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Abstract: Background: Maintaining a healthy gait into old age is key to preserving the quality of
life and reducing the risk of falling. Nonlinear dynamic analyses (NDAs) are a promising method
of identifying characteristics of people who are at risk of falling based on their movement patterns.
However, there is a range of NDA measures reported in the literature. The aim of this review
was to summarise the variety, characteristics and range of the nonlinear dynamic measurements
used to distinguish the gait kinematics of healthy older adults and older adults at risk of falling.
Methods: Medline Ovid and Web of Science databases were searched. Forty-six papers were included
for full-text review. Data extracted included participant and study design characteristics, fall risk
assessment tools, analytical protocols and key results. Results: Among all nonlinear dynamic
measures, Lyapunov Exponent (LyE) was most common, followed by entropy and then Fouquet
Multipliers (FMs) measures. LyE and Multiscale Entropy (MSE) measures distinguished between
older and younger adults and fall-prone versus non-fall-prone older adults. FMs were a less sensitive
measure for studying changes in older adults’ gait. Methodology and data analysis procedures for
estimating nonlinear dynamic measures differed greatly between studies and are a potential source
of variability in cross-study comparisons and in generating reference values. Conclusion: Future
studies should develop a standard procedure to apply and estimate LyE and entropy to quantify gait
characteristics. This will enable the development of reference values in estimating the risk of falling.

Keywords: dynamic stability; Lyapunov exponent; fall risk; walking; biomechanics; nonlinear
dynamic analysis; ageing

1. Introduction

Maintaining a healthy gait into old age is key to preserving the quality of life and
reducing the risk of falling. An estimated 28–35% of people older than 65 fall annually [1].
Fractures and serious injuries occur in about one-quarter of falls [1,2]. Age is an indepen-
dent risk factor for falling, and hence, all older people are at risk of falls. There are four main
categories that confer a higher risk of falling: environmental, behavioural, socioeconomic
and biological factors [1,3,4]. Biological factors of gait and balance are the most common
and important risk factors since they underpin the risks posed by other factors [5]. The
chance and extent of gait instability leading to falls also increase with age [6–9].

There are more than 12 clinical fall risk assessment tools for older people, among which
the Berg Balance Scale [10], Functional Reach Test [11], and Timed ‘Up & Go’ test [11],
physical and fall self-confidence assessment methods are commonly used for fall prediction.
Although clinical assessment could provide useful motor outcomes to detect the early
signs of balance alteration and then provide key information about fall risk, they may
not be sufficient to predict falls in older populations. For a better understanding of gait
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instability in older adults and their risk of falling, several biomechanical methods have been
developed (for a review, see [12]), with the nonlinear dynamic analysis gaining increasing
interest in recent years.

Biomechanical laboratory-based studies have identified characteristics associated with
ageing gait and increased fall risk which provide the field with the tools to understand
changes in gait characteristics. For example, lower leg strength, gait symmetry propriocep-
tion and increasing variability in step width, step length, stride length, step time, stance
time, stride velocity and single support are associated with fall risk [12–14].

While variability measures feature in traditional linear tools, it is assumed that vari-
ability between strides associated with fall risk is random and independent of past and
future strides [15]. In contrast, the nonlinear dynamic analysis showed that variations in
the time series of specific gait parameters are not random but demonstrate a determinis-
tic behaviour. This behaviour may be partially sensitive to physiological ageing [15–17].
Nonlinear dynamic analysis methods provide an opportunity to study the inner structure,
regularity, complexity and stability of variables describing gait and have presented strong
evidence of being associated with the risk of falling [9,12,17–19]. However, there is a range
of nonlinear dynamic measures that can be used and a range of ways of calculating each of
these measures [12,18].

A question remains as to which nonlinear dynamics techniques are most sensitive and
robust in indicating fall risk. While previous systematic reviews in the area have focused
on one or a few nonlinear techniques, such as Lyapunov Exponent (LyE) and Floquet
Multipliers (FMs) (Bruijn, Meijer [12] and Hamacher, Singh [17]), FMs Riva, Bisi [19] LyE
(Mehdizadeh [18]) and entropy (Yentes and Raffalt [20]), there has been no comprehensive
review of all nonlinear methods used in studying instability in the gait of older adults.

Therefore, the aim of this review was to summarise research on instability in healthy
older adults with and with our history of falling in terms of the (1) nonlinear dynamic
measures used, the variety of their calculations and values and (2) methodological issues
including age range, walking modality, kinematic variables and clinical risk of falling
assessment used. The current study was intended to help future researchers consider
the most powerful nonlinear dynamics measures for identifying fall risk and associated
experimental designs and calculation methods. Secondly, to capture the current range of
values reported for different nonlinear dynamic measures associated with gait and risk of
falling in healthy elderly.

