section of the road, etc. are calculated to remove the pressure data irrelevant to the
roughness of the road. The RRCS is applied to the KNN by determining the curvature of
the driving road and speed bumps based on the braking information on the map. Fourth,
the roughness of the road is classified into eight levels by using the data of Nos. 1 to 11 in
Table 1 as an input data set. Nos. 12 to 19 in Table 1 indicate the eight-level labels classified
by the KNN.

3.2.2. A Design of the BPCS

The BPCS proposed in this paper calculates the brake pressure optimized for driving
by using the roughness of the road classified in the RRCS, the condition of surrounding
vehicles, and the remaining distance to the destination. Since the BPCS only calculates
brake pressure regardless of direction, real time and accuracy can be guaranteed with little
input. Table 2 shows the input data sets used for the BPCS.

In Equation (2), min and max mean the maximum and minimum values that the
corresponding data can have, not the maximum value among each item of data. In Table 2,
all input data except for the friction coefficient indicated in No. 10 were normalized through
min-max normalization. The friction coefficient was determined by the current weather
and the speed of the vehicle. Table 3 shows the friction coefficient used for the BPCS.
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Table 2. Input data set of the BPCS.

No. Variable Name Destination

1 cs Current speed
2 ∆s Acceleration for 3 s
3 ddest Distance to destination
4 ∆lc Lane change made in 3 s
5 sl The slope of the road
6 fd Distance from the vehicle in front
7 fa Relative acceleration with the vehicle in front for 3 s
8 p_lc Whether to change lanes within 3 s
9 r Roughness of the road

10 c f Coefficient of friction
11 dbrack Estimated braking distance

Since it is difficult to generate abnormal values in the input data set during autonomous
driving, and the generated abnormal values should not be ignored, the BPCS normalizes
the input data to between 0 and 1 using min-max normalization. Equation (2) represents
the min-max normalization.

x′i =
xi −min(x)

max(x)−min(x)
(2)

Table 3. Context-specific friction coefficient.

Road and Driving Conditions Pavement Road Cracked Road Unpaved Road

Dry road 48 km/h or more 0.45~0.70 0.35~0.60 0.40~0.70
Less than 48 km/h 0.55~0.80 0.50~0.60 0.40~0.70

Wet road
48 km/h or more 0.45~0.65 0.25~0.55 0.45~0.75

Less than 48 km/h 0.45~0.70 0.30~0.60 0.45~0.75

In Table 2, dbrack was calculated using the friction coefficient. Equation (3) shows that
the dbrack value was calculated by the RPCS.

dbrack =
v2

2gµ
, (3)

In Equation (3), dbrack means the braking distance, v2 means the current speed of
the vehicle, g means the acceleration of the vehicle, and µ means the friction coefficient
between the ground and the tire. Since the BPCS does not know the braking pressure
before calculating the braking pressure, dbrack means the braking distance when the braking
pressure is at its maximum. BPCS uses the normalized data in Table 2 as the node value of
the input layer and outputs a value between 0 and 1. That is, the output layer of the BPCS
uses one node. Equation (4) shows the output node of the BPCS. In the output of the BPCS, 0
means no braking required for driving and 1 means the maximum use of braking pressure.

Y = {y | 0 ≤ y ≤ 1}, (4)

The BPCS uses the swish function and the sigmoid function designed by Google to
solve the vanishing gradient problem of the existing neural network and fix the value
of the output node between 0 and 1. The swish function is used to calculate the value
of the node up to the input layer and the last hidden layer, and the sigmoid function is
used to calculate the value of the node y of the output layer. Equation (5) represents the
swish function. Equation (6) represents the sigmoid function. Equation (7) represents the
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differential function of the swish function for gradient descent. Equation (8) represents the
sigmoid differential function.

sh(x) =
1

1 + e−x x, (5)

sg(x) =
1

1 + e−x , (6)

sh′ = sh(x) + sg(x)(1− sh(x)), (7)

sg′(x) = sg(x)(1− sg(x)), (8)

The cross entropy error (CEE) has higher accuracy than the root mean squared error
(RMSE) when selecting one of several output nodes as the correct answer, but the BPCS has
only one output node [30]. The value of the output node is important; so, the RMSE is used
as a loss function. Equation (9) shows a computation method of the RMSE.

