
Citation: Karmakov, S.; Aliabadi,

M.H.F. Deep Learning Approach to

Impact Classification in Sensorized

Panels Using Self-Attention. Sensors

2022, 22, 4370. https://doi.org/

10.3390/s22124370

Academic Editors: GuiYun Tian and

Simon Laflamme

Received: 24 March 2022

Accepted: 1 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Learning Approach to Impact Classification in Sensorized
Panels Using Self-Attention
Stefan Karmakov and M. H. Ferri Aliabadi *

Department of Aeronautics, Imperial College London, Exhibition Road, South Kensington,
London SW7 2AZ, UK; karmakovst@gmail.com
* Correspondence: m.h.aliabadi@imperial.ac.uk

Abstract: This paper proposes a new method of impact classification for a Structural Health Monitor-
ing system through the use of Self-Attention, the central building block of the Transformer neural
network. As a topical and highly promising neural network architecture, the Transformer has the
potential to greatly improve the speed and robustness of impact detection. This paper investigates the
suitability of this new network, confronting the advantages and disadvantages offered by the Trans-
former and a well-known and established neural network for impact detection, the Convolutional
Neural Network (CNN). The comparison is undertaken on performance, scalability, and computa-
tional time. The inputs to the networks were created using a data transformation technique, which
transforms the raw time series data collected from the network of piezoelectric sensors, installed on
a composite panel, through the use of Fourier Transform. It is demonstrated that the Transformer
method reduces the computational complexity of the impact detection significantly, while achieving
excellent prediction results.

Keywords: structural health monitoring; impact classification; passive sensing; composite materials;
deep learning; transformer; convolutional neural network

1. Introduction

Composite materials have gained popularity for numerous engineering application in
the past two decades. Their outstanding properties, such as high specific strength, resistance
to fatigue damage, and corrosion resistance, make them particularly attractive for the
aerospace industry [1,2]. Yet small defects and damages can significantly deteriorate these
superior mechanical properties. Defects such as delamination, matrix cracking, and fibre
fracture are common in composites and can cause catastrophic failure of the components
if not addressed [3]. Impact by a foreign object is a common way for the creation of such
defects in composites [4]. From runway debris and tyre shrapnel, to hail or bird strikes,
to dropped tools during maintenance, there are numerous occasions during the lifetime of
an aircraft component when it can experience impact damage. Many of the defects due
to impact are very hard to detect, as they tend to occur sub-ply, or are barely visible [5].
Non-destructive techniques (NDT), such as C-Scan Ultrasonic inspection or Radiography
need to be used during ground check-up; such maintenance is time consuming and requires
skilled operators and expensive apparatuses [6]. NDT is also prone to human error and
inconsistencies. A more robust, faster, and cheaper method is required to allow for the
detection of damage in composite components.

Structural Health Monitoring (SHM) has gained popularity, as it allows for the contin-
uous monitoring of structures through the use of sensors. SHM gives insights about the
overall state and behaviour of the structure, but more importantly about hard-to-access,
or sub-surface regions [7]. Through the implementation of sensors inside composite lay-ups,
knowledge can be gained on the degree of severity that an impact has had on the integrity
of the composite part [4]. Such an implementation would be cheaper in terms of human
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labour, time, and maintenance costs, and will increase the robustness of localization and
assessment of the severity of the damage.

During a single flight, all these embedded sensors would be constantly recording,
gathering a large set of data. Normal data analysis and numerical method techniques
would be infeasible; it would take too much computational power and fine-tuning to
analyse all the signals. This calls for the use of deep learning networks [8]. In the past two
decades, the field of neural networks has experienced an unprecedented popularity and
growth, with numerous architectures being suggested, each specializing in different tasks.
Through the use of pre-training, deep learning algorithm can learn patterns in data and
use this knowledge to classify new sets of data. Deep learning networks excel at analysing
large amounts of data with numerous parameters, as is the case with damage detection
and severity estimation [8]. Our paper focuses on applying a Transformer, a contemporary
and very promising neural network, to the problem of damage detection. To assess the
suitability of the Transformer for this new context, a Convolutional Neural Network (CNN),
a well known and widely used neural network for the task of damage detection, is built in
parallel and used for validation.

2. Deep Learning for SHM

SHM is the act of detecting and interpreting changes in a structure through the use
of sensors [9]. The goal of SHM is to improve the reliability of a structure, as well as
extract information on how to improve the performance and reduce life-cycle costs [10].
SHM sensing techniques can be divided into two general categories, passive and active [4].
For passive sensing, the transducers attached to the structure only act as sensors, detecting
and recording the response of the structure. The excitation to the system comes from an
external source. The collected data allows for damage localization and characterization.
For active sensing, the transducers attached to the structure act both as sensors, as well as
the actuators that excite the system. This method provides more information about the
system, yet it also makes the analysis more complex. The experimental data for this paper
has been collected from a passive sensing technique [11]. As the purpose of the study is
to improve the classification of impact energy levels from a foreign object on an aircraft
composite structure, passive sensing is a more suitable option.