2. Methods
2.1. Search Strategy

An electronic search was performed by one reviewer (AA) in February 2022 to iden-
tify papers that quantified nonlinear dynamic characteristics of walking in healthy older
adults. The databases searched were Medline Ovid and Web of Science. Reference lists of
articles included were checked to make sure that all related papers were considered. The
following search terms were used, and both original research and short communications
were included:

1. gait.ti,ab.;
2. walk*. ti, ab.;
3. exp Gait Analysis/ or Gait/;
4. 1 or 2 or 3;
5. (dynam* adj2 stabil*). ti, ab.;
6. Lyapunov.ti, ab.;
7. (nonlinear adj2 dynamic*).ti, ab.;
8. 5 or 6 or 7;
9. old*.ti,ab.;
10. elder*.ti, ab.;
11. 9 or 10;
12. 4 and 8 and 11.



Sensors 2022, 22, 4408 3 of 20

2.2. Inclusion and Exclusion Criteria

Two reviewers (AA and GW) assessed the titles and abstracts of the articles. The inclu-
sion criteria were studies of (1) nonlinear dynamic measures of gait or during continuous
human walking; (2) English language papers (3) falling or ageing in healthy individu-
als. The exclusion criteria were studies of (1) humanoid robots; (2) specific diseases or
pathology; (3) movements other than walking; (4) conference papers; (5) modelling or
simulation studies; (6) animal studies; (7) review or perspective papers. All the papers
were quality-assessed using the PRISMA guideline [21]. Figure 1 presents the research
flow diagram.
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2.3. Data Extraction

A customised spreadsheet was used to extract data from the papers associated with
the following themes: the population of healthy younger adults and healthy older adults
(YO comparison) and older fallers or non-fallers (F-NF); walking modality on the treadmill
(TM) or overground (OG); data collection modality divided into four categories: Inertial
sensors or accelerometers, goniometers, force plate, and motion capture using passive
marker-based and video systems; methods of performing fall risk assessment; nonlinear
dynamic analysis employed and methods of calculation used.

2.4. Data Visualisation

Reported LyE values were classified based on younger, older, walking conditions
(TM walking or OG walking), LyE estimation algorithms (Rosenstein, Wolf, Kantz and
Ihlen [22–25]), data type (velocity, acceleration and joint angle) and direction (anterior-
posterior (AP), vertical (VT) and medio-lateral (ML)) to facilitate comparison across studies.
In order to visualise the comparison of reported LyE values across studies and their
estimated central tendency, boxplots were used. The mean and standard deviation of values
for studies were illustrated as point plots and error bars. The points were displayed by a
colour to differentiate between different LyE estimation methods and walking conditions.
When data were presented only in graphical form in a study, values were extracted by
digitising the graphs using PlotDigitizer software (version 4.3., https://apps.automeris.io/
wpd/, last accessed date: 22 March 2022). Where multiple gait speeds were reported in a
study, the data relating to the speed closest to the preferred walking speed was selected.

https://apps.automeris.io/wpd/
https://apps.automeris.io/wpd/
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2.5. Effect Sizes

Cohen’s d was used to quantify the standardised effect sizes in nonlinear dynamic
measures between younger adults and older adults (YO) and fall-prone older adults and
non-faller older adults (F-NF) groups. Cohen’s d was evaluated using Equations the
following equations [26]:

Cohen’s d = (M2 − M1)/SDpooled (1)

SDpooled =

√(
(SD2

2 + SD2
1)/2

)
(2)

where M1 is the mean of the one group of study (i.e., younger); M2 is the mean of the other
group of study (i.e., older); SD1 is the standard deviation of the younger group; SD2 is the
standard deviation of the older group. Cohen categorised effect sizes, d, into categories,
with d < 0.2 as small, 0.2 < d < 0.8 as medium and values greater than 0.8 as large [26].

3. Results

The search yielded a total of 1040 articles (Figure 1). After screening, 46 articles
were considered eligible for inclusion in this review. Eighteen studies considered research
questions focused on the faller–non-faller (F-NF) comparison [27–39]. Fifteen studies
investigated the young–old (YO) comparison [3,6,7,9,38,40–49]. Six studies conducted F-NF
and YO comparisons [33,50–54]. Nine papers studied older adults only [30,31,55–61]. Three
studies compared LyE values for the same population in different conditions (OG or TM
walking) [6,29,59] or different LyE estimation methods [29].

3.1. Study Design Characteristics
3.1.1. Population

Thirty papers reported the gender of participant groups. Terrier and Reynard [43]
and Reynard and Terrier [54] had an equal number of both male and female participants,
while Bizovska, Svoboda [9] and Kyvelidou, Kurz [47] included only female participants
(Table 1). Generally, in most of the studies, female participants were more prevalent than
male [3,7,9,31,34–36,38,39,42,45,51–53,56,59,61]. The average age range for older partici-
pants were 70.6 ± 6 (65–76.2) years old (Figure 2) and 25 ± 5 (20–30) years old for younger
participants [3,6,7,27–29,31,33,40–43,48,52–58,62].

Table 1. Equal gender/ Sex ratio, sample size, participant’s gender (Female, Male or not mentioned
(nm)), overground (OG) or on the Treadmill (TM) or Both (Both) cohorts in studies in corporation
F-NF or YO comparisons.