RMSE =

√
(y− t)2, (9)

In the existing neural network, the RMSE computes the final error by adding the
error values of all output nodes; but, since the BPCS has only one output node, the error
signal can be calculated simply. The hidden layer of the BPCS consists of seven nodes.
The number of hidden layers is determined through experimentation. Figure 3 shows the
overall structure of the BPCS.
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3.3. The Passenger Recognition and Sharing Module (PRSM)

The passenger condition of the vehicle must always be considered for the safety of
the vehicle. In particular, fully autonomous vehicles need to calculate optimal driving
not only for normal driving but also for emergency situations. In such an emergency
situation, the vehicle should set a direction to minimize human casualties; it is very impor-
tant to understand the passenger status of the surrounding vehicles to minimize human
casualties [31,32]. Therefore, for this paper, we designed the passenger recognition and
sharing module (PRSM), which calculates the optimal steering angle that can minimize
damage in emergency situations by detecting the passenger status of the driving vehicle
itself and surrounding vehicles. The PRSM consists of two submodules. The passenger
recognition submodule (PRS) generates a training data set using generative adversarial
networks (GAN) [33] based on the data of people directly seated on the body pressure
sensor and designs a passenger recognition CNN (PRCNN) to identify luggage, adults, and
children. The steering angle calculation submodule (SACS) computes the optimal steering
angle while driving according to the passenger status, driving route, and driving situation
of surrounding vehicles. Figure 4 shows the overall concept of the PRSM.
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3.3.1. A Design of the PRS

Existing vehicles identify whether a seat is occupied based on the weight applied to
the seat. The PRS proposed in this paper collects seat pressure data using a 64*64 body
pressure sensor and uses CNN to classify whether existing in the seat is an adult, a child,
or an object. Next, the PRS stores the seat information and the location of your vehicle
and shares them with the surrounding vehicles. First, sufficient body pressure sensor data
are required for PRS learning. Using 20 men and 12 women in their 20s and 30s, 7 men
and 3 women in their 50s and 60s, and 7 male children aged 8 to 10, we collect the body
pressure sensor data from nine boxes of 10 to 60 kg; the training data for the CNN were
generated using a generative adversarial network (GAN) based on the corresponding data.

The GAN is an artificial intelligence model that uses unsupervised learning to generate
image data. Figure 5 shows the simple configuration of the GAN. In Figure 5, the generator
generates new image data using the samples Pz(z) and G(z) extracted from noise and
delivers the generated image G(z) to the discriminator. The purpose of the discriminator
is to determine that G(z) is a fake image (that is, to output 0) and determine that Pdata(x)
is a real image (that is, to output 1). The generator and discriminator are each a neural
network model. Since the GAN is an unsupervised learning model, it learns using the
entropy-based loss function rather than the label. When training is completed, the GAN
creates a new image. Equation (10) shows the loss function of the GAN.

min
G

max
D

V(G, D) = EX∼Pdata(x)[logD(x)] + Ez∼pz(z)
[log(1−D(G(z)))], (10)
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In the GAN, the learning proceeds in the direction where V(G, D) becomes the maxi-
mum while Ez∼pz(z)

[log(1−D(G(z)))] becomes the minimum. When the training of the
GAN was completed, our work generated 150 images based on 58 images. At this time,
the PRS trains the CNN model using these 208 images. The PRS classifies 64 × 64 images
into three, R, G, and B, channels, uses 64 × 64 × 3 image data as input data, and decides
whether it is an adult seat, a child seat, or cargo seat image. The PRS conducts a convolution
and max pooling process three times. Since the input image is small, the stride of the PRS
is explained as 1 to ensure accuracy. The PRS uses a 3 × 3 size filter in the first and second
convolution processes and uses a 2 × 2 filter in the third convolution process. The first
convolution process uses 12 filters, the second convolution process uses 18 filters, and the
third convolution process uses 24 filters. The last layer of CNN, the fully connected layer,
consists of a neural network with one hidden layer. Figure 6 shows the overall structure of
the CNN used in the PRS. The PRS recognizes the current seat state through the CNN and
creates a passenger state table (PST) that stores the overall seat state of the vehicle. The PRS
stores the current vehicle seat status and vehicle location in the PST and transmits the PST
information to the surrounding vehicles through V2V communication. The PRS represents
the information of up to 15 seats in an array. Algorithm 1 shows that the PRS stores the
seat information in the array and sends it to the PST.