The impact of an object on a thin composite plate creates dynamic stress waves, known
as Lamb waves, that propagate through the plate [12]. Lamb waves were discovered by
Horace Lamb in 1917 [13], yet Worlton used Lamb waves for damage detection for the
first time [14]. Rose summarized the potential of ultrasonic guided wave detection and
Lamb wave for detecting damages [15]. These waves are a superposition of longitudinal
and shear modes and can have symmetric or anti-symmetric modes [16]. Lamb waves can
travel large distances in composites, despite composites having high attenuation ratios.
They also propagate through the entire thickness of the plates, allowing for the detection
of both surface and internal damages [17]. These properties make Lamb waves attractive
for impact detection in plates. The waves can be captured using piezoelectric sensors
(PZT sensors) mounted on the plates and information can be extracted from the voltage
output [17]. Lamb wave propagation characteristics depend on the entry angle/direction,
the excitation and the geometry of the plate. Lamb waves’ dependence on numerous
variables, as well as their dispersive nature, make their propagation very complicated in
anisotropic materials [17]. Clustering sensors very close reduces the complexity, but this
method is not very practical. A solution widely practised in the SHM field is the use of
Artificial Intelligence (AI) algorithms to extract damage information from the data [9].

AI has found application in a range of engineering disciplines, with machine learning
and deep learning algorithms being used to analyse large and complex amounts of data.
For impact and damage detection and localization, different algorithms and architectures
have been proposed. Jia et al. used Artificial Neural Network (ANN) for fault diagnostics
for rotating machinery [18]. Seno, Khodaei, and Aliabadi used ANN for impact localization,
using passive sensing in composite panels [11,19]. Seno and Aliabadi also proposed a novel
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gradient method for impact force estimation [20], and a novel stochastic Kriging-based
method for impact location and force estimation [21] for composite panels. Lin, Nie, and Ma
used a deep CNN for automatic feature extraction from low-level sensor data, and achieved
excellent structural damage localization, even with noisy data [22]. Saxena and Saad used
a genetic algorithm for feature set selection, along with an ANN for monitoring of rotating
mechanical systems [23]. Selva et al. used a Probabalistic Neural Network to locate in-plane
damage in carbon fibre reinforced plates [24]. Abdeljaber proposed a 1-dimensional CNN
for real-time vibration-based damage detection and localization for SHM [25]. Oliveira,
Monteiro, and Filho developed a CNN for damage detection [26], achieving high accuracy.
Guo et al. [27] used a CNN with multi-scale and residual learning modules for the task of
damage detection for noisy and incomplete data. ANNs and CNNs have been widely used
for a number of SHM applications, and due to their excellent performance, have dominated
the field; little research has been undertaken into introducing novel architectures. This
paper’s aim is to explore the Transformer as an alternative approach for SHM, inspired
by its success in NLP applications. To the authors’ knowledge, the suitability of this
architecture for SHM applications has not been investigated.

Transformer Model

The Transformer is a type of network architecture based on the idea of a Recurrent
Neural Network (RNN), but uses the Attention technique to focus on particular parts of
the data [28]. Though new, the Transformer has quickly become the dominant model in the
fields of Natural Language Processing and Machine Translation [29–31]. Recent work has
also utilized the network’s potential for the field of computer vision [32]. This section gives
a brief description to the Transformer architecture [28].

A standard RNN model is able to store information about past input data, called
sequential memory. This memory of previous features helps it estimate what the current
and future features will look like, making the network ideal for cases where the data is
sequential, and previous events/data have an effect on future ones [33]. This sequential
memory does not extend far back into the past, which is a shortcoming when longer times
series are used. This problem was addressed by a new network architecture, the Long
Short-Term Memory (LSTM) network [34]. It uses four distinct gates: forget, store, update,
and output, which allow it to store important data and forget irrelevant one for very large
sequences [35]. The Transformer uses Attention, a technique that enables the network to
focus on features of the data that are more relevant to the given task, and disregards parts
of the data that add less insights. Each sequence of the data is fed into the Transformer
altogether, effectively in parallel, rather than split and fed sequentially in parts, as would
be performed for RNN and LSTM. In the common example, where a Transformer would
be applied for NLP, a sentence (the input) would be fed to the model altogether, not split
and fed as single words. Being presented with the whole sequence allows the Transformer
to apply Attention and weigh the importance of each word. The network is thus able to
look back into the sequence much further than the LSTM, allowing it to extract global
dependencies. Such input parallelization also decreases the network training time.

The Transformer is an encoder–decoder model. The encoder and decoder layer ar-
chitectures are very similar, with the decoder layer having an additional sub-layer. It
possesses a masking sub-layer, which stops it from accessing the sequence data after a
particular marker. This is a crucial component for text generation and translation, yet the
problem of the paper is a classification one, thus the decoder layer was not used. The en-
coder’s building blocks are briefly explained below, as proposed in the original Transformer
paper [28]:

• Embedding: Before the input vector is fed into the network, it is embedded. This is
useful in text applications, where the inputs are whole numbers that correspond to
the key values for words in a dictionary/vocabulary. The Embedding replaces each
word/key value with a unique dense vector, through the use of unsupervised learning,
or look-up tables. Similar words are mapped to similar dense vectors. The sequence
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of S number of words is converted into a matrix, where each row is a dense vector
(embedding) of length demb, representing a word. Encoding the inputs this way allows
for a more consistent backpropagation during network learning.

