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Abstract: In water resources management, modeling water balance factors is necessary to control
dams, agriculture, irrigation, and also to provide water supply for drinking and industries. Generally,
conceptual and physical models present challenges to find more hydro-climatic parameters, which
show good performance in the assessment of runoff in different climatic regions. Accordingly, a
dynamic and reliable model is proposed to estimate inter-annual rainfall-runoff in five climatic
regions of northern Algeria. This is a new improvement of Ol’Dekop’s equation, which models the
residual values obtained between real and predicted data using artificial neuron networks (ANNs),
namely by ANN1 and ANN2 sub-models. In this work, a set of climatic and geographical variables,
obtained from 16 basins, which are inter-annual rainfall (IAR), watershed area (S), and watercourse
(WC), were used as input data in the first model. Further, the ANN1 output results and De Martonne
index (I) were classified, and were then processed by ANN2 to further increase reliability, and make
the model more dynamic and unaffected by the climatic characteristic of the area. The final model
proved the best performance in the entire region compared to a set of parametric and non-parametric
water balance models used in this study, where the R2

Adj obtained from each test gave values between
0.9103 and 0.9923.

Keywords: rainfall-runoff modeling; water balance model; ANN model; watercourse; De Martonne
index; inter-annual time scale; northern Algeria; watershed

1. Introduction

Precipitations are the origin of water resources, which undergo different quantitative
and qualitative transformations on the slopes. The losses of rainwater are almost observed
as a form of infiltration, retention in the soil, and evaporation. Some part of this quantity can
also flow into wadis until it moves into the sea. The estimation of actual evapotranspiration
is the component most required for estimating water and energy balance equations [1,2].
This resource can be accessed on the inter-annual scale, according to the history of climatic
and hydrometric measurements that could be given in the outlet of some watersheds. For
ungauged watersheds, the lack of some information posed a big problem in the estimation
of the mean annual flow, which is the main scientific challenge for many hydrologists [3–5].
The water balance concept was considered to study the hydrological behavior of watersheds
and to describe the relationship between water and thermal components of the earth. This
relativity was defined by a mathematical ratio between rainfall (R), rainfall-runoff (RR),
and real evapotranspiration (Ea) [6]. The estimation of rainfall-runoff is necessary as the
first step to search for the best evaluation of Ea. In literature, the first attempts were
started by Schreiber [7] and Ol’Dekop [8]. Then, Budyko [9] proposed an average model of
both previous equations to minimize the estimation errors that were given by Schreiber
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and Ol’Dekop. On the other hand, Pike [10] also gave a new formula to estimate Ea, in
the form of a power equation. However, in 1974, Budyko and Miller developed a new
theory, which describes the main factors to determine the actual rate of evapotranspiration
on the inter-annual scale [6]. This work sparked the interest to understand the effect of
watershed climate characteristics, vegetation, and capacity of watershed storage on Ea
estimation [11–13]. In this regard, several conceptual models cited in the literature show the
best performance when using physical indices (Soil, vegetation, and the capacity of basin
storage) as input variables to assess Ea on daily and intra-daily scales, including black-box
models (NARX-NN), machine learning models (ANN, random forest), the GR6J-WGANN2
model, etc. [14–16]. On the other hand, climatic variability also impacts the choice and
the performance of runoff models applied on the annual and interannual scale, in which
different models were developed regionally according to the rainfall characteristics of
basins [17,18]. The proposed technique by Budyko was proven to be an effective tool
to explain the interactions between a set of climatic factors and the characteristics of
watersheds, and also their impacts on the water balance energy; however, its limit of
application has always posed a problem for ungauged watersheds [5,19,20]. Furthermore,
climatic variability and the aridity ratio of catchment areas also posed a problem for
hydrologists trying to propose a dynamic and reliable model for estimating a rainfall-runoff
in different regions of the world. Du et al. explained that the Budyko hypothesis was
generally used to estimate the rainfall-runoff in arid regions [21]. Moreover, Wu et al.
proved that applying Budyko’s model to different climates and watersheds of China, using
different time scales, performs well at a mean annual scale where the climate area is arid,
which is better than wet areas [22]. Xiong and Guo [23], deduced that Budyko’s non-
parametric model, despite being easier for application, has never given good results in
the context of long-term water balance studies in humid watersheds. Contrariwise, the
parametric models are more performant in humid regions with local optimization of those
input parameters. Thus, we can understand that no single model is perfect for an easy
application in estimating inter-annual rainfall-runoff, especially in areas characterized by
climatic diversity.

This work aims to propose a dynamic model that will be used to estimate inter-annual
rainfall-runoff based on modeling residual data distribution (IARR’) given by Ol’Dekop’s
model [8] in different areas. The new equation form was obtained by applying an artificial
neural network (ANN) on several climatic and geographical input variables, which proved
a good correlation with IARR’, such as inter-annual rainfall (IAR), De Martone index (I),
watershed area (S), and watercourse (WC), respectively. Furthermore, the model was
applied to five climatic floors of northern Algeria according to the climatic and geophysical
diversity that characterized this area, which helped to determine the parameters of the
new model. Generally, the article is structured in five sections, where a presentation of the
study area, data, models, and metrics of comparison are given in the Section 2. Then, the
statistical analysis, the bioclimatic classification, the ANNs design, and modelling steps are
shown in Section 3. On the other hand, the comparison and the performance analysis with
a set of parametric and nonparametric models that are mostly applied to assess IARR are
given in Section 4. Finally, the conclusions were drawn in Section 5.

2. Material and Methods
2.1. Study Area and Data

Algeria is an important country in Northern Africa, which is located on the southern
shore of the Mediterranean Sea. It is bordered on the east by Tunisia and Libya, in the
west by Morocco, and in the southwest by Mauritania and Western Sahara; moreover, in
the southern part, it overlooks Niger and Mali. It extends over an area of 2,381,741 km2,
where 85% of the surface represents the desert region. Our study relates to the northern
Algeria area, which includes a surface of 480,000 km2 [24]. It is bordered in the north by
the Mediterranean Sea, while the southern part overlooks the Great Sahara. It is located
between a longitude of −2.2◦ and 8.6◦, and a latitude of 33◦ and 37◦, which is distributed
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over 16 watersheds numbered from 01 to 17, except basin 13 which represents the southern
part of the country (Figure 1A). In this region, the spatial precipitation distribution is very
heterogeneous, characterized by a strong gradient from north to south, and a weak one
from east to west [25]. North Algeria has a typically Mediterranean climate, which is hot
and dry in summer. Contrariwise, in winter, it is mild and rainy. Annual precipitation data
varies between 400 mm and 1500 mm. In the highlands and the Saharan Atlas the climate
is generally semi-arid, and the rainfall does not exceed 500 mm annually. The pre-Saharan
and Saharan regions have a very arid climate, which is almost devoid of precipitation, and
the mean annual rainfall there varies between 50 mm and 200 mm [26,27]. The temperature
of the country varies between day and night, as well as between summer and winter [28].
According to the data, the mean daily temperature is observed in January with a value
between around 10 ◦C and 12 ◦C. In July it is comprised between 25 ◦C and 27 ◦C. In the
highlands and the Saharan Atlas, the temperatures recorded a thermal amplitude higher
than that of the coastal regions, given by an average daily temperature in January which is
around 2 ◦C and 9 ◦C. However, in July these are between 19 ◦C and 33 ◦C.
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Figure 1. Maps of the northern Algeria region (A) and elevation variation (B,C) of 16 watersheds,
showing the hydrometric stations’ locations.