Author (Year) [Reference] F-NF YO Equal Gender/Sex Ratio Sample Size Female/Male TM/OG/Both

Bisi et al. (2014) [6] no yes no 30 nm TM

Dingwell et al. (2000) [27] yes no no 24 7/17 Both

Bizovska et al. (2018) [28] yes no no 139 nm OG

Gonzalez et al. (2020) [63] no no no 34 nm TM

Granata et al. (2008) [50] yes yes no 12 nm TM

Hamacher et al. (2019) [3] no yes no 102 52/50 OG

Ihlen et al. (2012) [40] no yes no 20 8/12 TM

Ihlen et al. (2016) [29] yes no no 71 nm OG

Kang & Dingwell (2009) [41] no yes no 25 11/14 TM

Lockhart et al. (2008) [33] yes yes no 13 nm TM

Riva et al. (2013) [19] yes no no 131 nm TM
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Table 1. Cont.

Author (Year) [Reference] F-NF YO Equal Gender/Sex Ratio Sample Size Female/Male TM/OG/Both

Vieira et al. (2017) [42] no yes no 87 46/41 TM

Toebes et al. (2015) [31] no no no 134 85/49 TM

Buzzi et al. (2003) [7] no yes no 20 20/0 TM

Terrier et al. (2015) [43] no yes yes 100 50/50 TM

Toebes et al. (2012) [55] no no no 134 85/49 TM

Rispens et al. (2015) [56] no no no 110 77/33 OG

Rispens et al. (2016) [57] no no no 18 7/11 Both

Lizama et al. (2015) [58] no no no 19 7/12 TM

Bizovska et al. (2017) [32] yes no no 139 nm OG

Bizovska et al. (2018) [9] no yes yes 139 nm Both

Cignetti et al. (2011) [44] no yes no 14 5/9 TM

Craig et al. (2019) [51] yes yes no 65 48/17 TM

Hamacher et al. (2015) [45] no yes no 39 26/13 OG

Hamacher et al. (2016) [59] no no no 32 21/11 OG

Howcroft et al. (2016) [34] yes no no 100 56/44 OG

Ihlen et al. (2015) [36] yes no no 71 nm OG

Ihlen et al. (2018) [35] yes no no 319 162/157 OG

Kang & Dingwell (2006) [46] no yes no 20 nm TM

Kang & Dingwell (2008) [60] no no no 36 12/24 TM

Kyvelidou et al. (2008) [47] no yes yes 20 20/0 TM

Liu et al. (2012) [52] yes yes no 12 7/5 TM

Ohtaki et al. (2005) [48] no yes no 59 26/33 OG

Qiao et al. (2018) [53] yes yes no 33 19/14 TM

Reynard et al. (2014) [54] yes yes yes 100 50/50 TM

Rogan et al. (2019) [37] yes no no 26 nm OG

Segal et al. (2008) [49] no yes no 19 5/14 TM

Toebes et al. (2016) [61] no no no 16 9/7 TM

Worms et al. (2016) [38] yes no no 28 20/8 TM

Yang et al. (2014) [39] yes no no 187 187/0 TM

3.1.2. Sample Size

The sample sizes ranged from 12 [50] to 139 [32] participants. In two studies, the number
of participants in each group was very low, for example, 5 or less in each group [33,50]. In
10 studies, the number of participants in total was more than 100 [3,28,30–32,34,35,42,43,54,55].

As shown in Table 1, the F-NF comparison was considered in 10 studies [27–39], and
the YO comparison was conducted in 14 studies [3,6,7,9,38,40–49]. Six studies included
F-NF and YO comparisons [33,50–54].
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3.1.3. Fall Risk Assessment Tools

The eligibility criteria used to define both healthy and fall-prone older people varied
substantially across studies. Fall risk was assessed in a variety of ways, including the history
of falling and clinical fall risk assessments/questionnaires (Table 2). Faller definitions
in studies were classified into six categories: at least one fall history in 3 months prior
to the measurement [28], at least one fall within 6 months [32–34], more than two fall
incidents within six months prior to the study but were uninjured at the time of the
experiment [50], at least one fall history within the last 12 months [7,32,33,40] and at least
two falls during the previous year [31,38,42]. Additionally, there were two studies with no
falls in the past 12 months [42,55]. Nine studies did not provide a coherent definition of
fallers [6,7,41–43,56,57,63,64].

Table 2. Fall risk assessment tools used across studies.

Questionnaire Description Clinical Assessment Description

Anamnestic questionnaire [28]

Focusing on participants’
physical condition and fall

history in the 3 months prior
the measurement.

Tinetti Balance Assessment
Tool (TBAT) [28,32]

Assesses the gait and balance
in older adults and perception
of balance and stability during
activities of daily living and

fear of falling.

Fall history questionnaire
[3,28–31,33,38,40,42,50]

Self-reported medical
questionnaires also indicated

participants had recent histories
of falling (at least one fall within

6 months, 3 months or
one year).

Single leg stance test [63] Assesses static postural and
balance control
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Table 2. Cont.

Questionnaire Description Clinical Assessment Description

Survey of Activities and Fear
of Falling in the Elderly

(SAFE) [63]

Includes one scale and one
subscale: the scale asks

participants whether they
perform a series of 11 activities
of daily living and, if so, their

level of fear of falling during the
activity (Fear of Falling

subscale). A separate subscale
(Activity Restriction subscale)

asks participants to rate the
extent to which they currently
engage in each activity relative

to five years ago.