Algorithm 1. Information stored in PST

Input: Status of each seat
Output: Data set to pass to PST
1. Initialize an empty array P[15]
2. FOR each seat i in range (length (status of seats))

2.1. IF is it an adult to exist in seat i?
2.1.1. P[i] = 0

2.2. IF is it a child that exists in seat i?
2.2.1. P[i] = 1

2.3. IF is it a cargo to exist in seat i?
2.3.1. P[i] = 2

2.4. IF is it empty in seat i?
2.4.1. P[i] = 3

3. FOR last i in range (15)
3.1 P[i] = 4
4. Pass P[15] and GPS latitude and longitude to PST
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In Algorithm 1, the PRS stores adults as 0, children as 1, cargo as 2, and empty seats
as 3 in P[15], and stores GPS information and P[15] in the PST by padding the remaining
seats with 4. For example, if a five-seat vehicle has an adult in the driver’s seat, cargo
in the passenger’s seat, and a child in the right rear seat, the array of P[15] is created as
023314444444444 and it is stored in the PST. Table 4 shows examples of information stored
in the PST. In Table 4, the ‘own’ field indicates whether the car in which the information is
stored is a user’s or a surrounding vehicle.

Table 4. An example of the PST.

No. Own GPS Passenger

1 1 42.10321, 2.17403 001014444444444
2 0 42.10338, 2.17403 003333334444444

. . . . . . . . . . . .
n 0 42.22457, 2.17403 001012222222222

3.3.2. A Design of the SACS

The SACS proposed in this paper computes the optimal steering angle while driving
using the passenger status of the owner and the surrounding vehicles, current driving
status, and direction to the destination, etc., which are recognized by the PRS. The PRS uses
an input data set that is almost similar to the BPCS but, because the BPCS does not consider
braking, it uses an input data set that is more focused on the direction of the vehicle than
the BPCS. Table 5 shows the input data sets used for the SACS.

Table 5. Input data set of the SACS.

No. Variable Name Destination

1 cs Current speed
2 ∆lc Lane change made in 3 s
3 fl Distance from the vehicle in left
4 fr Distance from the vehicle in right
5 plc Whether to change lanes within 3 s
6 c f Coefficient of friction
7 Ptr Whether to turn left within 10 s
8 ptl Whether to turn right within 10 s
9 cv Curvature of the road
10 ca Current steering angle

Unlike the BPCS, the SACS does not consider acceleration per unit time and uses the
distance to the nearest left and right vehicles as input for steering accuracy. It also uses the
current steering angle and the curvature of the road to prevent departure from driving due
to steering angle changes. The SACS uses the same swish function as the BPCS from the
input layer to the last hidden layer but uses the tanh function for the activation function
between the last hidden layer and the output layer for the accuracy of result interpretation
and learning. The tanh function has a value between−1 and 1, and the SACS computes−1 as
right 45◦ and 1 as left 45◦ and outputs the final steering angle. Equation (11) shows the tanh
function used by SACS, and Equation (12) shows the differential function of the tanh function.

tanh(x) =
ex − e−x

ex + e−x , (11)

tanh′ (x) = 1− tanh2(x), (12)

4. Simulations

For this paper, four simulations were conducted to verify the efficiency of the BDDS.
The simulation environment shown in Table 6 was used for this paper and all machine
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learning models were made in the Python language using TensorFlow. The simulation was
conducted using virtual data. Berkeley DeepDrive’s data set was used to understand the
vehicle’s surrounding environment and the driving conditions of the surrounding vehicles.
Data not included in Berkeley DeepDrive, such as roughness of roads and distances to
destinations, were generated in a virtual environment by our workstation and ECU model.
The simulation of this paper was conducted in a virtual environment and was as follows.