Spatial variation maps displaying the maximum and the minimum altitudes observed
in 16 watersheds in northern Algeria are shown in Figure 1B,C, respectively. The maps
show that the northern Algeria morphology is higher on the southern side than on the
northern, where the minimum altitudes observed on the marine side reach measurements
between 17.9 m and 271 m in the basins numbered 3, 2, and 4. However, the maximum
altitudes in this region are between 262.2 m and 1079 m. In the southeastern region, the
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maximum elevations of basins numbered 06, 05, 07, and 12 almost reach values between
1080 m and 1896 m. Contrariwise, in the middle region of basins numbered 6 and 7, the
highest points in this region arrive between 1897 m and 2304 m. However, the minimum
altitudes are between 524 m and 1280 m. In the western area, the maximum altitudes reach
the interval values given between 1080 m and 1487 m, especially in basins 08, 11, 16, and
01. Where the minimum elevations are between 272 m and 523 m.

The hydrometric network of northern Algeria consists of 200 measuring stations,
which are distributed over 16 watersheds. The present work aims to estimate the runoff of
102 sub-basins obtained by defining the extreme outlets of the wadis in the entire region. In
the middle location of each sub-basin, we chose a meteorological and a hydrological station
in the same coordinate to provide sufficient data that were used to assess rainfall flow
between 1965 and 2020. The climatic data used in this study are precipitation (IAR) and
temperature (IAT). The data was obtained from the available dataset on the climatic stations
provided by the National Centers for Environmental Information (NCEI-NOAA). https:
//doiwww.ncdc.noaa.gov/ (accessed on 12 May 2021), and Climate Knowledge Portal
https://climateknowledgeportal.worldbank.org/ (accessed on 17 May 2021), whereas the
hydrological and geographical data, which are the watershed area (S) and the length of
the watercourse (WC), were obtained from hydrometric stations provided by the Algerian
National Agency of Hydrological Resources (A.N.R.H).

The De Martonne aridity index (I) was used in this study as input data of the dynamic
model given by the artificial neuron network (ANN2) and to classify the bioclimatic floor
of the northern Algeria area. The I index values were obtained according to the following
Equation (1) [29]:

I =
IAR

IAT + 10
(1)

The actual measurement of inter-annual rainfall-runoff (IARRR) was obtained from
the A.N.R.H service. This data was used to estimate the computational residues (IARR’)
obtained by Ol’Dekop’s model and to control the performance of the proposed model in
the study area [21], that is:

IARRE = IAR− IAEa (2)

IARR′ = IARRR − IARRE (3)

where IARRE represents the inter-annual rainfall-runoff data estimated by the Ol’Dekop
model, IAEa is the mean annual real evapotranspiration, and IARRR is the inter-annual
real rainfall-runoff.

2.2. Artificial Neuron Network

An artificial neuron network (ANN) is a data-driven process with a flexible mathe-
matical algorithm capable of solving the complex nonlinear relationships between input
and output datasets. In fact, it mimics the biological neuron architecture [30]. It is a family
of parallel architectures used to solve the most complex mathematical problems in mod-
eling, optimization, and prediction [31,32]. In practice, using ANN involves taking into
consideration three main elements:

• The interconnection between the input data ensures good results through the process.
• The transfer function controls the generation of the neural output.
• The summing function and the statistical parameters describe how the weights of

input data are adjusted during the treatment [30].

During computation the ANN receives data from the input layer, then a combination
between selected data is performed by the hidden layer using the summing function and
a number of statistical control parameters. In general, the summing function formula is
represented by:

netj = ∑ Wijxi (4)

https://doiwww.ncdc.noaa.gov/
https://doiwww.ncdc.noaa.gov/
https://climateknowledgeportal.worldbank.org/
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where netj is the mean of weighted input for the jth neuron; Wij is the weight from the ith
neuron in the previous layer to the jth neuron in the current layer, and Xi is the input from
the ith to the jth neuron.

The transfer function Ψ is also used by the hidden layer to generate the final result,
which is called by output data Yj, using the function (5). The training stops when the error
obtained by the validation test reaches the minimum.

Yj = Ψ
(
netj + θj

)
(5)

where netj represents the obtained data from the summing function (4), θj is the external
threshold that is obtained from the summing step. In literature, hydro-climatic modeling
using ANN typically uses the feed-forward network structure with either one or multiple
layers, depending on the objective of the study [33,34]. When using ANN for modeling
climatic and hydrological phenomena, a set of fundamental decisions need to be made [33],
which are:

• The choice to use the appropriate neural network architecture.
• The best selection of a suitable training algorithm, study periods, and network structure.
• The way to pre-process and post-process the input and output data, respectively.

ANN Transfer Function

In the experimental part, the transfer function used by the ANN model to estimate the
output data was given by the trend equation of the multiple linear regression model (MLR).
This latter one was applied to a set of input data (Xi*) that could prove a good regression
with IARR’*. The test was conducted after linearizing the data series using the Ln equation.
In this machine learning, the output data represents the predicted residual values obtained
by the Ol’Dekop model. The concept of multiple linear regression used to study the linear
relationship between the dependent variable Y and the vector of regressors (X, X2, . . . , Xk)
is given by the following function [35]:

Y = α+ β1X1 + β2X2 + . . . + βkXk + ε (6)

where α is the intercept, β is the slope or the coefficient, k is the number of observations
and ε represents the estimation error.

2.3. Water Balance Model

A set of nonparametric and parametric models used to compare and analyze the
performance of the proposed model are detailed by the Equations (7)–(11), as detailed next.

2.3.1. Schreiber

Schreiber [7] proposed a simple model to estimate inter-annual evapotranspiration
(IAEa) in terms of inter-annual precipitation (IAR) and mean annual potential evapotran-
spiration (IAEo), that is:

IAEa = IAR×
[

1− exp
(
− IAEo

IAR

)]
(7)

2.3.2. Ol’Dekop

Ol’Dekop [36] applied a trigonometric hyperbolic tangent function (8) to show the
relationship between potential evapotranspiration (IAEo) and the drying factor ( IAR

IAE0
).

IAEa = IAE0 × tanh
(

IAR
IAE0

)
(8)
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2.3.3. Budyko

Budyko [9] defined an average estimation using Schreiber [7] and Ol’dekop [8] models
to reduce errors obtained by both models (9), which is given by following formula,

IAEa =

[
IAR×

[
1− exp

(
− IAEo

IAR

)]
× ETR− tan h

(
IAR
IAEo

)]0.5
(9)

2.3.4. Yang

Yang [37] proposed an alternative model (10) to assess mean annual actual evapo-
transpiration by entering local parameter (n) characteristics on Budyko’s hypothesis. The
model uses the watershed characteristics for a better estimation, that is

IAEa =

[[( IAEo

IAR

)−n
]
+ 1

]− 1
n
× I (10)

where n > 0.

2.3.5. Sharif

This model is an improvement of the Mezentsev–Choudhury–Yang (MCY) proposition,
achieved by replacing b, k, and n parameters with 0, 2, and 1, respectively [38].