Timed Up and Go [63]

Determines fall risk and
measures the progress of

balance, sitting to standing
and walking

The Movement Specific
Reinvestment

Scale (MSRS) [38]

It is a measure of the propensity
for movement-related

self-consciousness and for
conscious processing of

movement and was used to try
to discriminate elder fallers

from non-fallers.

10 m Walk Test [63]

It is a performance measure
used to assess walking speed
in meters per second over a

short distance. It can be
employed to determine

functional mobility, gait and
vestibular function.

The Falls Efficacy Scale
International (FES-I) [38]

A measure quantifying an
individual’s concern about
falling during various tasks,

yielding a score between 16 (low
concern about falling) and 64
(high concern about falling).

“Figure 8” Walk [63]

Measures the everyday
walking ability of older adults

with mobility disabilities. It
tests a participant’s gait in

both straight and
curved paths.

The Longitudinal Aging Study
Amsterdam Physical Activity
Questionnaire (LAPAQ) [30]

A 31-point questionnaire that
covers the frequency and

duration of walking outside,
bicycling, gardening, light
household activities, heavy
household activities, and a

maximum of two sport activities
during the previous two weeks.

Four Square Step [63]

Assesses dynamic stability
and the ability of the subject to
step over low objects forward,

sideways, and backward.

Mini mental estate
examination score (MMSE)

[37,38,56–58]

A 30-point questionnaire that is
used extensively in clinical and

research settings to measure
cognitive impairment.

Clinical balance assessment
(static balance on force

plate) [3]

Determine a patient’s ability
(or inability) to safely balance

during a series of
predetermined tasks. It does
not include the assessment

of gait.

Fall risk questionnaires included: anamnestic questionnaire focusing on participants’
physical condition [28], fall history questionnaire [3,28–31,33,38,40,42,50], self-reported
ability to walk one mile at any pace with minimum rest, the Survey of Activities and Fear of
Falling in the Elderly (SAFE) [3,63], the Movement Specific Reinvestment Scale (MSRS) [38],
the Falls Efficacy Scale International (FES-I) [38], depression (CES-D) [3], the Longitudinal
Aging Study Amsterdam Physical Activity Questionnaire (LAPAQ) [30] and mini mental
state examination score (MMSE) [37,38,56–58,65].

Objective clinical balance assessments were mostly used within inclusion and exclu-
sion criteria and included the Tinetti Balance Assessment Tool (TBAT) [28,32], single leg
stance test, Timed Up and Go, 10 m Walk Test, Figure 8 Walk, Four Square Step [63], physical
activity (Freiburger Fragebogen zur körperlichen Aktivität), proprioception (joint position
sense), peripheral sensation (mechanical and vibration detection threshold), balance per-
formance (static balance on force plate) and muscular fitness (instrumented sit-to-stand
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test), test of cognition performance (Stroop test), health status (SF12) and pain status
(painDETECT, SES) [3] (Table 2).

3.1.4. Treadmill (TM) versus Overground (OG) for Estimating Non-Linear Dynamics

In 24 studies, participants walked on a TM [3,7,17,30,31,33,38,40–48,50–55,58,60,61,66],
while 13 studies examined OG walking [6,9,29,32,34–37,39,49,56,57,59,63]. OG and TM
walking were compared in three studies, where LyE values were higher for OG compared
to TM walking using both Rosenstein’s and Wolf’s methods (Figure 3) [6,29,59].
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3.2. Data Collection Modality and Kinematic Variables Analysed

Data collection modalities were divided into four categories: Inertial sensors or
accelerometers; goniometers; force plates; and motion capture using passive marker-
based systems (Vicon, Qualisys) and video. In 25 out of 44 studies, inertial sensors or
accelerometers were used. In these studies, the sensor was placed on: the lower back,
at L5 level [3,38,50,61]; on the lower back, at L5 level and on both shanks, approxi-
mately 15 cm above the malleolus [28,32]; on the dominant forefoot and upper thoracic
spine [3]; near the right anterior superior iliac spine (ASIS) [33]; to the back, just below
the shoulder [29,32,33,57]; with an elastic belt around the waist and set along the lumbar
spine [31,37,56,58,59]; at sacrum with an elastic band [58]; over the posterior surface of the
lumbar spine at approximately the level of L5 and on the lateral surface of the distal shank,
superior to the ankle joint [51], forefeet and trunk [45], the posterior head with a band,
posterior pelvis with a belt, and lateral shank, just above the ankle, with a band [34]; right
ankle [52]; and at the fourth spinal process of the lumbar spine [37].

