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Abstract: It is a well-established practice to build a robust system for sound event detection by
training supervised deep learning models on large datasets, but audio data collection and labeling
are often challenging and require large amounts of effort. This paper proposes a workflow based on
few-shot metric learning for emergency siren detection performed in steps: prototypical networks are
trained on publicly available sources or synthetic data in multiple combinations, and at inference
time, the best knowledge learned in associating a sound with its class representation is transferred to
identify ambulance sirens, given only a few instances for the prototype computation. Performance
is evaluated on siren recordings acquired by sensors inside and outside the cabin of an equipped
car, investigating the contribution of filtering techniques for background noise reduction. The
results show the effectiveness of the proposed approach, achieving AUPRC scores equal to 0.86 and
0.91 in unfiltered and filtered conditions, respectively, outperforming a convolutional baseline model
with and without fine-tuning for domain adaptation. Extensive experiments conducted on several
recording sensor placements prove that few-shot learning is a reliable technique even in real-world
scenarios and gives valuable insights for developing an in-car emergency vehicle detection system.

Keywords: emergency siren detection; few-shot learning; prototypical networks; convolutional
neural networks; domain adaptation

1. Introduction

Nowadays, although self-driving cars still represent a challenge, vehicles are equipped
with driving automation such as cruise control, automatic steering, and parking assistance.
Our focus lies on a novel emergency vehicle detection system [1–3], a safety device designed
to alert the driver of emergency vehicles approaching, preventing distractions and siren
perception difficulties due to cabin soundproofing or hearing impairment.

In recent years, research on emergency siren detection (ESD) has made significant im-
provements by combining sound signal processing techniques with deep neural networks.
To mention some related works, in Ref. [4], a multi-task learning scheme has performed
siren sound recognition taken from recordings and synthetic audio files. In Ref. [5], a multi-
channel convolutional neural network (CNN) has executed the task of non-emergency
and emergency sound classification. The authors have retrieved the siren audio files from
the massive collection of labeled data called AudioSet [6], further extended by using data
augmentation techniques. In Ref. [7], three neural network models based on 1D-CNN,
2D-CNN, and their ensemble have been developed for siren, vehicle horn, and noise classi-
fication. The dataset consists of thirty hours of audio files collected from web resources,
publicly available data, microphone recordings, and data augmentation applications. In
our previous works [8,9], we have achieved state-of-the-art performance in the ESD task
by investigating several acoustic features and minimizing the computational cost of the
algorithm. We have trained and tested a CNN with spectrograms computed from audio
files equally balanced in siren and noise. For this purpose, we have downloaded noises
from web resources and generated siren audio files via algorithm, collecting about thirteen
hours of audio material.
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Besides the neural architectures, the regularization and optimization techniques,
and the performance achieved, most of the ESD works have in common a large amount
of annotated audio data for training [10–12]. Typically, a large dataset represents the
requirement of modern supervised deep learning models to build a robust system for
detecting and classifying sound events [13–15], especially rare ones [16,17]. On the other
hand, data are difficult to collect in some applications [18], and the manual labeling pro-
cess involves human effort. A widely used method for extending small audio datasets
consists of data augmentation procedures applied directly to the raw signal (e.g., noise
addition, distortion, or speed scaling) or the time-frequency representation (e.g., pitch or
time-shifting) [19,20]. However, these techniques have the disadvantage of altering the
target signal or the background, creating criticality for detecting sounds with well-defined
patterns and in specific contexts, such as an emergency siren in urban traffic noise. There-
fore, with limited availability of annotated data and no recourse to data augmentation,
the main goal is to devise detection systems that provide reliable results, given only few
examples to build a neural model.

The purpose of the present study is to develop a deep learning-based siren detection
algorithm for cars. For this task, we captured recordings onboard a vehicle equipped
with microphones outside and inside the passenger compartment. The recording context
has revealed the difficulty of capturing and labeling audio data containing siren sounds,
the influence of sensor location in the signal acquisition, and the impact of car structural
characteristics on sound quality. Collecting a large dataset of siren sounds is, thus, difficult
and challenging. Given the scarce availability of labeled data containing siren sound events,
in this work, we evaluate the effectiveness of few-shot learning applied to the emergency
siren detection task, focusing on ambulance sirens.