IAEa =
2× IAR× IAEo

IAR + 2× IAEo
(11)

where by IAR is the inter-annual rainfall; IAE0 is inter-annual potential evapotranspiration;
and IAEa is inter-annual actual evapotranspiration.

2.4. Metrics of Performance

The statistical criteria applied in each modeling step, which are also used to compare
the performance of the obtained model with non-parametric and parametric models mostly
cited in the literature, are well detailed in Table 1. Where by Qs is the estimated runoff; Qo is
the observed runoff; N is the total number of ordinates; K is the number of independent
variables; and ei is the residual for the time period i.

Table 1. Statistical criteria used to evaluate the performance of sub-models proposed in all climatic regions.

Criteria Statistical Formula Reference

Coefficient of determination (R2) R2 =
∑N

i=1(Qoi−Qo)×(Qsi−Qs)[
∑N

i=1(Qoi−Qo)
2
]0.5[

∑N
i=1(Qsi−Qs)

2
]0.5

[39]

Adjusted coefficient of determination (R2
Adj) R2

Adj = 1− (1−R2)×(N−1)
N−K−1

[40]

Mean squared error (MSE) MSE = 1
N

N
∑

i=1
(Qsi−Qoi)2 [41]

Root mean square error (RMSE) RMSE =

√
∑N

i=1(Qsi−Qoi)
2

N
[42]

Mean absolute error (MAE) MAE = ∑N
i=1|Qoi−Qsi|

N
[43]

Durbin–Watson coefficient (DW) DW = ∑N
i=2(ei−ei−1)

2

∑N
i=1 e2

i

[44]

3. Results

In this section, we start our study by spatially analyzing and classifying the input
data used by each sub-model. Then we show the ANN design, such as the choice of input
data by the selection criteria, the regression equation used as a transfer function, and the
output results, which are mainly used to estimate the residual data (IARR’). Finally, the
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computational and calibration steps followed to obtain the runoff equation are given in
detail in the last part.

3.1. Data Description and Classification

Data distribution and variability analyses of selected variables used for modeling
IARR’ are shown in this section, which aims to study the behavior and the regression
relationship between input variables and the IARR’ dataset. This study is based mainly on
qualitative and quantitative tests, where the results of the data distribution are given by
P–P plot, Q–Q plot (which allowed us to compare the empirical and theoretical distribution
of data and cumulative quartiles, respectively, using normal law), and scattergram graph
(Figure 2). The Q–Q plot and the scattergram graph are obtained after linearizing the used
variables by applying the Ln function, to simplify the comparison between data series
distributions, which have different measurement units. Moreover, Table 2 gives us a set of
statistical parameters to quantify the variability of the data series. The P–P plot and the Q–Q
plot show that IAR, S, and WC data series have a similar variability to the IARR’s dataset.
However, IAR and S data distributions are closer to IARR than the WC data series (Figure 2).
On the other hand, IAT shows a different behavior of data distribution, where the graphs
prove that the stochastic model, which defines the IAT variability, is closer to the normal
law. The p-value results obtained by the DKS fit test using a set of distribution laws (Table 2)
show that IARR’ and IAR follow the Weibull 3 law, where the p-values equal 0.9789 and
0.8572, respectively. On contrary, IAT data have a GEV distribution, where the p-value is
equal to 0.8764. Moreover, S and WC show a similar distribution, in which both variables
follow the law of gamma 2. According to the fit results, the last three variables accept the
Weibull 3 as a second closest fit model, where p-values equal 0.6136, 0.8363, and 0.8263,
respectively. In Figure 2, the scattergram shows a descriptive comparison between the
variability of data cited above. The graphs show a similar variability between IARR’, IAR,
and S data series, where the majority of the values of each variable are very close between
them and below the average of their series (which equals 49.113, 494.6529, and 719.7106,
respectively). On the other hand, Table 2 shows that 25% of the dataset, which is bounded
between the third quartile and the maximum value, has very large variability, given by the
interval of [64.3229, 284.3221], [607.00, 1107.00], and [1028.25, 4050.00], respectively. The
WC variable shows a slight difference between data distribution. Inversely, the variability is
more similar to IARR’. In this series, the mean and the median are close, and equal 45.60 and
51.10, respectively. However, 25% of the WC values give a very high variability, which is
given by a value range of [65.5250, 179.80]. On the other hand, the IAT dataset shows a
very low variability given by a variation coefficient of 0.1180. This last dataset proves a
convergence between the median and the mean, which are equal to 15.2792 and 15.4569,
respectively. Moreover, the scattergram shows that the upper and the lower IAT values,
compared to the average, have a similar distance, given by the interval of [−2, 0] and [0, 2],
respectively. In Table 2, this similarity is given by [11.5833, 15.2792] and [15.2792, 21.7583],
respectively. According to this analysis, the greatest variability was obtained from IARR’
and S datasets, whereby the variation coefficients equal 1.1039 and 1.0379, respectively.

The spatial inter-annual rainfall distribution and the De Martonne index obtained
by applying Equation (1) are mapped using the data of 102 meteorological stations to
determine the bioclimatic floor of each watershed of northern Algeria between 1965 and
2020. This study helps to provide the application areas used to control the performance
of the model proposed in this section. Climate classification analysis is shown in Figure 3.
A very large variability of rainfall from north to south is shown in Map (a), wherein the
southern part, the IAR reaches up to 200 mm. However, in the north, the rainfall reaches
values higher than 800 mm.
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Figure 2. P–P plot, Q–Q plot, and scattergram graph of the dataset series, used in this modeling.
Inter-annual rainfall-runoff residual (IARR’), inter-annual rainfall (IAR), inter-annual temperature
(IAT), watershed area (S), and watercourse (WC).
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Table 2. Statistical description and data distribution analysis of a hydro-morphological dataset,
obtained between 1967 and 2020 in northern Algeria.

Statistic IARR’ IAR IAT S WC

No. of data 102 102 102 102 102
Minimum 4.5687 222.0000 11.5833 16.0000 7.1000
Maximum 284.3221 1107.0000 21.7583 4050.0000 179.8000

1st Quartile 13.6200 332.7500 14.2313 194.5000 29.0000
Median 25.9667 415.5000 15.2792 475.0000 45.6000

3rd Quartile 64.3929 607.0000 16.6542 1028.2500 65.5250
Mean 49.1013 494.6529 15.4569 719.7106 51.4108

Variation coefficient 1.1039 0.4044 0.1180 1.0379 0.6313
Standard deviation (n) 54.2053 200.0620 1.8236 746.9927 32.4534
p-value (Exponential) 0.1353 <0.0001 <0.0001 0.8061 0.0001

p-value (Gamma 2) 0.0201 0.0885 0.6043 0.8475 0.9799
p-value (GEV) <0.0001 <0.0001 0.8764 <0.0001 0.7764

p-value (Log-normal) 0.1580 0.0805 0.6105 0.7688 0.6973
p-value (Logistic) 0.0003 0.0615 0.4604 0.0028 0.3787
p-value (Normal) 0.0003 0.0061 0.4358 0.0012 0.0580

p-value (Weibull 2) 0.0776 0.0283 0.1929 0.7994 0.6725
p-value (Weibull 3) 0.9789 0.8572 0.6136 0.8363 0.8263