• In order to find K suitable for the RRCS, this work computed the error of the RRCS
while increasing K from 1 to 31.

• To verify the efficiency of the RRCS, the K-means clustering algorithm and the road
classification accuracy of the RRCS were compared.

• This work examined the accuracy of the test data while increasing the number of
hidden layers from 1 to 30 in order to obtain the number of hidden layers suitable
for the BPCS.

• To verify the accuracy of the PRS, that of the PRS and that of the passenger recognition
system of the existing vehicle were compared.

• Data from 1204 traffic accidents in Korea were used to measure the efficiency of braking
pressure and passenger detection. The speed and steering angle at the time of the
vehicle accident, the output of the BDDS excluding the roughness of the road and the
passenger condition, and the output of the BDDS including the roughness of the road
and the passenger condition were compared.

Table 6. The hardware environment used for simulation.

Part Name Specification

CPU Intel i5-6500 3.20 GHz
RAM DDR4 16 GB
GPU GTX1060 VRAM 6 GB
SSD 125 GB

4.1. Simulations of the RRCS

First, this work conducted a simulation to find K suitable for the RRCS. For the
simulation, 312 data sets were used, of which 62 sets were used as test data sets and
the remaining 250 sets were subjected to five-fold cross validation. Figure 7 shows the
misclassification errors of the RRCS.
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The simulation result showed that the RRCS had the lowest classification error when the
K of KNN was used as 11. Additionally, there was no significant difference in the classification
error from 11 to 21, but when K was greater than 23, the classification error was increased due
to overfitting. Therefore, it is most appropriate to use K as 11 for the RRCS.

Second, to verify the accuracy of the RRCS, the accuracy of the K-means clustering
algorithm trained with the same training data and that of the RRCS were compared. The
RRCS was trained using 200 training data sets, and the RRCS and K-means algorithms
were tested using 150 test data sets. Figure 8 shows the accuracy when the test data sets
are input to the RRPS and K-means clustering algorithms. According to the result of the
simulation, the average accuracy of the RRCS was 0.693 and that of the K-means algorithm
was 0.627. Because the K-means algorithm classified unlabeled data into eight clusters, it
showed higher accuracy than the RRCS when classifying a constant amount of data but
failed to classify between clusters as the amount of data increased. Therefore, the RRCS is
more suitable than K-means algorithm to classify road roughness.
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4.2. Simulations of the BPCS

Next, this work examines the accuracy of the BPCS according to the number of hidden
layers in order to obtain the number of hidden layers suitable for the BPCS. In this paper,
the BPCS was trained using 253 training data sets while fixing the number of nodes of the
hidden layer to seven and increasing the number of hidden layers of the BPCS from 1 to 30.
Figure 9 shows the accuracy of the BPCS according to the number of hidden layers.
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Figure 9. The accuracy of the RRPS and K-means.

The result of the simulation showed that, when the number of hidden layers increased
to 11, the accuracy of the BPCS increased to 84%, but when the number of hidden layers
was increased to 13, the accuracy decreased sharply. Therefore, it is most suitable for the
BPCS to use 11 hidden layers.
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4.3. Simulations of the PRS

This work compared the accuracy of the existing passenger recognition system and
the PRS to verify the efficiency of the PRS. The existing passenger recognition system
recognized accurately in the following cases.

• To correctly recognize the person seated in the seat as a person, whether an adult
or a child;

• To recognize a seat loaded with cargo as an empty seat.

For the simulation, it was carried out by increasing the data set from 20 to 50, and the
proportion of the cargo was increased each time the amount of data was increased. Table 7
shows the number of pieces of cargo included in the data set, and Figure 10 shows the
accuracy of the PRS and the existing system for each data set.

Table 7. The input data set of the SACS.

The Number of
Total Data Sets

5 kg Cargo
Data (EA)

10 kg Cargo
Data (EA)

20 kg Cargo
Data (EA)

30 kg Cargo
Data (EA)

20 2 1 1 1
25 2 2 1 1
30 2 2 1 1
35 2 2 2 1
40 2 2 2 1
45 2 2 2 2
50 3 2 2 2

Sensors 2022, 21, x FOR PEER REVIEW 18 of 21 
 

 
Figure 10. The accuracy of the PRS and the existing recognition system. 