Specifically, we investigate a few-shot metric learning method, i.e., prototypical net-
works in their original formulation [21]. Episodic training is performed in several configura-
tions with three datasets extracted from publicly available sources and synthetic audio file
collections. For each dataset, the model yielding the best results is applied, at inference time,
to our noise and siren recordings, and lastly, the robustness of the prototypical technique
is compared to a baseline model. For this purpose, we employ the convolutional architec-
ture implemented in our previous work [8,9], trained with the synthetic dataset with and
without fine-tuning for domain adaptation, and tested on our recordings. The experiments
demonstrate that, in the condition of scarce availability of labeled data, few-shot methods
return promising performance in emergency siren detection, outperforming traditional
CNN models.

This work provides a comprehensive analysis of few-shot metric learning capabilities
in a real-world application, where one of the most critical issues is the difficulty of collecting
actual data as input to a deep learning algorithm. Our main contributions are summarized
as follows.

1. We analyze the performance of prototypical networks employing datasets extracted
from three audio collections differing in the genre, amount of data, and sound cat-
egories. In this step, we detail for what reason and to what extent the dataset char-
acteristics and training/test examples combinations affect the performance of each
prototypical model.

2. We propose the application of the knowledge learned by the few-shot models in
discriminating similar or dissimilar instances from a specific audio collection to detect
a target sound belonging to a different dataset (the ambulance siren recordings), given
only few examples for the prototypical embeddings computation.

3. We focus the work on real-world applications, comparing the efficacy of different
sensor placements onboard the vehicle. The analysis thus conducted provides relevant
information to the development of emergency vehicle detection systems, such as the
most suitable placement of the sound recording sensor between eight microphone
positions outside and inside the cabin.
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4. We validate the effectiveness of the few-shot technique by comparing it to a baseline
with and without fine-tuning by using a few examples of the target domain. We also
evaluate noise filtering strategies to improve the performance of the analyzed models.

The rest of the paper is organized as follows. Section 2 provides an overview of
previous research on few-shot metric learning for audio and its relation to our study.
In Section 3, we describe the proposed approach, and in Section 4, the datasets and the
experimental configurations are presented. We illustrate and discuss simulation results
in Section 5, and finally, we summarize the conclusion and comment on possible future
extensions in Section 6.

2. Related Work

Although supervised learning with one or a limited number of examples has been a
topic of interest for several years in computer vision [22,23], applications in audio signal
processing are relatively recent. Among the different few-shot approaches [24,25], task-
invariant embedding methods fit well with audio classification. The principle is that
an embedding function is learned from a generic large-scale training set, and the prior
knowledge in discriminating between similar and dissimilar instances is applied directly
to new classes at inference time by using similarity measures.

This section summarizes some relevant work on few-shot deep metric learning in
audio signal processing, paying particular attention to those that share the same few-shot
techniques and methods employed in this work.

In acoustic event recognition and acoustic scene classification, [26] is the first work to
address the challenge of deep learning with few audio data employing transfer learning
strategies compared with prototypical networks [21], not in the concept of meta-learning
but with a fixed taxonomy in training and testing. In Refs. [27,28], acoustic event detection
with meta-learning models [21,29,30] shows the effectiveness of these approaches in gener-
alization to new audio events, outperforming supervised solutions based on fine-tuned
convolutional neural networks. Five different few-shot learning methods [21,31–34], im-
proved with an attentional similarity module to detect transient events, are applied to sound
event recognition in [35]. The effectiveness of few-shot techniques in sound event detection
has led to the development of strategies to extend their application to increasingly challeng-
ing tasks, such as multi-label classification [36], rare sound event detection [37], continual
learning [38], unsupervised and semi-supervised learning approaches [39], and sound
localization [40].