Inter-annual rainfall-runoff residuals (IARR’), Inter-annual rainfall (IAR), inter-annual temperature (IAT), Water-
shed area (S), Watercourse (WC).
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According to the bioclimatic classification given by [45], northern Algeria has a climatic
diversity spread over five floors, from very humid to very dry (Figure 3B). The figure shows
that watershed 02, which is located in the northern part and overlooking the Mediterranean
Sea has a very humid climate, characterized by IAR values varying between 700 mm and
>800 mm (Figure 3A). On the other hand, watersheds 09, 15, and 10 have the greatest
climatic diversity, varying between very humid, humid, semi-humid, Mediterranean, and
semi-dry. Where in this area, the rainfall varies between 400 mm and >800 mm. This
diversity depends mainly on the geographical and geological characteristics of the region.
In the northeastern part, watershed 03 is characterized by a very humid, humid, and semi-
humid climate, where the IAR varies between 500 mm and >800 mm. The catchment area 01,
14, and 12 have a climatic diversity which is between humid, semi-humid, Mediterranean,
and semi-dry. In this area, the minimum rainfall was observed in watershed 14, which
arrives at 300 mm. Differently, in watersheds 01 and 12, the minimum rainfall values reach
up to 200 mm in the southern areas.

In addition, watersheds 16, 04, 11, 08, 17, 05, 06, and 07 are characterized by a semi-dry
climate, where the rainfall varies generally between 300 mm and 400 mm. Contrariwise,
the minimum rainfall of watersheds 08, 17, 05 and 06 reaches up to 200 mm.

3.2. Proposed ANNs

The different steps followed to obtain the best ANNs model for estimating the compu-
tational errors of IARR’ given by the Ol’Dekop model are represented in this section. This
study allows us to develop a new form of water balance model based on a set of climatic
and geomorphological variables, which can be applied in a different area, without being
conditioned by the aridity state of the watershed. The statistical tests used in this study
are: residual analysis curve, R2, R2

Adj, MSE, RMSE, and Durbin–Watson (DW). These latter
tests were used to analyze the performance of each transfer equation used by the ANN
model, and also to quantify the reliability degree of the proposed model compared to a
set of parametrical and non-parametrical water balance models, which are what is mostly
used in the literature. Our model is classified into two steps, given as ANN1 and ANN2
(Figure 4), which show that initially a local model (ANN1) was given to estimate IARR in all
northern Algeria watersheds. Then an improvement was made to increase the reliability of
the previous model in each basin climatic area and to make it more dynamic and applicable
in different regions (ANN2).

Figure 4 shows that the two previous sub-models are the type of feed-forward network
with the architecture of (3-2-1-1) and (10-5-1-1), respectively. In the first attempts of this
modeling, we used IAR, S, and WC variables as input layers in the ANN1 model. After that,
we classified the estimation results that were obtained by this model in groups, according
to each bioclimatic level. In this step, we also used the aridity index I of each hydrological
station as input data in the ANN2 model to determine, in each climatic area, its transfer
function, which allows us to deduce the final rainfall-runoff model. Figure 4, shows that the
intermediate nodes (denoted by IRR1, IRR2, IRR3, IRR4, IRR5, IRR6, and IRR7, respectively)
make it possible to apply sub-processing, using a summing and transfer function on the
input data “output layer” to estimate the output data in each step of the ANN model. In
our case, the summing function combines the input variables two by two to have the best
modeling results. Moreover, the choice of combination between variables was justified by
the results of the correlation test, which were applied to the linearized variables compared
to the linearized IARR’ (IARR’*) (Table 3). The table shows the degree of correlation
between a set of candidate variables that were cited in the previous section of this study
and IARR’*, using two correlation forms. A direct correlation was found between the
IARR’* and (S*, WC*, IAT*, IAR*, and I*), then an indirect correlation between IARR’*
and (WC*, S*), by studying the relationship between IARR’* and (( IARR′∗

WC∗ ), ( IARR′∗
S∗ )) then

between (( IARR′∗
WC∗ ), ( IARR′∗

S∗ )) and (Wc*, S*), respectively.
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Figure 4. Proposed ANNs model architecture, used to estimate residuals computational of the
Ol’Dekop model. The local and basic model (ANN1), general and dynamic model (ANN2). Inter-
annual rainfall (IAR), watershed area (S), watercourse (WC), De Martonne index (I), Semi-Dry (SD),
Mediterranean (ME), Semi-Humid (SH), Humid (H), and Very Humid (VH).

Table 3. Matrix of correlation between inter-annual rainfall-runoff residual data of Ol’Dkop model
and hydro-morphological variables selected for the ANNS modeling.

Variable IARR’* S* WC* IAT* IAR* (IARR’*/S*) (IARR’*/WC*) I*

IARR’* 1 0.5141 0.5023 0.0606 0.8513 0.7322 0.8124 0.8052
S* 0.5141 1 0.8929 0.0092 0.1428 0.7923 0.5758 0.1326

WC* 0.4923 0.8929 1 0.0059 0.1266 0.6878 0.6168 0.1180
IAT* 0.0606 0.0092 0.0059 1 0.0804 0.0445 0.0552 0.0126
IAR* 0.8513 0.1428 0.1266 0.0804 1 0.5539 0.6876 0.9505

(IARR’/S)* 0.7322 0.7923 0.6878 0.0445 0.5539 1 0.9267 0.5320
(IARR’/WC)* 0.8124 0.5758 0.6168 0.0552 0.6876 0.9267 1 0.6599

I* 0.8052 0.1326 0.1180 0.0126 0.9505 0.5320 0.6599 1

Inter-annual rainfall-runoff residual data of Ol’Dekop (IARR’), inter-annual rainfall (IAR), inter-annual temper-
ature (IAT), watershed area (S), watercourse (WC), De martone index (I), * input variable linearized by the Ln
function, as follow: Xi* = Ln Xi.

Table 3 shows that IARR’* has the best correlation with IAR*, which equals 0.8513. It
is also strongly correlated with climatic data obtained from the I* index. Contrariwise, the
IAT* shows a weak correlation. However, the geo-hydrologic variables such as WC* and S*
are slightly correlated with the response variable (IARR’*), which equals 0.5141 and 0.5023,
respectively. The results highlight that the relation proposed by ( IARR′∗

WC∗ ) and ( IARR′∗
S∗ ) shows
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a very good correlation with IARR’*, given by 0.8124 and 0.7322, respectively. Furthermore,
the new variables also show a strong correlation with WC* and S*, respectively, given by
correlation coefficients of 0.6168 and 0.7923, respectively.