• Positional Encoding: The positional encoding creates vectors of the positions of each
word in the input sequence, via sine and cosine functions. After the positional vector
is created, it is added to the word embedding. This ensures that the Transformer not
only has information about the word, but also its position in the sequence, which
allows for parallelization. The input matrix, containing embeddings with positional
encoding, is fed to the first encoder.

• Self-Attention: The heart of the Transformer model, the Self-Attention sub-layer,
weighs the relationships between each embedding in the input sequence and all other
embeddings in that sequence. It selectively focuses the attention of the Transformer
towards the embeddings that have the highest effect on the model performance.
In order to do so, the input matrix is passed through three linear transformations,
to produce three different matrices:

Q = XWQ, K = XWK, V = XWV (1)

where Q, K and V are the query, key, and value matrices of column dimensions dq, dk,
and dv, respectively, and X ∈ RS×demb is the input matrix. The transformation matrices,
WQ, WK ∈ Rdemb×dk and WV ∈ Rdemb×dv , are the learnable parameters for this part of
the layer and are updated during backpropagation. The scaled dot-product attention
is then calculated using the equation:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2)

where Attention is a matrix of size S× dv, describing the relations between embed-
dings. As the queries, keys and values are calculated from the same input( the previous
layer) the Attention is called Self-Attention.

• Multi-Headed Attention: Passing the data through one Self-Attention sub-layer will
extract some data dependencies. In order to boost performance and capture a larger
number of relations from a sequence, N number of Self-Attention sub-layers (heads)
can be stacked in parallel to create a Multi-Headed Attention sub-layer. Q, K and
V matrices are created for each head independently, using learned linear projection
weight matrices. The column dimensions of the query, key, and value for each head
are taken to be the same, equal to dN = demb/N. This creates different subspace
representations of the query, key, and value for each Attention head, which then are
fed into the scaled dot-product attention:

Headi = Attention(XWQ
i , XWK

i , XWV
i ) (3)

where i denotes the head number, WQ
i , WK

i , WV
i ∈ Rdemb×dN are the projection weight

matrices for the i-th head, and Headi is the attention matrix of the i-th head [36].
The separate query, key and value representations allow each head to derive differ-
ent information from the same input data. At the output of all the parallel heads,
the calculated attention matrices are concatenated, to form a matrix with the dimen-
sions of the input matrix, S × NdN . This new matrix is multiplied by a matrix of
weights WO ∈ Rdemb×demb . This extracts global relations from the sequence data. It also
gives one more weight matrix for the network to optimize and improve performance.
Deeper analysis into Self and Multi-Headed Attention can be found in [37,38].

• Feed-Forward Network: The feed-forward network (FFN) sub-layer extracts features
from the Multi-Headed Attention output with the intention of further summarizing
the encoding process, thus its input dimension is demb. The output of the FFN is fed
into the next encoder layer. This limits the last layer of the network to be equal to demb
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in order for the output dimensions to be the same as the input. This ensures the next
encoder layer will be able to read and manipulate the output from the previous one.
In the original Transformer architecture, a two-layer network, with a ReLU activation,
is used [28].

• Add and Norm: This operation consists of first applying a residual skip connec-
tion [39] around each of the encoder sub-layers, namely adding the input of the
sub-layer to its output. This is followed by a layer normalization operation [40].
The Add and Norm is applied after the Multi-Headed Attention and the Feed-forward
network sub-layers.

3. Research Methodology
3.1. Experimental Data

The data used to train and validate the network was taken from Seno, Khodaei, and
Aliabadi’s work on the paper [11] on passive sensing for damage detection on composite
plates. A flat composite plate, with dimensions 200 mm by 290 mm, and made of two
quasi-isotropic ([0/+45/−45/90/0/+45/−45/90]s layup) carbon fibre (M21 T800s) layers
was subject to impact by a 20 mm round ball placed on a rail guider. Eight PZT sensors
were bonded to the impact side of the plate, on the bottom side a silicone heating mat and
a temperature sensor were placed, and the plate’s long edges were clamped, as shown in
Figure 1. With this set-up, the control variables/parameters were: impactor material, drop
height, impactor mass, temperature, and angle. A total of 35 locations, distributed in a grid
pattern, were tested, as shown in Figure 2. The test at each location was repeated 4 times for
consistency, and an aggregate of 11 different configurations of impact condition were tested,
amounting to a total of 1540 tests, further described in the table in Figure 2. Two materials,
steel and silicone, were used for the impactor, with the impact angle being set to 90 or
45 degrees. All steel impactor tests are 1260, out of which 280 are from 45 degree impacts.

(a) (b) (c)
Figure 1. Experimental set-up of the apparatus for data collection showing (a): the flat composite
plate, with the attached sensors, (b): rail guided impactor at 90◦, and (c): rail guided impactor at 45◦.
The figure is a modified version of Figure 1 in [11].