Few-shot methods are adapted to an open-set sound event detection problem in Ref. [41],
where several few-shot metric learning techniques are applied and compared to locate
keywords in audio files. The task is transformed into binary classification, where the key-
words belong to a positive set, and all other words constitute the negative set. The authors
show that the method can generalize to unseen languages, and it could find applications to
audio domains different from speech. The problem of open-set recognition coupled with
few-shot learning is also faced in Ref. [42]. Two different autoencoder architectures with a
multi-layer perceptron classifier are designed to identify target sound classes and reject
unwanted ones. The dataset, consisting of sounds in domestic environments, has been
created ad hoc by the authors and structured for few-shot learning applications [43].

Recently, few-shot neural networks have been deployed in bioacoustic event detection
research. Audio recordings can be beneficial in monitoring the presence and behavior
of some animals, but collecting and labeling a large training set of animal vocalizations
are demanding and time-consuming tasks. This issue concerned Task 5 of the DCASE
2021 Challenge [44], where participants have improved over the prototypical baseline
by applying several approaches, such as a transductive inference method [45], attention
similarity and embedding propagation [46], data augmentation [47,48], segmentation [49],
and the combination of the prototypical loss with knowledge distillation and attention
transfer loss [50].
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Several studies have employed few-shot techniques in audio applications. In Ref. [51],
few-shot keyword spotting of new and user-defined words to be implemented in devices
with a vocal interface is performed by prototypical networks with different temporally
dilated CNN architectures. Sound anomaly detection of industrial machinery [52], speaker
identification and activity recognition [53], automatic drum transcription [54], and underwa-
ter acoustic signal recognition in impulsive noise environments [55] are some exemplifying
and not exhaustive few-shot learning applications for audio.

In this paper, few-shot emergency siren detection is performed by drawing inspiration
from the most task-suitable methods available in the literature. The goals of the paper
consist of:

• the investigation of a few-shot CNN-based architecture such as prototypical networks
because of the low-computational cost and no setting limitations;

• the choice of training data not necessarily related to the task. In a car-related acquisition
context, it is challenging to generate realistic simulated data that consider engine
noise, cabin attenuation, and sound absorption due to the car interior and passengers.
Consequently, we explore the performance of three datasets from Spoken Wikipedia
Corpora [56], UrbanSound8K [57], and our A3Siren-Synthetic audio files collections;

• the adoption of an open-set procedure in testing, considering the problem as a binary
classification siren vs. noise;

• the use of data from recordings in the actual testing environment directly at the
inference stage. For prototypical networks, the availability of few labeled instances is
not a limitation to generating the embedded prototypes of the target domain;

• the validation of the proposed approach by comparison with a baseline model and the
study of performance improvement strategies, such as harmonic-percussive source
separation techniques [58,59] that have previously shown their efficiency in the
ESD task [9].

The benefits of a few-shot approach for emergency siren detection can find application
in a feasible and customizable emergency vehicle detection system implementation in
different vehicles.

3. Proposed Approach

This section presents our solution for emergency siren detection built on prototypical
networks, compared with a CNN baseline model. We first illustrate the few-shot met-
ric learning strategies adopted, then give an overview of the proposed ESD workflow,
and finally describe the neural architectures employed in this work.

3.1. Few-Shot Metric Learning

Few-shot learning aims to solve a classification task given a target domain built on
few examples. Hence, it is necessary to adopt strategies to create a model with general-
ization capability and quick adaptation to new domains. The few-shot metric learning
approach usually employs a training set different from the test set. Training is performed
in a C-way K-shot fashion, where C represents the number of classes (ways) and K the
instances (shots) of each class employed in each iteration. This training method mimics
the configurations that will arise at inference time, preferring large datasets and a high
number of iterations to learn how to discern between different classes given only few input
examples. The robustness of the model is evaluated with a metric-based function that
returns the similarity measure between instances of the same class.