3.3. IARR Modeling

Describing different modeling steps used to propose a new equation of IARR esti-
mation is based mainly on the computational error analysis of the Ol’Dekop model in a
set of bioclimatic floors. A non-linear regression relationship between IARR’ and selected
input variables provided in (Table 3) are shown graphically in Figure 5 as the first step of
this analysis. In this regard, a direct regression is applied between the response variable
(IARR’) and the input variables (IAR, I). Then, intermediate variables were used to express
the indirect relationship between (S, Wc) and IARR’. The results show a similar regression
for each pair of the dataset (IARR ‘, IAR) and (IARR’, I), given by an R2 which equals
0.8608 and 0.8134, respectively.
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The graphs shown in Figure 5A,B prove some trends of values, which are shown in
the range of the maximum value. Regression models cited above are defined by Equations
(12) and (13):

IARR′ = 5× 10−6 × IAR2.5538 (12)

IARR′ = 0.024× I2.4345 (13)

On the other hand, the figure also shows a good nonlinear regression between IARR’
and IARR′

S , and also between IARR’ and IARR′
Wc according to R2 results, which equal 0.7501

and 0.8209, respectively, given by Figure 5C,D. The regression relationship between both
input variables are defined by Equations (14) and (15), respectively:

IARR′ = 99.714× (
IARR′

S
)

0.4554
(14)

IARR′ = 37.187× (
IARR′

Wc
)

0.6338
(15)

Moreover, both ratios ( IARR′
S ) and ( IARR′

Wc ) proved a good regression trend with S and
WC variables, respectively. Where R2 equals 0.8103 and 0.6314, respectively. Both statistical
relationships between input and response variables are defined by Equations (16) and (17):

IARR′
S

= 443.59× S−1.445 (16)

IARR′
Wc

= 365.71×Wc−1.666 (17)

In this study, we found that all the cases of regression cited in Figure 5 followed the
power model trend.

Figure 6 represents the linear regression graphs, which express the degree of correla-
tion between the real values of IARR’* and the estimated values that were obtained by the
IRR1 and IRR2 models. In this step, we proved the correlation’s degree and the reliability
of the obtained model. We have well explained the different multiple regression models,
which are applied to the pair of variables (IAR*, S*) and (IAR*, WC*), using the intermediate
variable ( IARR′∗

S∗ ) and ( IARR′∗
WC∗ ), respectively, which showed a good nonlinear regression with

S and WC data, and also with IARR’ (Figure 5). Moreover, Table 4 shows a set of statistical
parameters relating to this modeling, which gives information about the reliability and
the trend analysis of the sub-models that are noted by (A, B, C, and D), compared to the
linearized real data (IARR’*). According to the results, we found that the regression model
obtained from (IAR*, IARR′∗

S∗ ) and (IAR*, IARR′∗
WC∗ ) have a very good regression, proved by an

(R2, R2
adj) results which equal (0.9301, 0.9286) and (0.9405, 0.9393), respectively. Moreover,

the errors given by MSE, RMSE, and DW show that all models did not prove a large trend
deviation compared to IARR’* real data. The computational steps of IRR1 and IRR2 models
are well detailed by the following Equations (18) and (19):

Ln(IRR1) = 1.7166× Ln(IAR) + 0.2057× Ln
(

IARR′
S

)
− 6.5738 (18)

Ln(IRR2) = 1.4538× Ln(IAR) + 0.3296× Ln
(

IARR′
Wc

)
− 5.3946 (19)
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Figure 6. Multiple linear regression curves between real and estimated Ol’Dekop’s rainfall-runoff
residual data (IARR’), obtained by ANN1 transfer functions by using a set of input variables which
are (A) (IAR*, IARR*/S*); (B) (IAR*, IARR*/WC*); (C) (IAR*, S*); (D) (IAR*, WC*); (E) (IAR*, S*,
WC*). * input variable linearized by the Ln function, as follow: Xi* = Ln Xi. Inter-annual rainfall
(IAR), watershed area (S), watercourse (WC).
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Table 4. Statistical parameters and performance tests of multiple regression models, obtained by ANN1.

Statistic A 1 B 1 C 1 D 1 E 2

Y IARR’* IARR’* IARR’* IARR’* IARR’
X1 IAR* IAR* IAR* IAR* IAR
X2 (IARR’/S)* (IARR’/WC)* S* WC* S
X3 - - - - WC

Coef (a1) 1.7166 1.4538 1.7166 1.4538 1.5852
Coef (a2) 0.2057 0.3296 −0.2972 −0.5491 −0.1486
Coef (a3) - - - - −0.2746

Intercept (B) −6.5738 −5.3946 −5.3201 −3.4494 0.01
No. of observation 102 102 102 102 102

R2 0.9301 0.9405 0.9036 0.9105 0.9518
Adjusted R2 0.9286 0.9393 0.9006 0.9096 0.9508

MSE 0.0709 0.0603 0.0947 0.0802 208.539
RMSE 0.2663 0.2455 0.3077 0.2833 14.4409
DW 1.7510 1.8557 1.4947 1.4822 0.7094

* input variable linearized by the Ln function, as follow: Xi* = Ln Xi, 1 linear model ((a1X1 + a2X2 + B)), 2 final
equation represented by power model (B × X1a1 × X2a2), no data (-), panels represented in Figure 1A–E, output
response (Y), input variable (X), determination coefficient (R2), adjusted coefficient of determination (R2

Adj), mean
squared error (MSE), root mean square error (RMSE), Durbin–Watson coefficient (DW).

To deduce the previous equations as functions of fundamental variables IAR, S, and
WC, we start with Equation (18) by replacing ( IARR′

S ) with (S) using Equation (16). So
we obtain:

Ln(IRR1) = 1.7166× Ln(IAR) + 0.2057× Ln
(

443.59× S−1.445
)
− 6.5738

= 1.7166× Ln(IAR)− 0.2972× Ln(S)− 5.3201
(20)

On the other hand, we use Equation (17) to replace ( IARR′
Wc ) with (WC) in Equation (19).

We find:

Ln(IRR2) = 1.4538× Ln(IAR) + 0.3296× Ln(365.71×Wc−1.666)
= 1.4538× Ln(IAR)− 0.5491× Ln(Wc)− 3.4494

(21)

Figure 6C,D shows the reliability of the results obtained by the IRR1 and IRR2 models
that are given by Equations (18) and (19), respectively. The corresponding graphs show a
good fit of regression between the actual and the estimated values of IARR’*. This reliability
was shown by R2, and R2

Adj statistical parameters, which equal (0.9036, 0.9006) and (0.9105,
0.909), respectively (Table 4). We apply the Exp function in Equations (20) and (21), to
obtain the IRR model used by ANN1.

We have,

IRR1 = Exp(1.7166× Ln(IAR)− 0.2972× Ln(S)− 5.3201)
= 0.0049×

(
IAR1.7166

)
×
(

S−0.2972
) (22)

IRR2 = Exp(1.4538× Ln(IAR)− 0.5491× Ln(Wc)− 3.4494)
= 0.0318× (IAR1.4538)×

(
Wc−0.5491

) (23)

In this step, we found two reliable equations to estimate IARR’. Figure 6E shows that
the best regression can be obtained as a function of the three variables (IAR, S, and WC),
which is given by Equation (24).

According to Equations (22) and (23), the general model IRR is defined as follows:
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IRR =
√

IRR1 × IRR2

=
√

0.0049× (IAR1.7166)× (S−0.2972)× 0.0318× (IAR1.4538)× (Wc−0.5491)

= 0.01× (IAR1.5852)× (S−0.1486)× (Wc−0.27455)

(24)

Table 4 shows that the IRR model gives a good estimation, proven by a set of statistical
parameters. The results obtained by this model give an R2 and R2

Adj, which are equal
to 0.9518 and 0.9508, respectively. Moreover, the computational errors given by MSE,
RMSE, and DW parameters show values of 208.539, 11.4409, and 0.7094, respectively. The
ANN1 model shows that the use of geomorphological parameters increases the reliability
of estimation when compared with the simple regression model obtained by IAR only
(Figure 5A).