The paper’s aim is to be able to accurately classify impact energy, given knowledge of
the Lamb waves induced in the impacted plate. The Lamb waves were detected and
collected through the use of the mounted sensors. Knowledge of the impact energy
gives an understanding of the severity of the impact; a severe impact is associated with
composite damage, such as delamination and fibre cracking. The classification of impacts
was performed on the basis of the potential energy of the impactor, using the formula
Ep = mgh, where m and h are the impactor mass and drop height, while temperature
was a control variable during the collection of the impactor data [11], it is not used for
the analyses, as it does not affect the potential energy. The impactor potential energy was
chosen, as it is a simple measurement, through which the impact tests can be easily and
very distinctly divided into three classes:
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• Safe: drop height-50 cm, mass-100 g/drop height-52 cm, mass-100 g;
• Warning: drop height-100 cm, mass-100 g/drop height-50 cm, mass-200 g/drop height-

105 cm, mass-100 g;
• Danger: drop height-100 cm, mass-200 g.

Material Parameters/Configuration

Steel h = 50, m = 100, T = 25, A = 90
Steel h = 50, m = 100, T = 25, A = 45
Steel h = 50, m = 100, T = 70, A = 90
Steel h = 50, m = 100, T = 70, A = 90
Steel h = 50, m = 200, T = 25, A = 90
Steel h = 100, m = 100, T = 25, A = 90
Steel h = 100, m = 100, T = 25, A = 45
Steel h = 100, m = 100, T = 70, A = 90
Steel h = 100, m = 200, T = 25, A = 90

Silicone h = 52, m = 100, T = 25, A = 90
Silicone h = 105, m = 100, T = 25, A = 90

Figure 2. Layout of the plate tests with the sensor and impact locations. The figure is a modified ver-
sion of Figure 2 in [11]. The table gives information about the configurations for the performed tests.

3.2. Data Transformation

The control variables during the data collection were material type, impactor height
and mass, temperature, and angle of contact. In order to teach a robust neural network,
the network should be fed information with a distribution that encompasses all tested
changes to the variables. This would create a bigger variance in the parameters, making it
harder for the network to reach convergence and output accurate results. Yet overall the
network would have seen data with a larger distribution, allowing it to generalize better.

The only exception to this strategy is the impactor material variable. The largest
difference in signal structure is between silicone and steel impacts. The signals from the
silicone impactors are not as sharp, with smaller amplitudes and lower frequencies, greatly
differing from the steel impactor signals, see Figure 3. Upon impact, the softer silicone
impactor would deform more, absorbing more of the impact energy. The contact area
would also increase, leading to a more gradual energy transfer to the plate. This would
result in the recorded Lamb waves being with a smaller amplitude and with a larger period
components. It was decided that including both steel and silicone data would confuse
the networks because of these discrepancies. The data transformation steps taken were
performed on both the silicone and the steel data, yet only the steel data, being larger, was
fed to the network. The silicone data was left for scalability testing.

For each conducted impact test, only the transient voltage signal data was kept.
A problem that was addressed was the too large signal size, namely 75,000 data points for
each sensor, for each test. Feeding such large sets of data to a neural network can lead to
problems. The Transformer might not properly distinguish the important features in the
signals, if the signals are long, yet the data set is not sufficiently large. Additionally, it might
take the network an impractically long time to process the large data. The chosen solution
is to transform the time series to the frequency domain, using a Fast Fourier Transform,
as shown in Figure 4. It is worth noting that a recent paper by James Lee-Thorp et al. [41]
uses Fourier Transforms in place of the self-attention sub-layers to speed up the network
training time. Unlike this approach, we apply the Fourier Transform to the data before it is
fed into the network, which is a novel approach to the knowledge of the authors. The single-
sided FFT spectrum was taken. The amplitudes of each of the frequency components was
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calculated as the magnitude of the complex numbers in the spectrum. A cut-off frequency
is decided based on preserving the frequencies with the highest amplitudes, thus highest
contributions to the signal’s form. This cut-off frequency is a hyperparameter, which is
tuned based on balancing information preservation and size reduction. The frequency of
4027 Hz was taken for this set of data; it was decided that losing the frequencies higher than
this will have an insignificant effect on the carried information. This significantly reduces
the dimensions of the data, as the data shrinks from 75,000 data points in the time domain
to a length of 152 data points in the frequency domain, equal to the retained frequency
bin values.

Figure 3. Sensor signal recording for a steel and silicone impactor. All parameters between the
two impacts are kept the same, only the impactor material was changed.

The original voltage signals contain high frequency noise from the apparatuses, which
was thought could cause distortions in the FFT spectrum. To test this assumption, the volt-
age signals were first filtered with a moving average filter and after with a Savitzky–Golay
filter. The signals were then transformed through the FFT. The spectrum with and without
the filtering was almost identical, with meaningful deviations being visible at frequencies
higher than the cut off frequency chosen. It was decided that filtering the signals for the
high frequency apparatus noise, before applying the FFT, would result in insignificant
improvements, thus was skipped.

Figure 4. Transformation of the time series signal into a frequency domain using a Fast Fourier
Transform. The red line marks the high end of the passband frequency range, with 0 Hz being
the low end.

