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Abstract: As vehicles provide various services to drivers, research on driver emotion recognition
has been expanding. However, current driver emotion datasets are limited by inconsistencies in
collected data and inferred emotional state annotations by others. To overcome this limitation, we
propose a data collection system that collects multimodal datasets during real-world driving. The
proposed system includes a self-reportable HMI application into which a driver directly inputs
their current emotion state. Data collection was completed without any accidents for over 122 h
of real-world driving using the system, which also considers the minimization of behavioral and
cognitive disturbances. To demonstrate the validity of our collected dataset, we also provide case
studies for statistical analysis, driver face detection, and personalized driver emotion recognition. The
proposed data collection system enables the construction of reliable large-scale datasets on real-world
driving and facilitates research on driver emotion recognition. The proposed system is avaliable
on GitHub.

Keywords: driver emotion recognition; multimodal; self-report; real-world driving

1. Introduction

In recent decades, the use of data-driven state-of-the-art techniques such as deep
learning has increased interest in and performance of human affect recognition [1]. This
has increased interest in the development of driver emotion recognition systems. Since
driving is significantly affected by the driver’s emotions [2–4], driver emotion recognition
studies have been conducted for various purposes such as driving safety, adjusting vehicle
dynamics, and emotion elicitation of drivers [4–6]. All studies are affected by the quality
and quantity of data. Therefore, research on quantitative and qualitative datasets for driver
emotion recognition is being actively conducted [7–14].

Although large-scale and high-quality datasets are collected through various studies,
the collection conditions vary significantly. First, the experimental environment is largely
divided into simulation and real-world driving. Second, the modalities of collected signals
are also diverse. When broadly classified, there are video, audio, bio-physiological, and con-
troller area network (CAN) data. In detail, the position of cameras and microphones differ,
and the collection list of biophysiological or CAN data is not unified. Lastly, the annotation
of emotional states is various, which is critical for emotion recognition. The simplest way to
classify a driver’s emotional state is by driving experiments (e.g., assume that heavy traffic
on the urban is high stress, and light traffic on the highway is low stress) [7–9]. There is also
an approach in which external annotators judge a driver’s emotional state based on the
collected information about the driver. However, this approach has limitations in that it has
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a high-cost and requires others to report their emotional states [10,11]. In the self-reporting
approach, drivers report their emotional states, but this should not interfere with the main
task of driving. Hence, it is restricted to experiments through simulation or they have to
report their emotional states after the completion of the experiments [12–14]. As previously
stated, since data collection environments, measured data types, and annotation methods
very, Zepf et al. have argued that a consistent dataset is needed to facilitate research on
driver emotion recognition [15].

In this paper, we propose a data collection system that can be used for a variety of
driver emotion recognition studies. The proposed system collects multimodal datasets
such as videos from various views, audio, biophysiological, CAN data, and drivers’
emotional states, which are data representatively used for driver emotion recognition.
A driver’s emotional state is collected by a driver self-reporting their emotional state while
driving through a human–machine interaction (HMI) application. To realize a universal
dataset, the collection experiment should be conducted in the real world environment,
not through a simulator. To conduct a real-world driving experiment, it is necessary to
prevent the behavioral and cognitive disturbances of drivers in advance to avoid potential
traffic accidents. To prevent behavioral disturbance, the proposed system collects bio-
physiological data using wearable sensors, instead of biometric sensors attached to the
body. The self-reporting application for minimizing cognitive disturbances comprises a
haptic, acoustic response, and graphical user interface (GUI) based on user experience (UX).
In addition, there are concerns about the reflection of strong bias during self-reporting
due to false memories or the desire to impress others [15]. To address these concerns, we
focused on making the self-reporting interaction occur periodically. All considerations for
reliable data are detailed in Section 3. The data collection system is installed on a vehicle,
and data collection is performed under real-world driving conditions. Figure 1 shows the
data collection vehicle driving during real-world driving.

Figure 1. A scene in which a driver’s emotional state data is being collected during real-world
driving using the proposed data collection system. The driver is self-reporting their emotional state
by touching the HMI application mounted on the vehicle center fascia. The screenshot on the right is
the English translation of the GUI of the HMI application implemented in Korean.

According to the real-world data collection experiment results using the proposed sys-
tem, the experiment was completed without any accidents over four months. A large-scale
dataset of over 122 h, 4446 km, and 787 GB was collected, along with 6356 self-reporting
data points of drivers while driving. Through the statistical analysis of the collected data,
the imbalance of self-reported emotion labels and the need for personalized driver emotion
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recognition were confirmed. In addition, case studies of driver face detection and personal-
ized single and multimodel driver emotion recognitions are presented, and comprehensive
understanding is provided.

Our main contributions can be described as follows:

• We proposed a data collection system that can collect the multimodal data of drivers
during real-world driving tasks. The proposed system is capable of collecting real-
world driving big data for driver emotion recognition while considering the minimiza-
tion of behavioral disturbances.

• The proposed system comprises an HMI application through which drivers can report
their emotional states. This application is designed to collect selected emotional states
from the driver without cognitive disturbance during real-world driving by utilizing
the haptic, acoustic response, and GUI, and eliminating the bias problem that may
occur with the self-reporting by setting the interaction period.

• We deployed the proposed system on a vehicle and collected high-quality multimodal
sensor data without any accidents during real-world driving experiments for over
122 h. To demonstrate the validity of our collected dataset, we provided various case
studies such as statistical analysis, driver face detection, and personalized single and
multimodal driver emotion recognition.

The rest of this paper is organized as follows. Section 2 introduces related works on
the data collection system for driver emotion recognition. Section 3 discusses the proposed
data collection system in real-world driving. Section 4 provides data collection experiments,
analysis of collected data, and case studies using the collected data. Section 5 concludes
this work and describes further work. Appendix A describes details of terminologies and
variables used in this paper.