In the second step of this study, we improved the proposed model, which is defined
by Equation (24) to be more dynamic and applicable to each bioclimatic region. We
applied multiple linear regression to aridity index series (I) and the predicted data obtained
previously by the IRR model. This technique was applied separately to each bioclimatic
stage in order to find the corresponding estimation model of each area. Table 5 shows all
the statistical parameters relating to each local regression model. The results show that the
model obtained in a very humid climate area gives a more reliable estimation compared to
the performance models of other bioclimatic floors, where the R2 and R2

Adj given for the
IRR7 model equal 0.9072 and 0.9001, respectively (Figure 4 and Table 5). The table shows
that the obtained models have different reliability in each climate region, wherein the
Mediterranean area, the R2, and R2

Adj were proven to perform well, and equal 0.7804 and
0.7647, respectively.

Table 5. Statistical parameters and performance tests of multiple regression models, obtained by
ANN2 for each bioclimatic floor in northern Algeria.

Statistic Semi-Dry Mediterranean Semi-Humid Humid Very Humid

Y 1 (IARR’SD) * (IARR’ME) * (IARR’SH) * (IARR’H) * (IARR’VH) *
X1 (EIRRSD) * (EIRRME) * (EIRRSH) * (EIRRH) * (EIRRVH) *
X2 (ISD) * (IME) * (ISH) * (IH) * (IVH) *

Coef (a1) 0.50033 0.42496 0.29175 −0.16179 0.28185
Coef (a2) 1.16331 1.17641 1.00656 1.34092 1.50295

Intercept (B) −1.74497 −1.41471 −0.2404 0.45666 −1.60261
No. of observations 45 16 15 11 15

R2 0.6501 0.7804 0.6820 0.6533 0.9072
Adjusted R2 0.6420 0.7647 0.6675 0.6448 0.9001

MSE 0.0783 0.0296 0.0154 0.0138 0.0173
RMSE 0.2798 0.1721 0.1239 0.1175 0.1314
DW 1.6870 1.7861 1.6803 0.8625 0.7707

1 Lineaire model (a1X1 + a2X2 + B), * input variable linearized by the Ln function, as follow: Xi* = Ln Xi, Semi-Dry
(SD), Mediterranean (ME), Semi-Humid (SH), Humid (H), Very Humid (VH), output response (Y), input variable
(X), determination coefficient (R2), adjusted coefficient of determination (R2

Adj), mean squared error (MSE), root
mean square error (RMSE), Durbin–Watson coefficient (DW).

On the other hand, in the semi-dry, semi-humid, and humid climate floor, the R2,
R2

Adj equal (0.6501, 0.6420), (0.6820, 0.6675) and (0.6533, 0.6448), respectively. Moreover, the
trend pattern obtained by modeling the IARR’ in the dry climate floors is increased when
compared to the estimated IARR’ in wet regions. The performance criteria show that the
greatest values are given in the semi-dry climate level, where MSE, RMSE, and DW equal
0.0783, 0.298, and 1.6870, respectively. In the humid area, R2 proved lower performance
compared to the estimation obtained in the Mediterranean region. Contrariwise, the errors
are more remarkable in the humid regression model, where MSE, RMSE, and DW values
equal 0.0138, 0.1175, and 0.8625, respectively. On the other hand, on the Mediterranean
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climate floor, these parameters equal 0.0296, 0.1721, and 1.7861, respectively. The model
named IRR3, IRR4, IRR5, IRR6, and IRR7, which were obtained by modeling IARR’ in
semi-dry, Mediterranean, semi-humid, humid, and very humid climate floors, respectively,
are defined by Equations (25)–(29), as follows:

Ln(IRR3) = 0.50033× Ln(EIRRS) + 1.16331× Ln(IS)− 1.74497 (25)

Ln(IRR4) = 0.42496× Ln(EIRRME) + 1.17641× Ln(IME)− 1.41471 (26)

Ln(IRR5) = 0.29175× Ln(EIRRSH) + 1.00656× Ln(ISH)− 0.2404 (27)

Ln(IRR6) = −0.16179× Ln(EIRRH) + 1.34092× Ln(IH) + 0.45666 (28)

Ln(IRR7) = 0.28185× Ln(EIRRVH) + 1.50295× Ln(IVH)− 1.60261 (29)

We apply the Exp function on Equations (25)–(29)to generate the final estimation
model (IRRF) in terms of IAR, S, WC, and I (Table 5) So we find,

IRR3 = 0.1747× EIRRS
0.50033 × IS

1.16331 (30)

IRR4 = 0.2430× EIRRME
0.42496 × IME

1.17641 (31)

IRR5 = 0.7865× EIRRSH
0.29175 × ISH

1.00656 (32)

IRR6 = 1.5788× EIRRH
−0.16179 × IH

1.34092 (33)

IRR7 = 0.2014× EIRRVH
0.28185 × IVH

1.50295 (34)

We apply the different models obtained in each bioclimatic area using all the datasets
of northern Algeria to show the trend that can be caused by the static models. In this
step, we want to propose a dynamic model, by eliminating all constants and finding a
mathematical relationship with variables that can prove a good correlation. Table 6 shows
statistic results, obtained from IRR3, IRR4, IRR5, IRR6, IRR7, and IRRF models. The table
shows that all previous models cited above proved an R2 and R2

Adj greater than 0.80.
Moreover, the error trends increase in these models, which are proven by MSE, RMSE, and
DW parameters. On the other hand, the IRRF model has the best reliability, given by an
R2, which equals 0.9841. This model proved a low tendency, where the MSE, RMSE, and
DW equal 62.5948, 5.9117, and 0.5250, respectively. The final model (IRRF) was obtained by
applying the weighted average using the R2 values that are obtained in Table 6 as weighting
coefficients to estimate the a1 and a2 coefficients of this model. Where the IRRF equation is
defined as follows:

IRRF = Cte× EIRRa1×Ia2 (35)

Table 6. Performance tests of final and regional inter-annual rainfall-runoff residual models applied
to northern Algeria climate regions.

Statistic IRR3 IRR4 IRR5 IRR6 IRR7 IRRF

No. of observations 102 102 102 102 102 102
R2 0.9494 0.9538 0.9443 0.8358 0.9616 0.9841

Adjusted R2 0.9490 0.9534 0.9438 0.8342 0.9613 0.9789
MSE 151.4110 138.3785 166.6840 492.0888 114.9051 62.5948

RMSE 12.3049 11.7634 12.9106 22.1831 10.7194 5.9117
DW 1.7324 1.6142 1.5675 1.8477 1.4434 0.5250

Semi-Dry (3), Mediterranean (4), Semi-Humid (5), Humid (6), Very Humid (7), final inter-annual rainfall-runoff
residuals model (IRRF), regional interannual rainfall-runoff residuals model (IRR), determination coefficient (R2),
adjusted coefficient of determination (R2