3.1.1. Episodic Training

A common strategy in few-shot metric learning algorithms is the episodic train-
ing [32]. For this purpose, we have organized the training set in F folders, each con-
taining a set of M labeled samples T = {(x1, y1), . . . , (xm, ym)}M

m=1. The feature vectors
xm ∈ RD have a fixed dimension D, and the labels ym ∈ {1, . . . , L} represent the L classes.
A folder is selected in each iteration (episode), and a mini-batch of data is sampled ran-
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domly. A part of the mini-batch constitutes the support set, composed of C× K examples
S = {(x1, y1), . . . , (xi, yi)}C×K

i=1 where feature vectors xi ∈ RD and labels yi ∈ {1, . . . , C},
with C ≤ L. The remaining samples define the query set, composed of C × q examples
Q = {(x1, y1), . . . , (xj, yj)}

C×q
j=1 . The embedding function fφ incorporates the support set

S and query set Q into a lower-dimensional hypothesis space. Due to the reduction in
tensor dimensionality and a meaningful representation in the transformed space, similar
examples relative to the task are close, while dissimilar examples are easily differentiable.
The metric function gsim performs the similarity measure between the support and the
query set embeddings, hence the definition of few-shot metric learning. Different metric
functions can be used, fixed, or with learnable parameters. The training is repeated until
the minimization of the loss function Lφ, representing the prediction error of the samples
in Q conditioned by the comparison with the representation in S.

Figure 1 illustrates the episodic training procedure, from the random selection of
support and query sets to the embeddings generation, and finally to the similarity measure
in an iterative process to minimize the loss function.

Support Set:

C-way K-shot Embedding Module Similarity Module

Output:

One-Hot Vector

Training

Data Folders

?

?

?

?

?

?

?

Query Set Embedding Module

f
f

f
f

g

sim

Backpropagation

L
f

Figure 1. Episodic training procedure (5-way 5-shot example) of few-shot metric learning.

3.1.2. Open-Set Testing Procedure

The traditional few-shot testing method assumes that only U < F folders containing
R < L classes are used in training. The embedding model must be optimized to transfer
the knowledge learned to classify samples of the (L− R) classes in the (F −U) folders.
Again, the support set S of size C× K and the query set Q with the instances to be classified
are constructed. The problem thus posed is “closed-set” because samples belonging to C
well-defined classes are classified.

Our work aims to detect samples of only one target class given few labeled instances for
the embedding generation. Classifying samples of other categories, whose characteristics need
not be necessarily known, is not of interest. The problem of discerning between one positive
class and the negative rest is called “open-set” and is reduced to a binary classification task. At
inference time, a positive support set P = {(x1, ypos), . . . , (xi, ypos)}p

i=1 consisting of a small
number of labeled target samples and a negative support set N = {(x1, yneg), . . . , (xj, yneg)}n

j=1
containing examples that do not belong to the category of interest are randomly selected.
The remaining instances compose the positive and negative query sets. As in training, the em-
bedding function fφ incorporates the support and query sets; the similarity module gsim
compares the embeddings and returns the probability that the query sample belongs to the
positive class. The algorithm must have generalization capabilities to find the similarity
between the embeddings of the (unlabeled) target samples and those computed from the
positive support set, discriminating from the negative class.
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Figure 2 shows the open-set testing procedure, from the random selection of the posi-
tive and negative support sets to the embeddings generation, and finally to the similarity
measure between the query and the positive support embeddings.

Positive and Negative

Support Set (p,n)

Output:

One-Hot Vector

?

?

?

?

?

?

?

Query Set Embedding Module

+

+

+

+

+

-

-

-

-

-
f
f

f
f

g

sim

Test

Data Folders

+

-

Embedding Module Similarity Module

Figure 2. Open-set testing procedure of few-shot metric learning.

3.2. Overview of the ESD Workflow

The pipeline of the proposed approach consists of the following steps.