2. Related Works

Driver state recognition research is being conducted from various viewpoints, from the
recognition of inattention [16], distraction [17], stress [5], and behavior [18] for safety to readi-
ness [19] for autonomous driving. This has resulted in research on driver emotion recognition,
along with the improvement of data-based human emotion recognition performance [20–22].
Data used for driver emotion recognition is classified into video [11], audio [10], biophysio-
logical [12], and CAN data [15]. In most cases, these data are not used alone but are fused
to recognize driver’s emotional states [6–9]. However, real-world driving data resources
that account for data types do not exist. Ma et al. [11] only collected the video of a driver’s
face, and CIAIR [23] and DriveDB [7] collected video, audio, and biophysiological data,
excluding CAN data. UTDrive DB collected various CAN data, along with video and
audio but did not collect bio-physiological data [8]. In this study, we propose the various
multimodal data collection system in real-world driving.

Emotion annotation data are as important as sensor data in driver emotion recognition.
To annotate a driver’s emotional state, three major methods are employed: experimental
context, external annotators, and self-reports. The experimental context is the simplest
way to annotate an emotional state by estimating the driver’s emotional state with the
driving situation or environment, e.g., annotate the driver’s stress level by road type or
congestion level [7–9]. Since this approach presupposes strong assumptions, there are
limitations in annotating an accurate emotional state. Although using external annotators
requires additional manpower and cost, it enables objective annotation. Jones and Jonsson
recorded a driver’s speech while driving using a simulator, and an external annotator
annotated the driver’s emotional state by listening to the recorded speech for driver emotion
recognition [10]. Ma et al. developed an annotation tool to allow external annotators to
annotate two emotion categories at five levels each based on driver face images collected
during real-world driving [11]. This approach also has limitations in that experienced and
trained annotators are required. Because self-reporting is an approach to self-report how
drivers feel while driving, it can overcome the limitations of other approaches. However,
driving is a task that requires considerable concentration, and drivers’ self-reporting while
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driving affects the experiment. Hence, most self-reporting is performed immediately after
the driving experiments. Taib et al. [13] and Ihme et al. [14] conducted a driving simulation
experiment for driver frustration and asked participants who drove for self-reporting
information after the experiment. Taib et al. used a 9-point Likert scale and Ihme et al.
used a self-assessment manikin (SAM) [24] for self-reporting. Kato et al. proposed a self-
report application that can visualize data and selected the driver’s emotional state while
driving [12]. The proposed application enables a driver’s self-reporting to be performed
in real time while driving, not after the experiment. This application was only used in a
simulation experiment, and to use it in real-world driving experiments, additional safety
considerations are required. In addition, concerns about subjective biases that may be
included in self-reports are another challenge to overcome [15]. In this study, we propose
an HMI application that allows drivers to safely report their emotional states while real-
world driving.

3. Proposed Work

In this section, a system that enables the simultaneous collection of videos, audio,
biophysiology, and CAN data during real-world driving is described. The system also in-
cludes an HMI application that interacts with the driver and collects the driver’s emotional
state. In other words, this section demonstrates methods for developing hardware and
software systems for a multimodal dataset based on self-reporting in real-world driving
for driver emotion recognition. All systems are built into the vehicle, as the data collection
is performed under driving conditions. We used an IONIQ 1.6 Hybrid vehicle (Hyundai,
Seoul, KR, https://www.hyundai.com/, accessed on 31 March 2022) shown in Figure 2a as
the base environment for building the proposed system. Figure 3 shows the flowchart of
the entire system. When the system starts, the first thing to check is whether the vehicle
is ignited. The system is designed to start after the vehicle is ignited because the surge
voltage generated when the vehicle is ignited can reduce the quality of data collected using
electronic sensors. In addition, for safety reasons, whether the vehicle is stopped before
starting and ending the system is checked (blue rhombus in Figure 3). This prevents the
driver from operating the system while driving. After confirming that data collection is
possible, two types of metadata are requested before the main data collection. One is the
name of the driver, which must be input by the driver manually. The other is the current
odometer, which can be obtained automatically via vehicle CAN data. After obtaining
the current odometer and treating it as the starting odometer, the main data collection
process starts. The main data collection process uses multiprocessing to efficiently collect
different multimodel data (orange rectangle in Figure 3). When a suitable end request is
input into the system by the driver, the main data collection process is terminated, and if
the vehicle is stopped, the vehicle odometer is obtained once more and treated as the
ending odometer. Finally, all data, metadata, and collected data (green box in Figure 3)
are integrated into one dataset (red rectangle in Figure 3) , and the entire system is shut
down. All processes in the proposed system are performed using a computer, shown
as Figure 2d. The proposed system is released as an open source repository on GitHub
(https://github.com/KMUIMLAB/DMS, accessed on 27 May 2022) and the details of each
data type for multimodal data collection are discussed in the following sections.

3.1. Video

We use two RealSense D435i cameras (Intel, Santa Clara, CA, USA, https://www.intel.
com/, accessed on 31 March 2022) to collect video data composed of various modalities.
The RealSense camera provides a maximum of three video modalities: red, green, and blue
(RGB), infrared (IR), and depth. In addition to the RGB image, the IR image, which is
robust to environment changes, such as illumination changes, is essential in real-world
driving. One camera is installed on the dashboard to capture the driver’s face, as shown in
Figure 2b, and the other is installed on the top of the passenger seat window to capture
the driver’s posture, as shown in Figure 2c. Since the sample rate of the camera can be set,

https://www.hyundai.com/
https://github.com/KMUIMLAB/DMS
https://www.intel.com/
https://www.intel.com/
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we set it as Rv Hz. Alternatively, each camera sequentially captures Rv individual images
per second.

(a) (b)

(c) (d)
Figure 2. Figures of the dataset collection system hardware interface build in the vehicle. (a) Vehicle
exterior; (b) Inside view of the vehicle center fascia; (c) Inside view of the vehicle passenger seat;
(d) Vehicle trunk. Two cameras are installed to collect the image data of a driver’s face and posture
(green). A microphone is installed on the right side of the driver seat’s headrest to collect audio
data in the cabin (blue). Wristband-type wearable sensor is worn on the driver’s wrist to collect the
driver’s bio-physiological data, and the collecting status can be monitored through a smartphone
(orange). The CAN interface device supports the collection of vehicle CAN data (red). The monitor
installed on the center fascia is a touch screen for interaction with the driver (yellow). The computer
installed in the trunk of the vehicle integrates the collected data (magenta).