The Transformer model is designed to take in a matrix, where each row is a one-
dimensional vector of numbers, representing a word. The embedding process is responsible
for converting the word key values to the more Transformer-readable dense vectors. For this
study, the data origin is not text, but voltage signals, thus it is proposed that the embedding
layer, along with the positional encoding, be skipped altogether and the input be fed directly
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into the encoder. The encoder requires a matrix input where each row is a dense vector
and the number of rows corresponds to the size of the initial input. Now that each input is
not transformed through embedding and positional encoding, an artificial equivalent is
proposed. A 152 × 8 matrix is constructed for each test, where each column corresponds to
the amplitudes from the frequency domain for each of the 8 sensors. The sequence length S
is 152 and the embedding dimension demb is 8, where each dense vector (1 × 8), contains
frequency amplitudes for each of the 8 sensors. With this configuration, the frequency
domain of all the columns(sensor data) is the same. Thus, the data contains positional
encoding inherently, as all the rows are arranged in an ascending frequency order.

4. Network Results and Performance
4.1. Impact Classification

This section introduces the results obtained from the trained Transformer model on
impact energy classification. Following, the results are presented in conjunction with
explanations about what in the results motivated the further analysis and manipulation of
the data. A comparison is drawn with the results obtained from a CNN trained with the
same data, with the intention of rating the performance of the Transformer. The metrics
used to evaluate the models’ accuracy are F1 score and confusion matrices. A summarizing
table of the two models’ performance is presented in Appendix B, Table A1.

4.1.1. Transformer

No guidelines were found on Transformer architectures for non-text or image classi-
fication uses; a series of fine-tuning iterations were required to reach an architecture. It
was decided that the standard structure of the encoder would be used, but including the
aforementioned changes of removing the embedding. The architecture explained below
and presented in Figure 5 is the one that yielded the best and smoothest results. A single
encoder layer produced the most accurate predictions. The input matrix (152 × 8) is fed
into the encoder layer, in which the first sub-layer is a multi-headed attention. Best results
were achieved with four heads. For each head, the query, key, and value matrices were
set to demb/N = 2. For the linear transformations applied in the Multi-Headed Attention
sub-layer, biases were added to the calculations of the query and value matrices, as well
as for the calculation of the multi-headed attention, using the WO matrix. As an example,
for a single attention head, the query is then computed by Qi = XWQ

i + JS,1bQ
i , where

JS,1 is a vector of ones and bQ
i ∈ RdN is the added bias for the i-th head, as noted in [36].

The same logic was applied to the other two linear transformations, while bias is not
present in the Transformer paper [28], it improved the performance of the model used in
this paper. The Feed-Forward network consists of two dense layers, each with eight nodes.
A flattening layer converts the encoder output matrix into a vector, that is fed into the next
dense layer. This final dense layer, outside the encoder layer, has 30 neurons that feed into
the output with 3 neurons, which uses a Softmax activation. Each dense layer uses Leaky
ReLU activations. Dropout layers [42] after each of the dense layers were also added; the
dropout rate was kept low, 0.05, yet it helped the model converge quicker.

The overall tests performed with steel impactors is 1260. The tests were split into
training and testing data, in a random fashion. The training set was taken to be 85% of
the overall data, and the network trained on 1071 examples. The other 189 samples were
reserved for testing. The proportions of Sa f e, Warning and Danger impacts were kept the
same between the training and testing data. The Transformer model was also evaluated
against the silicone impactor data. For this evaluation, the testing data comprised only
of silicone impacts, a total of 280, without any steel impactor data in the testing. The F1
scores are 1 and 0.333 (see Appendix A, Figure A1). The F1 score of 1 demonstrates the
perfect performance of the model, showing no misclassifications for the steel test data.
The Attention technique has allowed the model to analyse the whole input and judge
which parameters are most important, extracting a very accurate understanding of the data
distribution. Albeit, the model was not able to distinguish between the impact energies
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for the silicone test data. The model was trained with both the training and testing data,
with the intention of giving the model more data and increasing accuracy with the silicone
classification. The silicone impact classification did not improve. This result is again
attributed to the very different signal characteristics that the silicone impactors induced in
the plates.

Figure 5. Architecture of the Transformer model.

In order to assess the dependency of the Transformer to training data size, models
were trained with different training data sizes, ranging from 10% to 80% of the overall
available steel impactor data. For the tests, all the variables and parameters were kept the
same, only the sizes of the training and testing data were changed accordingly. For each
test, the F1 scores were calculated; the scores indicated that the predictive capabilities of the
models start dropping fast with the decrease in training data samples. It was decided that
the lower limit for accepting the model’s accuracy as exceptional be 0.99 F1 score. The 30%
training data model was taken as the last instance of the Transformer achieving such high
results, with 6 misclassifications out of 882 tests. To further examine the model’s accuracy
below this 30% threshold and the misclassification variability in terms of location, the data
from less accurate models, 20% and 10% training data, is taken, see Figure 6.

(a) (b)

Figure 6. Locations of the misclassified impacts from the testing data for (a): 20% training data model,
with 66/1008 misclassifications, and (b): 10% training data model, with 286/1134 misclassifications.
The legends give information of the markers used, and the numbers next to the markers indicate the
number of misclassifications on that location.
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The grids are a representation of the grid for the impact locations in Figure 2. Each
of the grid points corresponds to one of the impact locations L1–L35. The location data
extracted from the less accurate models, along with the data from the best performing Trans-
former model, do not show a strong dependency on misclassification locations. The model
obtains impacts wrong on a more random basis. This indicates that the Transformer model
has not extracted features in a way that has developed a dependency on impact position.
The model is therefore more robust, as the classification is uncorrelated with the position of
the impact.