1. Best few-shot models computation: the raw audio is pre-processed and transformed
into log-Mel spectrograms, organized, and given as input to prototypical networks.
Because the episodic training in several C-way K-shot combinations returns different
performance in the test phase, the model that gets the best output is saved for the next
step. This procedure is repeated for three datasets extracted from diverse audio file
collections, obtaining three best-performing C-way K-shot prototypical models.

2. Best few-shot models evaluation: our audio recordings are pre-processed and trans-
formed into log-Mel spectrograms, split over eight audio channels corresponding to
eight sensor positions. The best-performing C-way K-shot models obtained in step (1)
are used to make predictions about new data taken from our recordings for the EDS
task, repeating the procedure for each audio channel.

3. Analysis of prototypical outcomes: the experiments performed in step (2) provide clas-
sification scores distinguished by training model and recording channel, so we take the
best performing dataset and the best sensor locations to compute the baseline models.

4. Baseline models computation: the raw audio belonging to the collection that provided
the best prototypical results is pre-processed, and then log-Mel spectrograms are
computed and organized in a suitable way as input to the CNN employed for the
baseline. The network is trained in two ways: without domain adaptation and with
fine-tuning by using combinations of few data taken from the target dataset.

5. Baseline models evaluation: we test the recordings on the baseline models computed
in step (4), and the results are compared with few-shot best outcomes (step (3).

6. Harmonic filtered experiments: after applying a harmonic-percussive source sep-
aration technique, log-Mel spectrograms are extracted again from the recordings.
The inference operations in steps (2) and (5) are repeated and compared to the experi-
ments with unfiltered data.

Figure 3 presents the block diagram of the proposed approach for emergency siren detection.
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Figure 3. The block diagram of the proposed approach for emergency siren detection.

3.3. Neural Networks Architectures
3.3.1. Prototypical Network

The peculiarity of a prototypical network is the generation of a representation µc
of each class, called prototype. Given Sc = {(x1, y1), . . . , (xc, yc)}K

c=1 (the support set
belonging to the c-class), the prototype µc is the mean vector of the embedded support
samples, computed through the embedding function fφ with learnable parameters φ:

µc =
1
K ∑

(xc ,yc)∈Sc

fφ(xc). (1)

Given a similarity function gsim, represented by the squared Euclidean distance d,
the prototypical network computes the relationship between a query sample xq ∈ Q and
the prototypes via a softmax over distances in the embedding space:

pφ(y = c | xq) =
exp(−d( fφ(xq), µc))

∑c′ exp(−d( fφ(xq), µc′))
, (2)

where pφ(y = c | xq) represents the normalized probability distribution that xq belongs to
the c-class. The training process is done by minimizing L(φ) (the negative log-probability
of the true c-class via stochastic gradient descent):

L(φ) = − log pφ(y = c | xq). (3)

Consequently, in each training episode, the model learns the similarity between query
samples and the corresponding prototypes belonging to randomly chosen C-classes.

Prototypical architecture is based on the convolutional block defined in [33], consisting
of a convolutional layer with a 3 × 3 kernel and 64 filters, a batch-normalization layer,
and a ReLU activation layer. The sequence of four convolutional blocks, each followed
by a 2 × 2 max-pooling layer, composes the embedding function fφ. In the learning
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process, the feature maps of the support set prototypes and the query set are flattened and
concatenated to be compared through the similarity function gsim.

3.3.2. Convolutional Neural Network

The CNN architecture employed for the baseline consists of six convolutional layers
and two fully connected layers [8,9]. The convolutional part is organized into three blocks
with the same structure but a different number of filters. The first convolutional block
comprises two convolutional layers with a 3 × 3 kernel and 4 filters, and an ELU activation
function is applied after each of them. The final layer of each block performs a 2 × 2
max-pooling. The number of feature channels doubles in the subsequent two convolutional
blocks, from 4 to 8 to 16. Then, the feature maps are flattened and given as input to a
fully connected layer with 10 units. Finally, a softmax activation function is applied in the
last layer.