From these inertial sensor studies, variation in the derived variables used to make the
nonlinear dynamic calculations existed. Nine different categories of data were analysed
from inertial sensors across these studies:

VT, AP, and ML trunk accelerations [3,29,30,34,36,45,50,56,58];
3D angular velocity [7,31,57];
Trunk accelerations in the AP and ML directions [30,51];
Trunk VT and ML accelerations and 3D angular velocity [31,57];
Trunk acceleration in ML [58];
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AP accelerometer signal close to the hip [33];
AP, VT and ML trunk linear acceleration and angular velocity [36,45];
AP ankle acceleration [52];
VT and ML trunk acceleration [37].
Goniometers were used in a single study [27] and placed to measure sagittal plane

movements of knee, ankle and hip joints.
Fifteen studies used motion capture with passive marker based systems [38–42,44,46,

49,50,53,60,61,63] or video [7,47]. Studies analysed different variables included: T10 3D
velocity [63]; 3D position and velocity of the centre of mass including the centre of pressure
(by using pressure plate) [50]; 3D linear and angular velocities of trunk, pelvis, thigh, shank
and foot segments [41]; VT acceleration, AP and ML trunk velocities [42]; VT displacement
of hip, knee, ankle and relative knee angles [7]; 3D angular position of hip and ankle [44];
3D linear and angular velocity and acceleration of trunk [60]; ML angular velocity of the
thigh, shank and foot [47]; 3D C7 vertebrae marker velocity time series [53]; AP ankle, knee
and hip angle [49]; ML trunk velocity and 3D trunk kinematic [61]; Centre of mass velocity
signal [38]; ML, VT and AP trunk positions and 3D rotational movement of the trunk [39].

3.3. Nonlinear Dynamic Analysis

Studies that performed an assessment of fallers versus non-fallers reported seven
methods of nonlinear dynamic analysis which are Maximum Lyapunov (LyE, short term
Lyapunov and long term LyE), Floquet multipliers (FMs), recurrence quantification analysis
(RQA), correlation dimension (CD) [7], multiscale entropy (MSE) [3,6,32,34], sample entropy
(SEn) [42] and Shannon entropy (ShE) [32]. Among all the studies, LyE has been mostly
used [1,2,4,7,9,17,26,28,37,38,40,42,43,45–49,51,52,55–57,60–62,64–67].

Twenty-one studies used Rosenstein’s method [3,6,9,27,28,31,33,34,37–43,46,49,50,
52–55,60,61,63]. One study used Kant’s method [48]. Two studies used Rosenstein’s and
Kantz’s methods together [40,44]. One study used Rosenstein, Kant and Ihlen meth-
ods [29]. In three studies Wolf’s method was used [4,38,58]. In one study, Rosenstein’s
and Wolf’s methods were used [57]. Rispens, Van Dieën [57] showed different val-
ues of LyE estimation using Rosenstein’s method and Wolf’s method (Figure 3). In
some studies, short term LyE was estimated [3,7,36,40,57,65] or both short and long
terms were estimated [6,30,33,41,43,55,56,62]. Finally, max LyE or finite time LyE were
estimated [7,27,33,37,42,43,47,48,52,56–58,61].

Hurmuzlu’s method [67] was used to calculate FMs across the studies [37,41,43,52].
MSE was calculated from Ihlen’s method [35] and Richman’s method [30,68].

3.4. Nonlinear Dynamic Variable Values

All studies reported lower local dynamic stability in older adults than younger
adults, where greater sensitivity to local perturbations could be found in larger LyE
values [3,6,7,9,12,27–29,31,33,34,37–43,47,48,52–57,59–61,63]; thus, they concluded that dy-
namic stability is lower in older people than younger adults. There are no references for
acceptable ranges of LyE due to the different methods of calculation used. In all the studies,
the lowest value of LyE meant more dynamic stability. In most studies reported, LyE values
were positive. However, in Ihlen, Sletvold [40], negative and positive values were reported.

Twenty-one out of forty-five studies reported LyE value of trunk acceleration or
velocity [3,9,27–31,33,37,38,41–43,47,53–57,59–61,63]. In papers reporting a YO comparison,
the estimation of LyE values calculated from acceleration data produced higher effect
size values on average (0.61 ± 0.39) than velocity (0.46 ± 0.4), as depicted in Figure 4.
Additionally, the OG walking effect size (0.59 ± 0.4) is higher than TM walking (0.56 ± 0.39).
However, in F-NF studies, LyE calculated from velocity data has been shown to produce a
higher effect size value (0.58 ± 0.43) than from acceleration data (0.55 ± 0.35), as shown in
Figure 5. TM walking effect size (0.76 ± 0.43) is higher than OG walking (0.37 ± 0.19).
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Generally, AP and ML directions were used for LyE estimation in these studies
(Figures 6–9) [27–30,42,43,56,57,61,63]. In one study, only AP direction was used [33].
In some studies, all three directions were used [9,28,29,42,43,56,57,59,63].
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The boxplot of LyE values for healthy older adults estimated using Rosenstein’s or
Wolf’s method is shown in Figure 6. Some studies used acceleration, and some used
velocity of the trunk. The median values for LyE were 0.67 (18 values), 0.64 (20 values) and
0.69 (17 values) for AP, ML and VT directions, respectively (Figure 7).

Accordingly, the median of the LyE for fall-prone older adults using Rosenstein’s
method was 0.77 (5 values), 0.61 (6 values) and 0.81 (4 values) for AP, ML and VT
directions, respectively.
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younger adults.