Figure 3. Flow chart of the proposed data collection system during real-world driving.

3.2. Audio

The CVM-VM10 II microphone (CoMica Technology, Shenzhen, Guangdong, CN,
https://www.comica-audio.com/, accessed on 31 March 2022) was used to collect audio
information in the cabin while driving. To collect data with audio information similar to
what the driver hears, the cardioid condenser microphone was selected and placed close to
the driver’s ear. To minimize noise and vibrations that occur during real-world driving,
the microphone was installed on the right side of the driver’s seat headrest, along with
the shock mount and wind muff, as shown in Figure 2c. The audio data collection system

https://www.comica-audio.com/
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collects Ra audio data samples per second until the system stops according to the sample
rate, Ra Hz.

3.3. Biophysiological

To collect biophysiological data of the driver, the biometric sensor must be in contact
with the driver’s body. The attached sensor may cause behavioral disturbances, resulting
in potential accidents. For safe biophysiological data collection during real-world driving,
it is necessary to prevent behavioral disturbances in advance, and we used an E4 wristband
(Empatica, Boston, MA, USA, https://www.empatica.com/, accessed on 31 March 2022),
as a solution. The E4 wristband (E4) is a wearable biometric sensor and is used as an
alternative sensor while exhibiting similar data quality 85% of the time compared to the
clinician standard device [25]. As a result of comparing the E4 and laboratory biometric
sensor data in terms of emotion recognition performance, similar accuracy was realized [26].
Hence, we used the E4 for biophysiological data collection during real-world driving. E4
provides skin temperature, electrodermal activity (EDA), photoplethysmography (PPG),
and 3-axis acceleration of the band, along with interbeat interval (IBI) and heart rate (HR)
through postprocessing. As shown in Figure 2b, biophysiological data collection is possible
by simply wearing E4 on the wrist while driving, and real-time monitoring is also possible
using a mobile device through the application provided by E4. Unlike video or audio data,
E4 collects each data at an optimized sampling rate, so no separate setting is required. Each
sample rate is shown in Table 1.

3.4. CAN

The method of mounting additional sensors or collecting on-board diagnostics (OBD)
signals can also be used to access vehicle signals; however, since we can access vehicle CAN,
we can collect vehicle signals with the CAN interface device. CAN is a message-based
protocol designed to allow vehicle controllers to communicate with each other. The USBcan
Pro 2xHS v2 (KVASER, Mission Viejo, CA, USA, https://www.kvaser.com/, accessed on
31 March 2022) is a CAN interface device used to access vehicle CAN signals to collect
vehicle data. As shown in Figure 2d, the device is located in the trunk of the vehicle and
connects the vehicle CAN line to the computer. Among the many signals on CAN, we
select key signals closely related to the driver. Since the selected key signals are updated
according to the set cycle time, the sample rate of CAN data, Rc, is set according to the
cycle time. The collected key data and the sample rate are presented in Table 1.

3.5. HMI

Drivers’ emotion annotation is essential in datasets for driver’s emotion recognition.
Although external annotators or the experimental context can be employed to estimate and
annotate drivers’ emotional states, we focused on annotating the driver’s emotional state
using reports from the driver rather than via estimation. This method is called self-report
and will be performed in real-world driving experiments. It must be designed with an
emphasis on safety. Requiring drivers to report driving conditions may cause cognitive
disturbances, probably leading to severe traffic accidents on the road.

To minimize cognitive disturbances, we proposed the HMI application that period-
ically interacts with the driver through haptic and acoustic response and receives the
emotional state response from the driver. We used a TFX133T DEX monitor (HANSUNG,
Seoul, KR, https://www.monsterlabs.co.kr/, accessed on 31 March 2022), and the touch
screen has a built-in speaker to realize haptic and acoustic responses. The screen was
installed on the center fascia of the vehicle, as shown in Figure 2b. When data collection
starts, the HMI application requests that the driver report their emotional state with a
sound announcement as follows: “Please enter your current state”. If there is no response
from the driver for Irr seconds from the request, the application requests once more with
the same sound announcement. If there is no response from the driver within Is seconds
from the first request, not to disturb the driver, it is treated as a nonresponse with a sound

https://www.empatica.com/
https://www.kvaser.com/
https://www.monsterlabs.co.kr/
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announcement as follows: “The input is delayed, so it enters in a nonresponse state”.
This skipping process is essential as frequent response requests can interfere with safe
driving. The driver can input an answer by only touching the screen, and when the input
is completed, the input emotional state is displayed on the screen in large fonts; and at the
same time, a sound announcement is provided as follows: “Your input is complete”. This
feedback minimizes confusion for the driver.

In addition to cognitive disturbances, self-reported emotion labels have limitations in
that they reflect strong bias because of false memories or the desire to impress other
people [15]. Repeated sampling in real-time is necessary to minimize this bias [27].
That is, the self-reporting requests should be continuously made at periodic intervals.
Hence, the proposed HMI application continuously requests the response at an interval,
Ir, from when driving starts to when it ends. The interval between response requests,
Ir, is tuned through test driving. Moreover, our system allows the driver to report their
emotional states at any time by touching the screen even between response intervals. This
feature enables logging drivers’ rapidly changing emotional changes in real-world varying
driving conditions.

The proposed HMI application can apply any representative emotional states as long
as they are discretely expressed states. However, since the driver has to choose the most
similar to their current emotional state among them, cognitive disturbances can occur if
there is difficulty in choosing an emotion no matter how well the interaction with the driver
is completed. Therefore, the discrete representative emotional states should be simple, not
numerous, and suitable for the driving situation.

3.6. GUI

We propose a GUI design to reduce drivers’ cognitive disturbance in self-reporting
through HMI while driving. To propose UX-based GUI of the HMI application, the fol-
lowing four representative driver emotional states by referring to the emotions that can be
induced in a driving situation [28] are suggested.

• Happy|Neutral;
• Excited|Surprised;
• Angry|Disgusting;
• Sad|Fatigued.