4. Materials and Methods

This section first presents the audio file collections used in the experiments. Few-shot
learning, whether based on meta-learning concepts or transfer learning techniques, exploits
the knowledge learned in a source task and applies it in a different domain. For this reason,
we experience non-task-related datasets in training, extracted from Spoken Wikipedia
Corpora and UrbanSound8K. We also employ our audio files collection A3Siren-Synthetic,
which has affinities with the test set computed from our recordings A3Siren-Recordings.
Then, we describe the pre-processing operations on audio data, the features computation,
the network training settings, and the performance metrics considered in the experiments.

4.1. Datasets
4.1.1. Spoken Wikipedia Corpora

The Spoken Wikipedia Corpora (SWC) is an audio collection of volunteer readers of
Wikipedia articles. The English-language corpus consists of 1339 audio files totaling about
395 h of recordings from various readers. The audio files, characterized by ogg format, are
monophonic with a sampling rate of 44.1 kHz and 32-bit encoding. They are associated
with metadata, some of which have textual annotations aligned to the words (start and end
time in milliseconds). For the selection, partitioning, and pre-processing of the audio files,
we have been inspired by the procedures described in [41].

In an SWC audio file, a specific word pronounced by a reader represents the target
class. A C-way K-shot training episode is performed by taking a support set with C classes
(different words) and K instances per class (examples of the same word) contained within
a folder (corresponding to a reader). The query set is composed of an additional number
of instances per class. We set up the episodic training with C-way K-shot ranging from
2-way 1-shot to 10-way 10-shot and a query set of 16 instances per class. Thus, we keep
readers with at least 2 target words repeated 26 times, considering only audio files with
temporally aligned words. Out of 208 readers and more than 2000 classes, we assign 75% to
the training, 10% to the validation, and 15% to the test. Audio segments are selected by
taking a 0.5 s window in the center of each instance. At inference time, the knowledge
acquired to recognize the similarity between the same words spoken by a reader is trans-
ferred to detect a target word (positive set p) discriminating from various random samples
of non-target words (negative set n) within an audio file of a reader assigned to the test.

4.1.2. UrbanSound8K

UrbanSound8K (US8K) includes 8732 urban sounds of duration less than or equal to 4 s
divided into 10 classes and 10 folders, totaling about 8.75 h. All audio files are in wav format,
about 92% of which are stereo and the remaining 8% mono, with sampling rates ranging from
8 kHz to 192 kHz and encoding between 4-bit and 32-bit. The excerpts are taken from field
recordings available at https://freesound.org/ (accessed on 5 June 2022) [60].

https://freesound.org/
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We split the training, validation, and test folders with a 7:1:2 ratio, leaving the dis-
tribution of the audio files within each folder unchanged and applying standardization
operations. In a training episode, we select a folder (US8K fold) and take as support set
C classes (environmental sounds) and K instances per class (examples of the same class
also from different audio files) ranging from 2-way 1-shot to 10-way 10-shot. The query
set consists of the remaining instances not used in the support set. We apply in testing
the same positive and negative set definition criteria described for the SWC. In this case,
training and testing are performed with a fixed taxonomy because, during the inference,
we use classes already seen in training. It is not a limitation at this stage; our purpose is
not to evaluate the performance of few-shot techniques on the US8K dataset but to apply
different models to our recordings and compare the outcomes.

4.1.3. A3Siren-Synthetic

A3Siren-Synthetic (A3S-Synth) is the audio collection used in our previous work [9] to
train and test a convolutional neural network implemented for the siren vs. noise classifica-
tion task. The training collection includes 32,000 noise and 32,000 siren audio segments
in wav format, 16 kHz mono and 32-bit depth, each characterized by a 0.5 s duration.
The noise examples were drawn from audio files downloaded from web resources [60],
including urban traffic noise (car and motorcycle engines), and other varieties of sound
events (horns, general alarms, heavy rain, people talking, and nature sounds) for about
4.5 h. On the other hand, the siren examples were generated via algorithm, according to the
procedure described in [8]. Specifically, the Doppler effect was applied to an ambulance
siren sound according to the Italian law [61]. Then, the implemented siren audio files were
added to different environmental noises at SNRs equal to 0 dB, −5 dB, −10 dB, and −15 dB.
We generated approximately 4.5 h of siren immersed in traffic noise to obtain a balanced
dataset. The original test collection consists of 6000 noise and 6000 siren audio segments for
each SNR used in training, having the same format and characteristics as the training set.