Considering the LyE for younger adults using Rosenstein’s or Kantz’s method, the
median value was 0.6 (7 values), 0.41 (6 values) and 0.31 (6 values) for AP, ML and VT
directions, respectively (Figure 8). Furthermore, using Rosenstein’s method, the median
of estimated LyE from 3D velocity was 0.1 (2 values), 0.5 (5 values) and 0.32 (values) for
younger adults, older healthy adults and fall-prone older adults, respectively (Figure 9).

As shown in Figures 6–9, the reported values from across all reviewed studies do not
clearly distinguish between the LyE values of F-NF and YO, despite each study showing
LyE higher in fallers compared to non-fallers and older versus younger adults.

Nonlinear dynamic measures that have been used less often in studying falls in older
populations are FMs, CD, RQA, MSE, ShE and SEn. Kang and Dingwell [41,60] and Granata
and Lockhart [50] reported higher values of FMs for older adults compared to younger
adults, which indicated more dynamic stability in younger adults rather than older adults.
In Kang and Dingwell [41], FMs were larger (lower dynamic stability) in the superior
segments compared to inferior segments and in older adults compared to younger adults.
Bisi, Riva [6] reported that FMs did not have significant differences between older and
younger populations. Two studies reported that FMs had negative predictive validity in
their fall prediction model [12,39]. Granata and Lockhart [50] used FMs and reported that
the maximus FM was a good indicator of fall-prone older adults; however, it could not
capture the effect of speed on stability. In contrast, Kang and Dingwell [60] showed that
FMs decreased at slower speeds and increased at faster speeds in both younger and older
populations. In some studies, both LyE and FMs were used [13,41,43,62] and reported
larger LyE and FMs in older adults.

In different studies, different combinations of nonlinear dynamic measures were
used; however, IC, ShE and MSE were consistently lower in faller compared to non-faller
groups [32,35]. Bizovska, Svoboda [32] used ShE, MSE and IC and reported only ShE could
distinguish faller from non-faller older adults. Vieira, Rodrigues [42] used both LyE and
SEn in studying healthy older adults. Riva, Toebes [30] used MSE and RQA and proposed
MSE and RQA to be positively associated with the fall history. Bisi, Riva [6] used LyE,
FMs, RQA and MSE and suggested that RQA better-distinguished gait dynamic stability
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in stable healthy adults. Buzzi, Stergiou [7] reported higher LyE and CD values in older
populations. Bizovska, Svoboda [32] estimated MSE, IC and ShE and reported ShE seems
to be sufficient in fall risk prediction. Bizovska, Svoboda [9] considered MSE and LyE and
stated significant age-related differences in gait were found for LyE.

4. Discussion

The aim was to summarise the variety, characteristics and range of nonlinear dynamic
measurements used to distinguish the gait kinematics of healthy older adults and older
adults at risk of falling. There is a need to improve existing methods of estimating gait
stability to improve the effectiveness of detecting fall risk and predicting falls. This review
has helped to ascertain the variety and range of nonlinear dynamic measurements used to
characterise gait for healthy older people and older people at risk of falling.

Among all nonlinear dynamic analyses used, LyE was the most common. All studies
reported higher LyE and CD for older adults versus younger adults and fall-prone older
adults versus non-faller older adults. Hence, these measures should be considered robust.
However, values between studies cannot be compared since the methodology used, kine-
matic characteristics analysed and data analysis procedures differed greatly. Three papers
considering FMs reported higher values for older adults compared to younger adults,
which indicated more dynamic stability in younger adults [41,50,60]; however, no work
with fallers and non-fallers has been published to date. In two studies, entropy and index
of complexity reported lower values in older people with a history of falls [32,35].

In the literature, nonlinear dynamic measures have been calculated for a variety of
kinematic variables such as marker position, joint angular displacement and velocity, the
centre of mass and acceleration. In agreement with the motor control theory proposed by
Bernsteı̆n [69], the dynamics of movements are not only dependent on the task-related con-
straints (e.g., walking speed) but also on the biomechanical constraints of the investigated
structure (e.g., kinematic variables) [70,71]. However, these kinematic variables (e.g., knee,
hip, ankle angle, velocity, etc.) do not demonstrate the same behaviour toward changes
in speed and conditions. There is still a lack of clarity as to which kinematic variables are
more sensitive for distinguishing fallers from non-fallers. A concern when using nonlinear
dynamic analysis for experimental data is the length of the time series analysed [25,48,72].
Different studies used various data lengths. Other concerns pertain to parameters such as
time series filtration, normalisation, and input variables like embedding dimension (ED)
and time delay (TD). Each of these parameters has a direct effect on LyE estimation [22,23],
for example. Different studies used various data lengths, ED and TD. Some of them fil-
tered and/ or normalised time series, and others did not, and this is the same for data
normalisation. This, in turn, makes it challenging to compare values across studies.

4.1. Study Design Characteristics
4.1.1. Sample Size and Characteristics

Since women are at higher risk of falls compared to men [1], studies should consider
examining sex differences in more detail. To date, no studies examined male versus
female differences.