4.1.2. CNN

The CNN is widely used for SHM and damage detection and classification. A range of
papers exist that improve the CNN architecture and add to its performance. A 2-dimensional
CNN model is build for this study with the intention of using its performance as a bench-
mark for the accuracy that a deep learning model can achieve with the available data.

The data introduced to the network was kept the same as the one that was given to
the Transformer model, namely the training data was taken to be 85% of the overall data,
with the rest going to testing. The inputs were also kept consistent with the Transformer
ones. Each test data was of the form 152 × 8 matrix for the Transformer, after the data
transformation. For the CNN, the inputs were kept such, with the values being scaled
between 0 and 1. The data points were scaled based on the maximum frequency amplitude
value in the data set. This ensures that all inputs retain their shapes, relative one to
another. This is crucial for the performance of the model, as it is able to learn not only on
the shapes of the frequency spectra, but also on the relative energies each frequency bin
carries. The CNN architecture that yielded the most accurate results for the steel data set is
presented below in Figure 7. The number of kernels in the first and second Convolutional
layers is 16 and 32, respectively, each with kernel size 3. Each of the two Convolutional
layers is followed by a Max Pooling layer. A 32 neuron Dense layer follows, after which
there is a dropout layer, of rate 0.1, to help with overfitting issues, and the output layer
is again a Dense layer, with 3 neurons, as the number of classes is 3. All the activation
functions used are Leaky ReLU, and the output normalization function is Softmax. Keeping
consistency with the Transformer training, the trained CNN model was evaluated against
the testing data (set aside from the steel impactor data), and the data from the silicone
impactor tests. The F1 scores for the predicted data were 1 and 0.333 for steel and silicone,
respectively, (see Appendix A, Figure A1).

Figure 7. Architecture of the CNN framework used.
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The network’s threshold of training data, before which it’s still very accurate, was
investigated as well. The same CNN architecture was run with different training data
sizes, ranging from 10% to 80% of the overall steel impactor data available, in steps of
10%. For consistency, all parameters, apart from the data splitting, were kept the same
as the original test. The CNN was able to achieve perfect F1 scores with as little as 30%,
378 samples, of the available steel impactor data, while the performance decreased below
this mark, the F1 scores were still high, around 0.8–0.95. A further investigation into
what inputs the modes predicted wrong for the 20–10% interval was conducted, shown
in Figure 8.

(a) (b)

Figure 8. Locations of the misclassified impacts from the testing data for (a): 20% training data model,
with 55/1008 misclassifications, and (b): 10% training data model, with 151/1134 misclassifications.
The legends give information of the markers used, and the numbers next to the markers indicate the
number of misclassifications on that location.

The small training set allows for the testing set to be large. Thus, the information
extracted from the testing data, such as the misclassified positions, has higher accuracy.
A slight dependence towards the model misclassifying impacts around the edges of the
sensor grid can be observed on both tests. This can be explained as being due to the lack
of data to create robust feature extraction. For impacts near the edges, the Lamb waves
would be well detected by the nearest sensors, but would greatly disperse before reaching
the furthest ones. With not enough data, the model misclassifies the dispersed signals for
a higher energy impact. Most of the misclassified data is Sa f e as Warning and Warning
as Danger. These errors are not as crucial, as further investigation would conclude that
the damage is not as severe. The more dangerous misclassifications are Warning as Sa f e
and Danger as Warning, as they downgrade the severity of the impact, which could lead
to neglecting the problem with the structure.

4.2. Angled Impact Dependency Investigation

In this section, and the next, the scalability of the Transformer model is tested. It is
now investigated whether the network can accurately predict inputs from angled impacts,
if during training it had not seen any such examples. The CNN is also tested for comparison.
The angled impact data was excluded from the steel data set and 85% was set for training.
All other network parameters were kept consistent with the best Transformer and CNN
models from the previous section, in order to achieve most accurate results. The models’
performance was tested against the angled data, which both networks had not seen during
training. Neither model was able to predict the 45 degree impact data accurately. Both
models labelled all tests as Sa f e, leading to an F1 score of 0.333. Neither model was able
to go beyond the training data feature distribution presented to it. Both models require
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45 degree impact signals to be present in the training data in order to accurately predict
any new 45 degree impact signals.

4.3. Silicone Impactor Dependency Investigation

Both networks failed to accurately predict the silicone impactor data when they were
trained only on steel data. It is now tested when the silicone data is introduced to the
training data, whether the network will improve its accuracy on classifying silicone impacts.
The silicone data was added to the overall steel data, with 85% of all the data going for
training. The models were trained until convergence was reached. Their accuracy was
tested against the testing data available, see Figure 9. In congruence with the previous
tests, the training data was randomly selected from all the available data, but the ratios of
samples of impact energy classes were kept the same as in the training set. The addition
of the silicone data added two more test configurations, one labelled as Sa f e and one as
Warning, making the overall number of unique test configurations present 11. The number
of silicone impactor tests was 42, or 2/11 (18.18%) of all the testing data.

(a) (b)

Figure 9. Confusion matrices for (a) Transformer and (b) CNN models, trained on steel and silicone
impactor data together.