The proposed GUI designs are shown in Figure 4. There are two factors to consider in
the GUI design: the layout and color of the emotional states. The layout of the emotional
states refers to the valence–arousal plane, a popular concept used in emotional representa-
tion [29]. Based on the division of the x-axis into pleasure and misery in the valence–arousal
plane, we placed “Happy|Neutral” and “Angry|Disgusting” on the right and left of the
screen: “Happy|Neutral” is on the right and “Angry|Disgusting” is on the left. Based
on the division of the y-axis into arousal and sleepiness in the valence–arousal plane, we
placed “Excited|Surprised” and “Sad|Fatigued” on the top and bottom of the screen:
“Excited|Surprised” is on the top and “Sad|Fatigued” is on the bottom. The overall layout
of the emotional states is in the form of a rhombus, as shown in Figure 4. In the GUI shown
in Figure 4, each emotional state is expressed in different colors. The correlation between
basic colors and human psychological state was identified, and states that can be felt by
humans were classified according to color characteristics [30]. Based on this, appropriate
colors were used for each emotional state. The GUI design provides not only a default
GUI, as shown in Figure 4a, but also a touch GUI, as shown in Figure 4b. Therefore, when
the driver inputs the current emotional state by touching the screen, it provides visual
feedback, as shown in Figure 4c, along with the sound announcement. The UX-based
GUI of the HMI application gives the driver more accurate intuition about the proposed
representative emotional states.
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(a) (b) (c)
Figure 4. GUI of HMI application for self-reporting of driver emotional state. (a) GUI in default;
(b) GUI in touch; (c) GUI example where “Angry|Disgusting” state is touched.

4. Experiments

This section presents the details of the data collection experiment conducted on the
basis of the proposed data collection system and some case studies based on the collected
data from the experiment.

4.1. Data Collection Experiment

Motivated by the need for a dataset in real-world driving, the data collection experi-
ment with the proposed system described in Section 3 was conducted on the road. During
real-world driving, the cameras are used to capture RGB and IR modalities at the sample
rate, Rv, of 15 Hz, and audio data are collected at the sample rate, Ra, of 44,100 Hz. Biophys-
iological data are collected, as described in Section 3.3. The following CAN data signals are
collected: accelerator pedal position, brake pedal position, steering wheel angle, yaw rate,
longitudinal acceleration, and lateral acceleration. All CAN data are collected at the sample
rate, Rc, of 100 Hz. The self-reportable application collected the driver’s emotional state
in five states involving four representative emotional states mentioned in Section 3.5 and
nonresponse. The response request time interval, Ir, is set to 60 s, and then the sample rate
of self-reported emotion label, Rs, is 1

60 Hz. Because the driver is encouraged to self-report
whenever there is a change in their emotional state even without that response request,
the self-reported emotional state annotation includes information on the driver’s emotional
change for unexpected or urgent events. The rerequest time interval, Irr, and the skip
time interval, Is, are set to 10 and 20 s, respectively. All interval times have been adjusted
through several test drives in real-world driving, so that there is no safely issue. Details,
including save format and unit for all data collected through the experiment, are described
in Table 1.

To address the lack of long-term datasets, the experiment was conducted with a few
people who could participate continuously for a long period. Four males participated in
the experiment for four months from July 2021 to October 2021. The detailed information
of these participants is described in Table 2.

During these four months, a large-scale dataset was collected by the participants’
driving in wild, uncontrolled conditions. The weather conditions were divided into four
categories, and the proportions are as follows: Sunny: 20.4%, Cloudy: 40.6%, Overcast:
11.8%, Rainy: 27.3%. Because safety is considered in the proposed data collection system,
no accidents occurred during this period, and according to the data collection experiment
results, the total experiment time was 122 h 15 min, the total driving mileage was 4446 km,
the total number of self-reported emotion labels was 6356, and 787 GB data were collected.
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Table 1. Details of data collected by experiment.

Data Sample Rate (Hz) Format Unit

Video
RGB-front 15 .avi -
RGB-side 15 .avi -
IR-front 15 .avi -
IR-side 15 .avi -

Audio - 44,100 .wav -

Bio-physiological

Skin temperature 4 .csv °C
EDA 4 .csv µS
PPG 64 .csv nW
IBI - .csv s
HR 1 .csv bpm
3-axis acceleration 32 .csv 1

64 g

CAN

Accelerator pedal position 100 .csv %
Brake pedal position 100 .csv %
Steering wheel angle 100 .csv °
Yaw rate 100 .csv rad/s
Longitudinal acceleration 100 .csv m/s2

Lateral acceleration 100 .csv m/s2

Self-reported emotions Emotional state no less than 1
60 .csv -

Table 2. Detailed information of participated drivers.

Gender Age (Year) Driving Experience (Year) Experiment Time (h) Driving Mileage (km)

Driver A Male 27 more than 15 38 1375
Driver B Male 32 between 11–15 43 1449
Driver C Male 26 between 6–10 21 852
Driver D Male 28 less than 5 20 770

4.2. Case Studies

This section presents some case studies using the collected multimodal dataset for
driver emotion recognition. Section 4.2.1 discusses the detailed analysis of the dataset
collected in real-world driving. Sections 4.2.2 and 4.2.3 present case studies of driver
emotion recognition using single-modal or multimodal inputs.

4.2.1. Statistical Analysis

In this section, we discuss the detailed analysis results for the collected dataset in the
real-world driving experiment. Figure 5 depicts the self-report proportion for each driver
as a pie chart. The emotion with the highest proportion was “Happy|Neutral”. More
than 50% of the drivers’ self-reported emotion labels are “Happy|Neutral”, and they often
account for up to approximately 82%. The proportion of the other three emotions varies by
the driver, but it accounts for a small proportion compared to the “Happy|Neutral”.

(a) (b) (c) (d) (e)
Figure 5. Pie charts for self-reported emotion label proportion by driver. (a) Driver A; (b) Driver B;
(c) Driver C; (d) Driver D; (e) Legend of the pie charts.