We did not specify a priori an age cut point as an inclusion criterion for papers; rather,
we used the interpretation of age in the primary studies included in the review. The age
range of younger adults (20–30) and particularly older adults (mean of studies: 65–76.2; age
range across all studies: 50–90) varied significantly among the studies. Varied age ranges
for those classified as ‘older’ may be related to the large range of nonlinear dynamic values
reported in the literature. In addition, the number of participants selected in each group
differed. The number of participants in each group should be equal to avoid any possible
bias. There are standard methods available for the calculation of sample sizes to estimate
expected differences between groups, and these should be adopted for all studies [73].
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4.1.2. Fall Risk Assessment Tools

All studies were cross section in nature; therefore, the method of determining fallers
from non-fallers is key to comparing the consistency of findings between different research
groups. In this review, there was no consistently used fall risk assessment tool to identify
the ‘fall groups’, and thus, there is an inconsistent classification of fall risk across studies,
which, if nonlinear dynamic measures are associated with fall risk, makes it harder to
compare estimates across studies. Consistent and valid fall risk assessment tools need to be
studied in future works to standardise across studies, and we suggest using the ProFANE
definition of falls and methods for ascertaining falls [73].

4.1.3. Treadmill versus Overground

Biomechanical parameters and nonlinear dynamic measures obtained from TM walk-
ing are known to differ from those gained from OG walking [8,9,27,57,74]. Therefore, it is
not possible to compare values obtained from TM and OG walking studies.

Based on both practicality and the data required to perform nonlinear dynamic mea-
sures, TM walking facilitates controlled experimental conditions while being able to distin-
guish less stable gait patterns. For older people in the studies reviewed, dynamic stability
was increased by small but statistically significant amounts when walking on the TM com-
pared to OG due to artificially stabilised natural locomotor kinematics [8,9,27,57,74]. In most
of the studies, TM walking is used because a large amount of continuous data is needed
for the calculation of all nonlinear dynamic measures and especially for LyE [23,27,67].
TM studies still found increased LyE for older versus younger adults. Therefore, while
reducing values, they can still distinguish the groups; however, the relative effect of TM
walking should be considered when using motorised treadmills and, more importantly, in
fall prevention intervention strategies.

4.2. Data Collection Modality and Kinematic Variables Analysed

Until recently, LyE and FMs have been calculated on data collected in a movement
laboratory with motion capture systems, making them relatively cost and time expensive
to evaluate [17]. With the availability of inertial sensors, it has been cheaper to conduct
these kinds of studies. The effect size of LyE values estimated from acceleration or velocity
during OG walking was higher in the YO and F-NF studies, which suggests that more
significant differences between YO and F-NF could be captured while participants were
walking on the ground compared to on a treadmill. While the evidence is compelling, it
is still not clear if different kinematic variables such as acceleration, velocity or position
reveal the same properties of the nonlinear characteristics of the gait, and this is an area for
future research. Thus, TM and OG studies should continue in parallel.

Inertial sensors were most commonly used (compared to camera-based methods)
to study falling in older adults because they have the ability to collect data outside the
laboratory environment [75,76]. Different makes of inertial sensors such as Dynaport
Hybrid [19,30,32], OPALS [6], Delsys Inc [28,32] and Xsens [3,45,52,59] were used across
studies. In addition, a varying number of sensors were used. In some studies, only
one inertial sensor (placed on the trunk) was used; in others, two or three inertial sensors
were used (placed on the trunk and ankles). Using different sensors with various specifica-
tions (sensors’ range and sample rate differences) and different sensor placements on the
body can be another reason for the variability in the reported NDA measures values [77].
An inertial sensor should be placed so that the maximum movements and signals can be
captured [75,76]. Overall, the possibility to use inertial sensors to determine nonlinear
characteristics of gait is a promising field. However, the methodology for data collection,
processing and analysis should be standardised to facilitate better comparisons between
studies and the generation of reference values for the field.

Inconsistency in data collection modality and process hinders the ability to compare
nonlinear dynamic measures across studies and identify ‘normal’ values. In addition, it is
still questionable what kinematic variables (position, velocity and acceleration), collection
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modalities and sensors’ positions result in the most sensitive and specific nonlinear dynamic
measures of walking related to ageing and falling. Future work might explore this area in a
systematic way and try to standardise the acceleration’s position in this kind of study.

4.3. Nonlinear Dynamic Analysis

Among all the aforementioned nonlinear dynamic measures, LyE using Rosenstein’s
method has been most commonly used to investigate gait characteristics in older popu-
lations. However, Cignetti, Decker [44] reported that Rosenstein’s method provided less
sensitivity than Wolf’s method to capture age-related differences from small gait data set.
They concluded that Wolf’s method is more appropriate for the estimated LyE from small
gait data sets [44]. Hence, there is still information missing on which method is more
sensitive to differences between fallers and non-fallers.

There are not yet any population averages, nor are there reference values created
under an agreed laboratory protocol that would allow a fixed and robust interpretation of
the nonlinear dynamic measures due to different study designs and methods of calculation
being used in the literature.

Although it is vital to reconstructing phase space with optimum TD and ED for LyE
estimation [25], there are no mathematical rules for selecting the ‘correct’ values for TD and
ED to reconstruct the phase space; rather, some recommendations have been suggested
for their estimation [78]. For the majority of literature published in this area, authors
make reference to the algorithms for estimating ED and TD and Theiler window but rarely
report the actual values when reconstructing and subsequently quantifying characteristics
of the attractor state. Mathematically, it is presented that decreasing the ED lead to self-
intersections of the reconstructed trajectory [78]. Therefore, this can be an area of future
work when or if attempting to standardise LyE calculation.