Both the Transformer and the CNN were able to accurately classify all the testing data.
The Transformer was able to learn the new features from the silicone impactor data well
enough to robustly classify all samples, once the silicone data was added to the training set.

5. Discussion and Comparison

This section compares the performances of the Transformer and CNN with the inten-
tion of evaluating the suitability of the Transformer as a valid way of detecting impact
energies for composite panels. Summarizing comparison tables of the two models are
presented in Appendix B.

5.1. Model Accuracy

The Transformer architecture performed with impeccable precision and achieved state-
of-the-art performance when accuracy was measured, using the F1 score metric. The CNN,
using the same amount of data, namely 85% for all steel data, was able to achieve 100%
accuracy as well. The novel Transformer model can, with the highest degree of accuracy,
determine whether an impact that has occurred during the life cycle of a composite part, is
of little, medium or high severity. A system being able to assess this, instead of a human,
cuts down maintenance time and costs drastically. It also allows for a more robust system
to be in place, as a human operator is prone to errors.



Sensors 2022, 22, 4370 13 of 17

The Transformer was able to retain its pristine accuracy up until the 30% training
data mark for the steel impactor tests. Collecting impact data requires large amounts of
effort, time and funds. The Transformer model allows for less data to be collected and
introduced to the network, and still achieve 100% accuracy. This reduces the experimental
work needed, saving time and money, without sacrificing accuracy. The CNN model too
was able to retain its 100% accuracy of the testing data, even with very limited training
data supplied. The lower limit for the model achieving pristine accuracy was, like for
the Transformer, taken to be 30% of the original steel impactor data. Under this mark,
the CNN achieved better results than the Transformer on both the 20% and 10% data,
as can be seen from comparing Figures 6 and 8. The better performance of the CNN can be
attributed to the larger amount of work conducted for it. CNN architectures have been used
extensively for more than a decade and have seen numerous improvements. Transformers
were introduced only a few years before the writing of this paper. Little work has been
conducted to make them more robust for the purposes of classification, yet the model’s
performance compares to that of the CNN.

It is worth noting that both the Transformer and the CNN were able to achieve 100%
accuracy on the Danger samples for the best performing models trained. The Danger
samples are the most safety critical ones, as they are most likely to cause fibre fracture and
delamination, or other sub-surface damage. This damage is much harder to detect and
can cause catastrophic failure. Yet both networks were able to train, so as to pick out these
signals. This shows the robustness of these models for real-world applications.

5.2. Scalability

The Transformer was not able to accurately classify data that sat outside its training
data distribution. When the 45 degree steel impact data was excluded, the model was not
able to properly classify it, yet when it was inside the training data, the model had no issues.
The same was observed from the Transformer with the silicone data. The Transformer was
able to merge the steel and silicone impactor signals under the same set of classes only once
the silicone data was present in the training data. For both angled and silicone scalability
tests, the model labelled all the Safe and Warning data as Safe.

The large differences between signals is thought to be the cause of the model’s inability
to scale outside its training data range. In both scalability investigations, the Transformer’s
training and testing sets differed in terms of input shapes. The 45 degree steel impact data
signals induce Lamb waves with smaller amplitudes, compared to 90 degree steel impactor
signals, due to the contact angle between the impactor and the plate. The silicone impactor
signals differ even more greatly from the steel ones. Their amplitudes are much smaller
and the signals are comprised mostly of low frequencies, compared to the more spiked
behaviour of the steel impactor signals, as the softer silicone impactor material absorbs
more of the impact energy, rather than it being transferred to the plate. Having learned the
dependencies between features during training on impacts, which have produced larger
Lamb waves, the Transformer naturally would label impacts, which have produced smaller
Lamb waves, as less severe, mislabelling all as Safe. When given examples of these new data
distributions during training, the Attention was able to adjust and properly classify them.

The CNN suffered from the same problems. It was only able to perfectly classify any
data distribution, provided it had seen it before in its training data, as was demonstrated
with the silicone and 45 degree angle data. In general, both the Transformer and the CNN
were able to encompass new data into their feature extraction easily. Both models succeeded
at generalizing and adjusting to new distributions, yet only when presented with examples
during training.

5.3. Training Time

The training time for both network types was calculated for the most accurate models,
the ones using 85% training data, with steel and silicone impactor data present during
training. The most accurate models reached convergence in 150 and 110 epochs for the



Sensors 2022, 22, 4370 14 of 17

Transformer and CNN models, respectively, with the recorded times being Transformer:
54.4 s and CNN: 48.3 s. The training time for both models is very similar, with the CNN
being faster solely due to needing less epochs until convergence. If epoch per time is taken,
the Transformer is faster by close to 0.5 epochs/s, yet requires more epochs. A reason for
this discrepancy can be attributed to the implementation of the network code. The CNN
has guidelines on choosing and optimizing parameters. The Transformer model, still in
its infancy for non-text applications, has not been developed as much. The Transformer’s
marginally slower time of 54.4 s is a very fast time from a practical point of view, much
lower than the time required for NDT. Thus, the Transformer is a time-effective method for
impact classification.