To confirm the self-reported emotion label tendency of each emotion, the distribution
of self-reports and vehicle speed by emotion for all drivers is depicted in Figures 6 and 7.
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In Figure 6, the start and end of all individuals driving were normalized from 0 to 100 steps
and divided into 50 sections. The number of self-reported emotion labels for each section
is displayed as a histogram and kernel density estimate plot to evaluate the distribution
by emotion. “Happy|Neutral” had several distributions at the start and end of the driv-
ing, and had an even distribution throughout the driving process, as shown in Figure 6a.
Overall, “Excited|Surprised” and “Angry|Disgusting” had an irregular distribution. “Ex-
cited|Surprised” seemed to have a greater variance than “Angry|Disgusting”, as shown
in Figure 6b,c, and it is judged that “Excited|Surprised” was more maintained when the
emotion was induced than “Angry|Disgusting”. As shown in Figure 6d, the distribu-
tion of “Sad|Fatigued” emotion increases toward the middle and late stages of driving.
Figure 7 shows the number of self-reported emotion labels at that vehicle speed with a
histogram and kernel density estimate plot to evaluate the distribution of vehicle speed
by self-reported emotion labels. “Happy|Neutral” had high distributions from 0 to about
15 kph, and an even distribution throughout the driving process, as shown in Figure 7a. In
Figure 7b,c, the fact that the vehicle speed had a relatively irregular distribution compared
to “Happy|Neutral” and “Sad|Fatigued” in “Excited|Surprised” and “Angry|Disgusting”
is a common feature with the distribution of self-reported emotion labels in Figure 6. As
shown in Figure 7d, the distribution of the “Sad|Fatigued” emotion had a particularly high
distribution from 0 to about 30 kph. Based on the distribution of self-reports and vehicle
speed by emotion (especially in Figure 6a), “Happy|Neutral” was the default emotion and
the others were induced while driving.

(a) (b)

(c) (d)
Figure 6. Distribution of self-reported emotion labels in real-world driving. (a) Happy|Neutral;
(b) Excited|Surprised; (c) Angry|Disgusting; (d) Sad|Fatigued.

In addition to self-reported emotion label data, we used the statistical hypothesis test to
analyze the significance of the collected sensor data. We built the null hypothesis (H0) that
the structured data collected did not differ according to the self-reported emotion label and
confirmed the difference by the emotion of each structured data through a Kruskal–Wallis
H test [31,32]. According to the Kruskal–Wallis H test results, if the significance probability
expressed as the p-value is less than the significance level, 0.05, the null hypothesis (H0)
can be rejected and the alternative hypothesis (H1) can be accepted as true. The statistical
significance by self-reported emotion label of each data is described using the p-value and
which hypothesis was accepted as true in Table 3. If the statistical significance between
the four self-reported emotion labels is confirmed by the Kruskal–Wallis H test, it is also
necessary to confirm how many of the pairs show statistical significance through the post-
hoc test. We confirmed the statistical significance of a total of six self-reported emotion label
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pairs through the Mann–Whitney U test [33,34], a nonparametric statistical hypothesis test,
and the total number of the null hypothesis (H0) rejection pairs is also listed in Table 3. As
shown in Table 3, all collected structured data had statistically different distributions for self-
reported emotion labels, and three or more pairs out of six pairs were statistically significant.

(a) (b)

(c) (d)
Figure 7. Distribution of vehicle speed by self-reported emotion labels in real-world driving.
(a) Happy|Neutral; (b) Excited|Surprised; (c) Angry|Disgusting; (d) Sad|Fatigued.

Table 3. Statistical hypothesis test results of structured data by self-reported emotion label.

Data
Statistical Hypothesis Test Post-Hoc Test

Reject H0
Number of Reject H0 Pairs
(Total Number of Pairs is 6)

Bio-physiological

Skin temperature Yes 6
EDA Yes 5
PPG Yes 3
HR Yes 4

CAN

Accelerator pedal position Yes 5
Brake pedal position Yes 6
Steering wheel angle Yes 6
Yaw rate Yes 3
Longitudinal acceleration Yes 6
Lateral acceleration Yes 5

Although the statistical hypothesis test results can explain the significance of the
emotion recognition of the collected sensor data, another aspect that requires analysis is
whether there is a significant distribution difference according to the driver. Therefore,
the same statistical hypothesis test as above was repeated by separating the data for each
driver, and the results are shown in Table 4. EDA and steering wheel angle are the only
structured data with the same results for all drivers. Not only were the post-hoc results
different, but also the results of determining whether to reject the null hypothesis were
different for each driver. That means the collected data significantly vary from driver to
driver. This may be because each driver has a different way of expressing their emotions
while driving. Therefore, different data will be required to recognize each driver’s emotion.
In other words, emotion recognition research requires personalization.
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Table 4. Statistical hypothesis test results of structured data by self-reported emotion label according
to driver.

Data

Statistical Hypothesis Test Post-Hoc Test

Reject H0
Number of Reject H0 Pairs
(Total Number of Pairs is 6)

Driver A Driver B Driver C Driver D Driver A Driver B Driver C Driver D

Bio-physiological

Skin temperature Yes Yes Yes Yes 5 6 6 6
EDA Yes Yes Yes Yes 6 6 6 6
PPG No Yes No Yes - 1 - 3
HR Yes Yes Yes Yes 4 5 5 2

CAN

Accelerator pedal position Yes Yes Yes Yes 5 6 6 6
Brake pedal position Yes Yes Yes Yes 6 5 6 6
Steering wheel angle Yes Yes Yes Yes 6 6 6 6
Yaw rate Yes Yes Yes Yes 6 6 4 5
Longitudinal acceleration Yes Yes Yes Yes 6 5 3 6
Lateral acceleration Yes Yes Yes Yes 5 6 6 6

4.2.2. Driver Face Detection

One of the most common approaches to recognizing a driver’s emotional state is using
face images. Studies adopting this approach generally use a well-known face detector to
crop only the face image from the driver’s frontal image and use it as input data. The most
popular face detectors have proven their performance only on in-the-wild datasets such as
FDDB [35] or WIDER FACE [36]. Thus, we evaluate the performance of five popular face
detectors, Haar [37], Dlib [38], OpenCV [39], MMOD [40], and MTCNN [40], on detecting
the driver’s front image in the collected real-world driving dataset. First, the detection
results of the five detectors for the collected IR-front images were output and qualitatively
compared. Figure 8 is an example of the detection results of the five detectors. According
to the results, Haar has a high false positive rate, i.e., nonfaces are detected, and Dlib has
a high false negative rate, i.e., faces are not detected. In contrast to Haar and Dlib, other
detectors are capable of detecting the driver’s face to a similar degree.