There was consistency in calculations methods of other nonlinear dynamic measures
utilised were MSE, RQA, IC, and CD [3,4,32,34]. However, choosing optimum input
parameters for each of them has a huge effect on each of their values and still is a challenge.

4.4. Nonlinear Dynamic Variable Values

While LyE has been most widely used, other nonlinear dynamic measures of gait have
the potential to distinguish fallers from non-fallers. The relative sensitivity and specificity
of these measures are yet to be fully determined and will be an avenue for future research.

Although all studies reported higher LyE for an older population, there was not a
consistence range for their values. This is likely because of using different LyE estimation
methods and/or different data acquisition, and/or even using different kinematic variables
as reported above. In some studies, using velocity and, in others, using acceleration showed
more sensitivity among groups. Reported LyE values in YO comparison studies, indicating
that acceleration and OG walking modality in nonlinear dynamic measures for gait are
more sensitive to the changes due to ageing. However, reported LyE values in F-NF studies
suggest that using velocity while participants were walking on a treadmill could better
distinguish fallers from non-fallers. There is a possibility that these inconsistencies in the
estimation of LyE for gait in YO and the elderly came from the different methodological
approaches adopted in the studies. Therefore, this led to high variability in reported
LyE values for younger and older adults. Future work needs to standardise the LyE
estimation method.

In contrast to LyE, there were just a few studies using other nonlinear dynamic
measures. Among them, the inconsistency in the results across studies suggests that FMs
were a less sensitive measure for studying changes in the gait of older adults. In addition,
one study stated that CD captured a significant difference between younger and older
adults’ gait [7]. However, the strength of evidence is lacking due to the limited number of
studies and varied methods.

MSE was commonly used for the quantification of complexity, among other three
entropy analyses applied across studies [3,6,32,34]. Some studies reported that MSE and
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measures of RQA have been associated with fall history [30] and that MSE and ShE can
be used as fall risk predictors [32,35]. However, same as with the LyE values, there are
not any normative entropy values with which to compare values among studies. Entropy
algorithms are sensitive to their input parameters of tolerance window r, vector length m,
time series length N and number of scales [20]. Inconsistency in these input parameters
between studies has led to conflicting results between studies. Hence, further studies with
consistent data processing methodologies need to be carried out in this area.

Variations in the methodology and data analysis procedures cannot support a standard
nonlinear dynamic measures range for populations, which can be used in clinical settings
to predict fall risk. Currently, we have evidence that preferred speed is better prediction
than fixed speed in the data collection [27], but the relevance of other components of test
protocols is not known. We cannot be sure what protocol should be used for generating
reference values. For example, OG/ TM, accelerometer/ velocity/ position, nonlinear
dynamic measures (LyE/ FMs/ RQA/ MSE) and their estimation’s methods. More research
is needed to determine which protocols are most sensitive and specific for the prediction
of falls.

4.5. Limitations

Our review had a number of limitations and constraints. Only one reviewer appraised
the quality of papers, and because of the breadth of research methods being reported in the
papers, quality of assessment of methods was challenging, and it was not possible to use
standard techniques to assess quality, pool results and estimate heterogeneity. We used the
items in the PRISMA reporting guideline to provide a framework for quality assessment but
recognise that ideally we should have used more detailed quality assessment instruments.
We included two databases only, but these are both considered to have broad coverage of
the literature. Nevertheless, we believe the review scope and results reflect progress in the
field well.

5. Conclusions

Although NDA for determining specific parameters of mobility can assess function
and stability in the elderly, measures have hardly been taken up in clinical settings because
of their unclear sensitivity and specificity, together with the time and effort required for
their use. There is much variation in reported nonlinear dynamic values across studies that
can be attributed to three main factors: (i) experiment design, (ii) fall risk assessment tools
and (iii) variables analysed and nonlinear dynamic measures estimation method. Due to
the robustness of findings, in future studies, we suggest that it is worth standardising data
collection, variable definition and the estimation methods of nonlinear dynamic measures.
This will lead the field towards better acknowledging the possibility of clinically relevant
nonlinear dynamic values for identifying fall risk.
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Abbreviations

LyE Lyapunov Exponent
FMs Fouquet Multipliers
MSE Multiscale Entropy
RQA Recurrence quantification analysis
TM treadmill
OG overground
AP anterior-posterior
VT vertical
ML medio-lateral
YO younger adults and older adults
F-NF Fall-prone older adults and non-faller older adults
SAFE the Survey of Activities and Fear of Falling in the Elderly
MSRS Movement Specific Reinvestment Scale
FES-I The Falls Efficacy Scale International
CES-D depression
LAPAQ The Longitudinal Aging Study Amsterdam Physical Activity Questionnaire
MMSE Mini mental state examination score
TBAT Tinetti Balance Assessment Tool
SD Standard deviation
Sen Sample Entropy
CD Correlation Dimension
ShE Shannon Entropy
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