Adj), mean squared error (MSE), root mean square error (RMSE), and
Durbin–Watson coefficient (DW).
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We have,

a1 =

(
R2

IRR3
× a1IRR3

)
+
(

R2
IRR4
× a1IRR4

)
+
(

R2
IRR5
× a1IRR5

)
+
(

R2
IRR6
× a1IRR6

)
+
(

R2
IRR7
× a1IRR7

)
R2

IRR3
+ R2

IRR4
+ R2

IRR5
+ R2

IRR6
+ R2

IRR7

(36)

By replacing variables with values, we find:

a1 =

(0.9494× 0.50033) + (0.9538× 0.42496) + (0.9443× 0.29175) + (0.8358×−0.16179)
+(0.9616× 0.28185)

(0.9494 + 0.9538 + 0.9443 + 0.8358 + 0.9616)
= 0.27808

We have also,

a2 =

(
R2

IRR3
× a2IRR3

)
+
(

R2
IRR4
× a2IRR4

)
+
(

R2
IRR5
× a2IRR5

)
+
(

R2
IRR6
× a2IRR6

)
+
(

R2
IRR7
× a2IRR7

)
R2

IRR3
+ R2

IRR4
+ R2

IRR5
+ R2

IRR6
+ R2

IRR7

(37)

We replace variables with values, we find:

a2 =

(0.9494× 1.16331) + (0.9538× 1.17641) + (0.9443× 1.00656) + (0.8358× 1.34092)+
(0.9616× 1.50295)

(0.9494 + 0.9538 + 0.9443 + 0.8358 + 0.9616)
= 1.2364

Using the results obtained by Equations (36) and (37) in Equation (35), we find:

EIRRF = Cte× EIRR0.27808 × I1.2364 (38)

To make the obtained Equation (38) more dynamic, the constant (Cte) is defined in
terms of IAR data, which is given by Equation (42). The Cte must be obtained by each
watershed to take into consideration the variability of each climate area. For this, we
propose in Equation (39) the hypothesis that the predicted and real data of the Ol’dekop
residuals (IARR’) are almost equal.

EIRRF ∼= IARR′ (39)

We replace EIRRF in Equation (39) by the formula defined in Equation (38), by doing
so, we obtain

IARR′ ∼= Cte× EIRR0.27808 × I1.2364 (40)

Cte ∼=
IARR′

EIRR0.27808 × I1.2364

Figure 7 shows that Cte data has a very good correlation with IAR, where R2 equals
0.7235. When we use the trend equation obtained from the regression model to represent
the Cte variable as a function of IAR, we obtain:

Cte = 0.0026× IAR0.7875 (41)
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Figure 7. Nonlinear regression graph (A), followed by standardized residual analysis histogram
(B) between inter-annual rainfall (IAR) and Cte data. Real Inter-annual rainfall-runoff residuals
(IARR), estimated inter-annual rainfall-runoff residuals by ANN1 (EIRR).

When we use Equations (22) and (39) in Equation (36), we find:

EIRRF = 0.0026× IAR0.7875 × EIRR0.27808 × I1.2364

= 0.0026× IAR0.7875 ×
(

0.01×IAR1.5852 × S−0.1486 ×Wc−0.27455
)0.27808

× I1.2364

= 0.00072× IAR1.2283 ×Wc−0.07635 × S−0.04132 × I1.23640

(42)

In Equation (43), we used Equations (8) and (42) to define the new form of the
Ol’Dekope model used for the IARR estimation.

IARRE = IAR−IAEa + EIRRF

= IAR− ETP× tanh
(

IAR
ETP

)
+ (0.00072× IAR1.2283 ×Wc−0.07635 × S−0.04132 × I1.23640)

(43)

4. Discussion

Figure 8 shows regression graphs obtained from real and predicted IARR data that are
estimated by a set of non-parametric and parametric water balance models most cited in the
literature review. These are Schreiber, Ol’Dekop, Budyko, Yang (n = 2), and Sharif, as given
by Figure 8B–F, respectively. These models were applied to the dataset series used in this
modeling to compare the results with the predicted IARR values obtained by the new model,
given in Figure 8A. The results demonstrate that the best IARR estimation are obtained
by the proposed model, which proved a very good match between the estimated and the
actual data (Figure 8A), where the model proved no trend and a very good regression,
given by an R2, which equals 0.9924. On the other hand, Schreiber and Yang’s models give
similar results in which R2 equals 0.9211 and 0.9334, respectively (Figure 8B,E). Budyko’s
model also gives a good result, and performs less than the previous models, given by an
R2 equal to 0.9041. On the other hand, Ol’Dekop and Sharif’s models proved a similar
performance given by an R2 equal to 0.8525 and 0.8739, respectively.
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Figure 8. Linear regression graphs between real and estimated inter-annual rainfall-runoff obtained
by applying new method (A), Schreiber (B), Ol’Dekop (C), Budyko (D), Yang (E), and Sharif (F) models.
Coefficient of determination (R2).

Moreover, in Figure 8C,F, the predicted data obtained by both models show a high
tendency. Trend analysis of the new equation compared to the models cited above is given
in Figure 9 and Table 7, whereby the figure represents residual curves obtained between
measured and predicted data, and the table shows a set of statistical parameters used to
analyze the variability and the performance of each model. Figure 9 shows that the new
proposition gives the lowest error and no trend of residuals was obtained in Figure 9A
when compared to data processed by all runoff models in the 102 sub-basin. Furthermore,
the parametric model given by Yang (n = 2) is also reliable and can be taken as the second
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choice to estimate IARR in the region that has a great climatic diversity—i.e., the northern
Algeria area.
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Figure 9. Residual analysis curves between real and estimated interannual rainfall-runoff (IARR),
which is obtained by applying a new method (A), Schreiber (B), Ol’Dekop (C), Budyko (D), Yang (E),
and Sharif (F) models.
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Table 7. Statistical tests and performance analysis of estimated inter-annual rainfall-runoff final results
(IARR), obtained by applying a new method, Schreiber, Ol’Dekop, Budyko, Yang, and Sharif models.

Statistic Real Data New
Method Schreiber Ol’Dekop Budyko Yang (n = 2) Sharif

No. of obs 102 102 102 102 102 102 102
Minimum 7 7.0371 0.5553 2.039 1.2984 17.1006 3.0295
Maximum 497 514.9642 377.8251 237.4534 310.7265 351.4336 296.4772

1st Quartile 20.125 19.394 5.9808 6.7714 6.3305 31.2638 9.9495
Median 39 35.963 18.6804 13.9953 16.4043 46.9607 20.2944

3rd Quartile 104.25 97.8777 72.7747 41.4154 57.3576 116.9946 58.088
Mean 81.4977 81.1249 52.8807 32.3539 42.8715 86.4257 44.2095

Variance (n) 9292.465 9798.2623 5472.4952 1805.6423 3450.3124 4759.8256 3013.5653
Std. Dev (n) 96.3974 98.9862 73.9763 42.4929 58.7394 68.9915 54.8959

Var. Coef 1.1828 1.2202 1.3134 1.3701 1.3989 1.2417 0.7983
R2 1 0.9924 0.9211 0.8525 0.9041 0.9334 0.8739

R2
Adj 1 0.9923 0.9203 0.8524 0.9074 0.9333 0.8729

RMSE 0 8.5073 12.865 30.6084 20.739 12.2717 12.5336
MAE 0 5.2053 7.8716 18.7281 12.689 7.5089 7.6688

Mean A. Dev 67.8752 68.5061 29.2838 53.3262 38.8325 41.5967 53.2656
Std. E. Mean 9.5919 9.8495 4.2282 6.8649 5.4624 5.8448 7.3609

Standard deviation (Std. Dev), variation coefficient (Var. Coef), determination coefficient (R2), adjusted coefficient
of determination (R2

Adj), root mean square error (RMSE), mean absolute error (MAE), mean absolute deviation
(Mean. A. Dev), standard error of the mean (Std. E. Mean).