(a) (b)

(c) (d) (e)
Figure 8. Example of the detection results of five face detectors. The bounding boxes (red) are face
detection results. (a) Haar; (b) Dlib; (c) OpenCV; (d) MMOD; (e) MTCNN.

For accurate performance comparison of the similar three face detectors, we selected
200 different images and labeled face bounding boxes. If the intersection over union (IoU)
value between the labeled bounding box and the detection bounding box is greater than
or equal to the threshold, it is considered true positive (TP); if the IoU value is less than
the threshold, it is considered false positive (FP). Figure 9 shows the precision–recall (PR)
curve drawn using the considered TP and FP. Quantitative performance comparison of face
detectors can be made with the average precision (AP) value calculated by the area under
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the PR curve. Depending on whether the threshold is 0.5, 0.75, or 0.95, AP performance is
expressed as AP50, AP75, or AP95, respectively. Refer to Table 5 for detailed comparison
results. Since the inference speed of the face detector is as important as detection accuracy,
Table 5 describes the inference speed and the GPU specifications.

(a) (b) (c)

(d) (e) (f)
Figure 9. PR curve for face detectors capable of detecting the driver’s face. The thresholds are 0.5
and 0.75. (a) OpenCV, threshold is 0.5; (b) MMOD, threshold is 0.5; (c) MTCNN, threshold is 0.5;
(d) OpenCV, threshold is 0.75; (e) MMOD, threshold is 0.75; (f) MTCNN, threshold is 0.75.

Table 5. Driver’s face detection performance comparison of face detectors.

AP50 AP75 AP95 Speed GPU

OpenCV 68.4 51.4 0.0 400 FPS Nvidia GTX 3080
MMOD 83.8 18.1 0.0 260 FPS Nvidia GTX 3080
MTCNN 81.4 72.0 0.0 4 FPS Nvidia GTX 3080

OpenCV has the fastest inference speed, but its detection performance is low. For
MMOD and MTCNN, AP50 is at a similar level, but at AP75, the detection performance
of MMOD decreases rapidly. Although the AP75 performance of MTCNN is inferior to
AP50, it is insignificant. Conversely, in the case of inference speed performance, MMOD
significantly outperforms MTCNN. Since the inference speed of MTCNN is also insufficient,
it seems appropriate to use a suitable face detector as the driver face detector depending on
the purpose or computational sources. In terms of AP95, the performance of all detectors
is 0.0. This is due to the small area occupied by the driver’s face in the driver’s front
image, and the IoU value may not exceed the threshold value of 0.95 due to differences in
determining whether only the eyes and nose are included, or including the forehead or
chin when the bounding box is labeled. Figure 10 shows an example image of the detected
and labeled driver face bounding boxes with an IoU value of 0.68, it detects the driver’s
facial expression sufficiently. In face detection for driver emotion recognition, the threshold
should not be as high as 0.5 or 0.95. Therefore, we crop the face image using the MMOD
face detector, which achieved the highest detection performance in AP50 for driver emotion
recognition, as discussed in Section 4.2.3.
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Figure 10. Example image with IoU of 0.68. Area of union (green and red) is 7441, and area of overlap
(blue) is 5040.

4.2.3. Personalized Driver Emotion Recognition

This section discusses the results of personalized driver emotion recognition utilizing
single or multimodal data. Since individual driver data are required for personalized driver
emotion recognition training, the data required to complete the training should be as small
as possible, and the performance of the trained recognition model should be preserved for
as long as possible. Therefore, the collected data are sorted in ascending order of mileage,
and the mileage for completing the collection of training data, K, is determined. The data
collected during K km driving from the initial mileage for each individual are used as
training data, and the data from thereafter to the last data are used as test data. We set the
completing mileage for the training data, K, to 500 km, and to obtain more test data than
training data, we experimented with drivers A and B, who collected data over 1000 km.

We proposed a personalized driver emotion recognition model based on deep learning
networks that recognize a driver’s emotional state using four multimodal inputs: front
and side image, biophysiological, and CAN data. The proposed model is trained and
verified using only individual data, and, as shown in Figure 11, each multimodal input
performs single-modal emotion recognition and multimodal emotion recognition through
an ensemble model. Each single-modal model and multimodal recognition model are
described as follows.

• Single-modal of front image (S f ): The single-modal recognition model of the front
image uses front IR images for 2 s from 4 s to 2 s before the driver’s self-reporting.
Because RGB images are vulnerable to changes in illuminance, IR images that can
always capture a stable image are used as input. From 2 s before self-reporting, it
shows uniform motion for self-reporting, so it is excluded from the input data. The
input images are evenly time-divided into six equal parts and input to a face detector;
the MMOD-based face detector outputs one cropped face image with the highest
confidence value for each input. The cropped images are resized to the input shape of
the feature extractor and sequentially fed into a feature extractor and a classifier based
on CAPNet [41]. Because the classification form is different from that of CAPNet,
only the number of units in the top layer of the classifier is modified to the number
of representative driver emotional states. The last activation function is softmax and
outputs the probability of each representative driver emotional state.
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• Single-modal of side image (Ss): The single-modal recognition model of the side image
uses the side IR image captured 2 s before self-reporting. The reason for using the
image from 2 s ago is the same as that for using the front image. The input image is
fed into a feature extractor based on AlphaPose [42]. The feature extractor consists
of layers up to just before outputting feature points in the form of histograms in
AlphaPose. The classifier consists of a global max pooling layer and fully connected
layers. The top layer of the classifier is the same as other classifiers to output the
probability of each representative driver emotional states.