5.4. Computational Demand

A network that is less demanding is industrially more appealing. In this category,
the Transformer outperforms the CNN. To store the trained model weights, the Tensorflow
Keras [43] save_weights method into an HDF5 file was used. The Transformer requires
445 KB of memory to store the model weights. In comparison, the CNN HDF5 file takes
up 506 KB. This can easily be explained by looking at the number of trainable parameters
for each of the two networks. The Transformer has 37,059 trainable parameters. The CNN
has a total of 42,819 trainable parameters. The larger number of parameters results in
more weights being updated, and later stored. For the same performance, the Transformer
requires around 12% less storage than the CNN. For larger models, this storage space
difference can become significant. The Transformer is more advantageous for aircraft
applications, as storing it would require less space, compared to the popular CNN method.

The Transformer’s advantage manifests itself in two other areas. The memory usage
of the Transformer during training is 1.2 GB. The CNN requires 1.9 GB. The Self-Attention
method requires significantly less computational complexity than the Convolution method
to reach the same performance. The CNN model would be more problematic to learn.
On a powerful machine with parameters exceeding the aforementioned, a difference might
be hard to spot. However, if a less capable machine is used, there will be a noticeable
delay in the CNN training, while the computational demand during training is impor-
tant for the process of tuning the model, once trained, the model’s practical usage is for
performing predictions. For the memory usage during prediction, the Transformer uses
11.9 KB/prediction, compared to the CNN, with 15.3 KB/prediction. The notably lower
memory usage allows for the trained Transformer model to be more versatile and to be ran
in settings requiring lighter code.

6. Conclusions

A novel model for predicting impact energy for passive sensing in composite plates
has been developed. The model, using a Transformer architecture, harnessing the Self-
Attention method, was successfully developed and tested. A comparison with the well-
known and widely used Convolutional Neural Network was conducted and insights about
both networks’ performance were extracted. The main finding of the paper are listed below:

• Both the Transformer and CNN models are able to achieve 100% accuracy on impact
energy classification, given steel impact signals.

• Both the Transformer and CNN were able to achieve highest accuracy with as little
as 378 samples on steel data impactors. The further decrease in training samples
deteriorated the Transformer’s performance on classifying Sa f e and Warning labels.

• The Transformer shows non-satisfactory up-scalability on new data sets. It is not
able to accurately classify signals that are outside of the parameter distribution
of its training set. The CNN equally struggles to predict data that lies outside its
training samples.

• The Transformer is able to achieve pristine accuracy for any case when the train-
ing and testing data have the same distributions. The CNN equally achieves per-
fect prediction accuracy, when examples of the data it needs to predict have been
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present during its training. The two models are comparable on feature extraction and
data generalization.

• The Transformer’s training time is approximately the same as that of the CNN, and it
is much faster than the time required for NDT, making it a time-effective impact
classification method.

• The Transformer, compared to CNN, requires much less computational power to train
and run predictions. This makes it more flexible to be trained or executed on machines
with less computational power, cutting costs from computational load.

• The Transformer requires 12% less memory space to be stored. This makes it more
fit for aircraft applications where it would be implemented on-board, as aircraft free
on-board memory is scarce. Even if not implemented on-board, the network saves
memory space, cutting down costs.

The Transformer was able to achieve the highest accuracy, rivaling the generalization
of features and accuracy of the established CNN model. It was marginally outperformed by
the CNN in terms of speed of training. Considering the amount of research conducted for
CNN and how novel Transformers are, the results show a great potential for the Transformer
model. The Transformer proves to be a very promising network for the purposes of SHM,
as it requires very little memory to be stored or ran. It is quick to converge, significantly
cutting down maintenance time and costs. As a new network, it is expected that the
following years will bring advancements in its performance, which will further make it
appealing for aircraft impact classification and other engineering applications.
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Appendix A

Appendix A.1. Transformer/CNN Validation Confusion Matrices

The confusion matrices presented below apply to both the Transformer and the CNN
models, as they performed the same when trained on 85% of all steel impactor data, and
then tested on the rest of the data (15% steel and 100% silicone impactor).

(a) (b)
Figure A1. Confusion matrix on the predictions from the Transformer/CNN model, given testing
data of samples from (a): the steel impactor test and (b): the silicone impactor test.
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Appendix B

Appendix B.1. Model Comparison Table

Table A1. Summary comparison table between Transformer and CNN model performance for
different training and testing conditions. The percentage of data used for training and testing the
models is given in parentheses, where applicable. The F1 score metric is presented for the evaluation
of the models’ performance for each test.

Transformer CNN
train: 90◦ steel + 45◦ steel (85%)
test: 90◦ steel + 45◦ steel (15%) 1 1

train: 90◦ steel + 45◦ steel (85%)
test: silicone 0.333 0.333

train: 90◦ steel (85%)
test: 45◦ steel 0.333 0.333

train: 90◦ steel + 45◦ steel + silicone (85%)
test: 90◦ steel + 45◦ steel + silicone (15%) 1 1

Table A2. Summary comparison table between Transformer and CNN model performance for
training time and computational complexity.

Transformer CNN
Training Time [s] 54.4 48.3

Storage Memory [KB] 445 506
Training Memory Usage [GB] 1.2 1.9

Memory Usage per Prediction [KB] 11.9 15.3
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