On the other hand, Sharif’s model shows good results compared to Schreiber, Ol’dekop,
and Budyko, where the mean residuals obtained by this last one are symmetrical, dis-
tributed between negative and positive value ranges for the axis (X = 0). In this study, the
Ol’Dekop model shows a very big tendency for residual data compared to other models,
reaching up to 300 mm. In addition, Schreiber and Budyko produce a significant trend of
data compared to real observations in watersheds, ranked from 61 to 102, which are located
in semi-humid, humid, and hyper-humid climate regions (Figure 3). Table 7 shows that
the IARR data series, which is obtained by the proposed model has a similar variability
to the real data, given by a coefficient of variation, which equals 9292.465 and 9797.2623,
respectively. Moreover, the mean values of both series are 81.4977 and 81.1249, respectively.

The results prove that the variability of data obtained by Schreiber’s model is closer to
real data compared to the data obtained by other models, where the coefficient of variation
given by this method equals 5772.4952. On the other hand, the statistical analysis of data
distribution shows that Yang’s model provides data closer to the real dataset compared to
data obtained by Schreiber’s model; whereby the first quartile, the median, the mean, and
the third quartile results equal 31.2638, 46.9607, 116.9946, and 86.4257, respectively (Table 7).
In this analysis, the new model shows the best performance compared to all models used
in this study proven by R2, R2

Adj, RMSE, and MAE parameters, which equal 0.9924, 0.9923,
8.5073, and 5.2053, respectively. Figure 10 shows a set of performance tests applied on data
series obtained by all models used in this study in five climate regions of northern Algeria.

The results show that the new model has the best reliability and more efficiency in
estimating IARR in all watersheds. Where R2 and R2

Adj show values between 0.9 and 0.99,
which was proved to be the best performance in the five climatic regions. Furthermore, the
model’s performance increases according to the rainfall condition of the basin, leading it to
perform more in humid regions than in the arid. The new model is even able to assess flows
produced by little precipitation, which is proven in the figure by an R2

Adj greater than 0.9 in
the semi-arid region. On the contrary, the other models are regional and they can be reliable
in more arid areas than in humid areas. The R2 and the R2

Adj show that Yang (n = 2) and
Sharif models perform better than non-parametric models, such as Schreiber, Ol’Dekop,
and Budyko models in the semi-humid, humid, and very humid areas. Contrariwise,
the performance of these models is better than the Yang and Sharif models in the arid
region. The histogram of RMSE and MAE shows that the proposed model has the lowest
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amount of errors, which are closer to the axis (X = 0) during all observations. However,
the other models have more computational residuals, which increase more in humid areas.
Ol’Dekop’s model has the highest values of RMSE and MAE observed in semi-humid,
humid, and very humid climate areas. The results deduced by this analysis show the power
of the proposed model to estimate runoff in different regions of the world. The use of the
S and Wc input variables and the calibration applied to the model parameters using the
De Martonne series is proof of the dynamicity of the new model and its ability to work
with the varying climatic and geomorphological conditions of the watershed, even if it is
ungauged. This advantage was justified by the steady performance and lack of a significant
trend residual estimation during all the processes carried out in the 102 sub-basins.
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Figure 10. Histograms explaining performance analysis of the new model against a set of parametric
(Yang, and Sharif) and non-parametric (Schreiber, Ol’Dekop, and Budyko) water balance models
on five climatic regions of Northern Algeria. These were shown by (A) determination coefficient
(R2); (B) adjusted coefficient of determination (R2

Adj); (C) root mean square error (RMSE); (D) mean
absolute error (MAE).
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5. Conclusions and Future Work

This research work aims to propose a new equation derived from Ol’Dekop’s model
to estimate the inter-annual rainfall runoff in a large region, which is characterized by
climatic diversity. The proposed model was obtained by applying new ANNs to estimate
the residual values (IARR’) given when comparing actual and predicted runoff assessed
by Ol’Dekop. In this regard, multiple regressions were used as transfer functions and
applied to a set of climatic and geomorphological input variables such as IAR, Wc, S,
and I. As the first step, the sub-model, namely ANN1, proposed to estimate IARR’ in
the entire region. Then an improvement was made by classifying output data in each
climatic region using the De Martonne index (I), which was also used to calibrate the
coefficients of the final model (IRRF). The performance analysis shows that the use of the
IRR sub equation which is obtained by ANN1 as a function of IAR, S, and Wc proved good
reliability (R2

Adj = 0.9518) with a significant error (RMSE = 208.539 mm) when estimating
IARR’ in the entire region. Contrariwise, the IRRF sub equation given by ANN2 shows
an improvement in the estimation model performance, where the R2

Adj and RMSE equal
0.9789 and 62.5948 mm, respectively. The new equation proposed in this model shows the
best performance compared to all parametric and non-parametric water balance models
used in this study. This performance is given by an R2

Adj equal to 0.9923 obtained for the
entire northern region of Algeria, with the absence of significant errors proven by residual
analyses. Inversely, the compared models are less performed. They are set by the R2

Adj
test between 0.8525 and 0.9333, with a tendency of residuals observed in some watersheds
that are located in humid and very humid regions. The comparative performance analysis,
which was applied in five climatic regions, shows the best and steady performance of the
proposed model in all areas, given by an R2

Adj more than 0.92, with RMSEs less than 15 mm.
However, the other models are regional and perform better in arid regions than in humid. A
large trend of residuals is observed by non-parametric models such as Schreiber, Ol’Dekop,
and Budyko in the very humid region, where the RMSEs are greater than 100 mm.

Our future work aims to further improve this model designed to estimate rainfall-
runoff data in ungauged watersheds using different time scales. We also want to propose a
new model using machine learning for estimating rainfall-runoff in sandy basins.
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Abbreviations

IAR Inter annual rainfall
IAT Inter annual temperature
S Watershed area
WC Watercourse
I De Martonne index
IARR Inter annual rainfall runoff
IAE0 Inter annual potential evapotranspiration
IAEa Inter annual actual evapotranspiration
IARRR Real inter annual rainfall runoff
IARRE Inter annual rainfall runoff estimated by Ol’Dekop model
IARR’ Inter annual rainfall-runoff residual data obtained from Ol’Dekop model
(Xi)* Linearized variable
EIRR Inter annual rainfall runoff residual data estimated by ANN1
EIRRF Inter annual rainfall runoff residual estimated by ANN2
IRR ANN transfer function given by regression equation
ANN Artificial neuron network
ANN1 Basic artificial neuron network model
ANN2 Dynamic artificial neuron network model
SD Semi-dry
ME Mediterranean
SH Semi-humid
H Humid
VH Very humid
R2 Coefficient of determination
R2

Adj Adjusted coefficient of determination
MSE Mean squared error
RMSE Root mean square error
MAE Mean absolute error
DW Durbin–Watson coefficient
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