• Single-modal of biophysiological (Sb): The single-modal recognition model of biophys-
iological data uses the PPG and EDA data for 10 s before the driver’s self-reporting.
Since PPG and EDA have different sample rates, up-sampling using linear interpola-
tion is applied to the EDA data to match the input shape. The biophysiological input
is directly fed into the classifier without a feature extractor to output the probability
of each representative driver emotional state. The classifier is composed of the fully
connected and batch normalization layers.

• Single-modal of CAN (Sc): The single-modal recognition model of CAN data uses
all collected signals for 10 s before the driver’s self-reporting. The input data are
down-sampled by a tenth before being fed into the feature extractor. The feature
extractor is an encoder of long short-term memory-based autoencoder that extracts the
feature vector for driving propensity. The classifier consists of fully connected layers
and a dropout and outputs the probability of each representative driver emotional
states by receiving the feature vector.

• Multimodal (M): The multimodal recognition model uses the input vectors of each
classifier of single-modal as input vectors. The model is a deep learning-based ensem-
ble model that outputs the probability of each representative driver emotional states by
fusing all input vectors. The feature vectors of the front image, CAN, and side image
are flattened using flatten and pooling layers. The flattened vectors are concatenated
using the concatenate layer. The concatenated vector undergoes the normalization,
fully connected layers, and softmax activation function to become the final output.
The input modalities to fuse can be chosen, and the modals are denoted by a subscript,
e.g., M f b is the ensemble model that fuses the front image and biophysiological data.
We evaluated three or more input modal combinations for multimodal models.

Figure 11. Deep learning-based personalized driver emotion recognition model.
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It is necessary to define a loss function when training the proposed models. Be-
cause the self-reported emotion label has data imbalance, as described in Section 4.2.1, high
performance cannot be expected if a typical loss function is used such as cross entropy. We
overcome the data imbalance problem by making the precision and recall differentiable by
computing the likelihood values of TP, FP, and false negative (FN) using probabilities. The
loss function we used is shown as follows:

L(y, ŷ) = 1 − 1
N
(

pTP
1

pTP
1 + pFP

1 + ε
+

N

∑
i=2

pTP
i

pTP
i + pFN

i + ε
) (1)

pTP = y ◦ ŷ (2)

pFP = (


1.
1.
1.
1.

− y) ◦ ŷ (3)

pFN = y ◦ (


1.
1.
1.
1.

− ŷ) (4)

where y and ŷ represent a one-hot vector of the self-reported emotion and predicted
emotion, respectively, where the first element of each vector represents the default emo-
tion, “Happy|Neutral”. pTP, pFP, and pFN are the likelihood values of TP, FP, and FN,
respectively, where ◦ is an element-wise product.

Equation (1) is a loss function for increasing the precision of default emotion and for
increasing the recall of induced emotions, where N represents the total number of represen-
tative emotions, and ε represents a very small value that prevents the precision or recall
values from going to infinity. This loss function, L(y, ŷ), can be used for backpropagation
by probabilistically expressing the precision and recall for each prediction class. It increases
precision for the majority class, the default emotional state, and increases recall for minority
class, inducible emotional states.

The evaluation results with test data are in terms of F1 score, precision, and recall,
and are described for each driver. As mentioned in Section 4.2.1, since the representative
driver emotional states are divided into default and inducible emotions, the recognition
performance of inducible emotions is evaluated first. Tables 6 and 7 summarize the per-
formance of inducible emotion recognition between default and inducible emotions for
each driver. The highest recognition performance is the F1 score 0.698 of Ss for Driver A
and 0.667 of Msbc for Driver B. As expected in Section 4.2.1, the input modals with the best
performance for each driver differed. Driver A achieved the best performance in a single
front image, and Driver B achieved the best in a side image, biophysiological, CAN data
combination. However, their performance was similar. Driver B had similar performance
between all evaluated models from 0.562 to 0.667. For Driver A, models without CAN data
had a similar performance from 0.613 to 0.696, but models with CAN data such as Sc, M f sc,
M f bc, Msbc, and M f sbc had a significantly lower performance from 0.228 to 0.469. Driver
B can interpret that when inducible emotions are induced while driving, emotions are ex-
pressed overall in the front and side images and biophysiological, and CAN data, whereas
driver A can interpret that the induction of emotion is not expressed in CAN data. These
results may support the fact that driver emotion recognition necessitates personalization.
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Table 6. Performance of inducible emotion recognition of Driver A.

S f Ss Sb Sc M f sb M f sc M f bc Msbc M f sbc

F1 0.696 0.698 0.619 0.355 0.613 0.430 0.469 0.469 0.228
Precision 0.541 0.537 0.478 0.248 0.446 0.280 0.311 0.314 0.231

Recall 0.975 0.998 0.879 0.630 0.982 0.923 0.950 0.927 0.225

Table 7. Performance of inducible emotion recognition of Driver B.

S f Ss Sb Sc M f sb M f sc M f bc Msbc M f sbc

F1 0.584 0.613 0.593 0.536 0.562 0.646 0.661 0.667 0.615
Precision 0.419 0.442 0.475 0.492 0.420 0.539 0.522 0.500 0.468

Recall 0.963 1.000 0.790 0.589 0.852 0.805 0.900 1.000 0.900

The performance of driver emotion recognition among the inducible emotions for each
driver is also summarized. The recognition performance for each of the three inducible
emotions and the average of three F1 scores are described in Tables 8 and 9. Compar-
ing the recognition performance using the F1 scores of each emotion and average value,
none of the input models with the best performance matched among the drivers. The
common results, regardless of the driver, were that “Sad|Fatigued” emotion had the best
recognition performance and “Angry|Disgusting” emotion had the worst recognition
performance. “Sad|Fatigued” emotion recognition performance was 0.835 and 0.859 and
“Excited|Surprised” emotion recognition performance was 0.653 and 0.583 for Drivers
A and B, respectively. Both of which are similar performances. However, in the case
of “Angry|Disgusting” emotion, recognition performance differed, 0.571 and 0.373 for
each driver. Notably, there was very little performance difference between all evaluated
models. The difference between the highest and lowest average F1 score was 0.163 and
0.061 for Drivers A and B, respectively. This can be a fail-safe method of the driver emotion
recognition model, and each input modal will ensure each other’s redundancy.