As a result of the simulation, the PRS showed that it had about 9% higher accuracy 
than the passenger recognition system of the existing vehicle. The accuracy of the PRS was 
measured as high with a small amount of training data and simulation data, but most of 
the difference in accuracy occurred in the recognition of 10 kg to 30 kg cargo. Thus, the 
PRS can distinguish cargo better than the existing passenger recognition systems. 

4.4. Simulations of the BDDS 
Finally, in order to verify the effectiveness of the BDDS, this work compared the ac-

tual accident data, the output of the BDDS without road roughness and passenger status, 
and the output of the BDDS with road roughness and passenger status. This experiment 
represented the average of the difference between the output of BDDS and the actual ac-
cident data in 171 vehicle–object accidents, 483 vehicle–vehicle accidents, and 550 vehicle–
person accident items of data. The actual data used for the simulation contained at least 
one death. Figure 11a shows the difference in braking speed according to road roughness 
and passenger conditions, and Figure 11b shows the difference in steering angle. 

 
(a) 

Figure 10. The accuracy of the PRS and the existing recognition system.

As a result of the simulation, the PRS showed that it had about 9% higher accuracy
than the passenger recognition system of the existing vehicle. The accuracy of the PRS was
measured as high with a small amount of training data and simulation data, but most of
the difference in accuracy occurred in the recognition of 10 kg to 30 kg cargo. Thus, the
PRS can distinguish cargo better than the existing passenger recognition systems.

4.4. Simulations of the BDDS

Finally, in order to verify the effectiveness of the BDDS, this work compared the
actual accident data, the output of the BDDS without road roughness and passenger status,
and the output of the BDDS with road roughness and passenger status. This experiment
represented the average of the difference between the output of BDDS and the actual
accident data in 171 vehicle–object accidents, 483 vehicle–vehicle accidents, and 550 vehicle–
person accident items of data. The actual data used for the simulation contained at least
one death. Figure 11a shows the difference in braking speed according to road roughness
and passenger conditions, and Figure 11b shows the difference in steering angle.
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Figure 11 shows the difference between the driving condition of the vehicle and the
output of the BDDS at the time of the accident as a percentage. As a result of the simulation,
the BDDS requires much more braking when the vehicle collides with a large object (or
vehicle). In addition, the BDDS showed a much greater difference in steering angle when a
vehicle-to-vehicle collision occurred than in a conventional accident. Therefore, the BDDS
can determine the driving method more aggressively than the existing vehicle driving
method in order to increase stability in crisis situations and prevent death.

5. Conclusions

This paper proposed that a braking-pressure and driving-direction determination
system (BDDS) consists of the road roughness classification module (RRCM) and passenger
recognition and sharing module (PRSM). The RRCM classified road roughness based on
a KNN algorithm, and the PRSM accurately recognized passengers inside the vehicle
based on a CNN and shared it with surrounding vehicles. In the simulation, this work
found the optimal parameters required for the AI model and proved the efficiency of each
module. As a result of the simulation, the RRCS to classify the roughness of the road had
about 7% higher accuracy than the K-means clustering algorithm, and the PRS to recognize
passengers had 9% higher accuracy than the existing vehicle passenger recognition system.
Therefore, the expected effects of the BDDS are as follows.

• The BDDS can extend the recognition range of existing autonomous vehicles that rely
heavily on visual data (from lidar, front camera, etc.).

• Because BDDS modularized brake pressure and steering angle computations, each AI
model is accurate and simple.
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In this paper, limited deep learning models using about 400 data sets were trained.
Future research should further train and test the BDDS by increasing the data sets. Since
the seat recognition sensor of the existing vehicle cannot be simulated in a virtual environ-
ment, the comparison between the PRS and the existing vehicle was conducted with little
data. Future research should implement the vehicle seat recognition system in a virtual
environment and conduct simulations with more data. Additionally, if experiments with
real vehicles become possible and research advances enough to determine braking and
steering except for computer vision, the BDDS could also be used in the development of
ADAS for special vehicles (such as forklift trucks) that are not provided with autonomous
driving systems [34,35].
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