Table 8. Performance of driver emotion recognition among inducible emotions of Driver A.

S f Ss Sb Sc M f sb M f sc M f bc Msbc M f sbc

Average F1 0.496 0.444 0.447 0.561 0.456 0.500 0.607 0.557 0.483

Excited
|

Surprised

F1 0.359 0.301 0.362 0.653 0.344 0.487 0.444 0.465 0.417
Precision 0.591 1.000 0.563 0.593 1.000 0.950 0.800 0.909 1.000

Recall 0.258 0.177 0.267 0.727 0.208 0.328 0.308 0.313 0.263

Angry
|

Disgusting

F1 0.293 0.196 0.147 0.263 0.216 0.280 0.571 0.400 0.200
Precision 0.579 1.000 1.000 0.500 1.000 0.875 0.667 1.000 0.667

Recall 0.196 0.109 0.080 0.179 0.121 0.167 0.500 0.250 0.118

Sad
|

Fatigued

F1 0.835 0.833 0.830 0.768 0.808 0.733 0.807 0.806 0.831
Precision 1.000 1.000 1.000 0.977 0.995 1.000 0.926 1.000 1.000

Recall 0.717 0.714 0.710 0.632 0.680 0.578 0.714 0.675 0.711
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Table 9. Performance of driver emotion recognition among inducible emotions of Driver B.

S f Ss Sb Sc M f sb M f sc M f bc Msbc M f sbc

Average F1 0.488 0.472 0.481 0.450 0.491 0.468 0.491 0.501 0.511

Excited
|

Surprised

F1 0.450 0.403 0.333 0.286 0.511 0.417 0.537 0.511 0.583
Precision 0.636 1.000 0.452 1.000 1.000 1.000 0.846 0.923 0.539

Recall 0.348 0.252 0.264 0.167 0.344 0.263 0.393 0.353 0.636

Angry
|

Disgusting

F1 0.270 0.270 0.373 0.204 0.321 0.194 0.227 0.273 0.233
Precision 1.000 1.000 0.452 1.000 0.907 0.429 1.000 1.000 1.000

Recall 0.156 0.156 0.264 0.114 0.195 0.125 0.128 0.158 0.132

Sad
|

Fatigued

F1 0.744 0.743 0.736 0.859 0.641 0.794 0.710 0.719 0.717
Precision 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.958 0.864

Recall 0.593 0.592 0.582 0.753 0.472 0.658 0.550 0.575 0.613

5. Conclusions

Although real-world datasets for driver emotion recognition are diverse, to overcome
the limitation of the lack of consistency in collected data, we proposed a data collection
system capable of collecting multimodal datasets during real-world driving. The proposed
system was installed in a vehicle and collected the following multimodal data while driving
on the real road: videos captured from two viewpoints, audio inside the cabin, driver’s
biophysiological data, and vehicle sensor signals via CAN. We designed a self-reportable
HMI application to annotate driver emotional states, used as labels for driver emotion
recognition. This application allows the driver to select the emotion most similar to their
current emotional state among representative emotions. Thus, emotion labels are collected
as self-reported emotion labels and no longer inferred by others. In addition, continuous
and repeated report requests were made over a long-term period, making the driver’s
bias not be reflected in the self-reported emotion label. Since safety is the most important
factor in real-world driving, we focused on minimizing drivers’ behavioral and cognitive
disturbances in all processes, including sensor selection, flow, and GUI design while
designing the data collection system.

According to the results of the data collection experiment in real-world driving, more
than 122 h, 4446 km of driving, and 787 GB of data were collected without any accidents.
Through statistical analysis of the collected data, the imbalance and report characteristics
of self-reported emotion labels were identified, and default and inducible emotions were
distinguished. Based on the statistical hypothesis test, the null hypothesis (H0) that there
is no difference according to the self-reported emotion label for all collected structured
data was rejected. The significance of the difference for each driver differed, suggesting
the need for personalization of driver emotion recognition. We compared the state-of-
the-art face detectors using the collected front images and presented the most suitable
face detector and performance evaluation metric for driver face detection. Finally, we
conducted a personalized driver emotion recognition study using the collected images and
biophysiological and CAN data. The evaluation results of single-modal and multimodal
using the above data suggested that multimodal data and personalization are necessary for
driver emotion recognition.

Although several case studies were conducted by collecting a large-scale dataset
using the proposed system design, enabling safe data collection in real-world driving,
the dataset was collected by few drivers over a long period. Because the number of drivers
is insufficient to generalize the case studies, these may be treated as particular cases. Based
on further collected data, we will continue to study the generalization performance of
multimodal personalized driver emotion recognition.
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The following abbreviations are used in this manuscript:

CAN Controller area network
HMI Human–machine interaction
GUI Graphical user interface
UX User experience
SAM Self-assessment manikin
RGB Red green blue
IR Infrared
E4 E4 wristband
EDA Electrodermal activity
PPG Photoplethysmography
IBI Interbeat interval
HR Heart rate
OBD On-board diagnostics
IoU Intersection over union
TP True positive
FP False positive
PR Presicion–recall
AP Average precision
FN False negative



Sensors 2022, 22, 4402 20 of 21

Appendix A

The part describes terminologies and variables used in the main text. Table A1 contains
details of terminologies and variables.

Table A1. Deficition of terminologies and variables used on the main text.

Expression Definition Unit

Rv Sample rate of the video data Hz
Ra Sample rate of the audio data Hz
Rs Sample rate of the self-reporting Hz
Rc Sample rate of the CAN data Hz
Ir Request time interval of HMI application s
Irr Re-request time interval of HMI application s
Is Skip time interval of HMI application s
K Mileage for completing the train data collection km
H0 Null hypothesis of the statistical hypothesis test -
H1 Alternative hypothesis of the statistical hypothesis test -
S f Single-modal recognition model of the front image -
Ss Single-modal recognition model of the side image -
Sb Single-modal recognition model of the bio-phyological -
Sc Single-modal recognition model of the CAN -
M Multimodal recognition model -
N Total number of representative emotions -
s Second -

bpm Beats per minute -
g Gravitationnal acceleration m/s2

FPS Frame per second -
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