In this work, we carry out the few-shot experiments by organizing the training data
into 16 folders, each containing 2000 noise and 2000 siren audio segments. Because only
two classes are present, the episodic training is performed with C-way K-shot equal to
2-way 1-shot, 2-way 5-shot, and 2-way 10-shot. The A3S-Synth training collection is split into
75% for training and 25% for validation. For evaluating the models, 300 noise and 300 siren
audio segments for each SNR are randomly selected from the A3S-Synth test collection,
organized in separate folders. We also employ this audio collection to train the CNN model
representing the baseline as a comparison to the performance of few-shot techniques. In the
experiments with the CNN, the organization of the original A3S-Synth training audio files
is left unchanged. Again, the split is 75% for training and 25% for validation.

4.1.4. A3Siren-Recordings

We call A3Siren-Recordings (A3S-Rec) the audio files recorded during a campaign
conducted in May 2021. We used a car equipped with eight condenser microphones mod.
Behringer ECM8000 (omnidirectional, impedance 200 Ohm, sensitivity 70 dB, frequency
response 20–20,000 Hz, weight 136 g). The installation setup included four microphones
inside the passenger compartment, with two at the sides of the front seats and two at the
sides of the rear seats at seatback height, two in the trunk at the height of the floorboard,
and two behind the license plate on opposite sides. The microphones have been connected
via XLR connectors to an 8-channel Roland Octa-Capture soundboard, which in turn was
interfaced via USB to a laptop controlled by an operator inside the car. The positions of
the recording sensors have been designed to be distributed in all relevant places of the
vehicle: at the front and rear of the passenger compartment, in the trunk, and externally.
The positions inside the passenger compartment are evenly distributed within the cabin and
do not interfere with the view, the air conditioning vents, or the audio system. In addition,
they may have a use related to the audio equalization system [62]. The trunk represents
a weather-protected environment scarcely affected by the sounds inside the passenger
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compartment and offers other sensor applications, such as asphalt wetness detection [63].
At last, the installation behind the license plate is a location in the outdoor setting that
combines rapid responsiveness to external signals with a moderately sheltered condition
from wind and weather.

Figure 4 shows the car’s microphone setup.

(a)

Pos. 2 Pos. 4

Pos. 6

Pos. 1 Pos. 3

Pos. 5

Pos. 8

Pos. 7

(b)

Figure 4. Setup of the car equipped for environmental recordings. (a) Layout of the microphone
positions: positions 1–2 at the side of the front seats, positions 3–4 at the side of the rear seats,
positions 5–6 in the trunk, and positions 7–8 behind the license plate. (b) Details of the microphones,
from top to bottom: (top), at position 2; (middle), in the trunk at positions 5–6; (bottom), hidden
behind the license plate at position 8.

The recordings have been performed for a total of 7 days with the car moving in traffic
and stopped at parking areas, always with the engine running. The itineraries have been
carefully planned to cover the busiest roads where the transit of ambulances requires the
activation of the siren alarm. We focused on the region’s most populated city, exploring
high-traffic suburban areas near the main hospital and central urban areas. Sirens have
been recorded in several situations: adjacent to a construction site, along a coastal road,
in a suburban area near a shopping center and a residential neighborhood, in the city
center, and on a high-speed road. In addition to various background noises, different
driving settings have been requested based on the driving conditions: stationary with the
engine running, at moderate speed with frequent stops in urban areas, and at high speed in
suburban locations.

Recordings have been carried out separately in eight channels, corresponding to the
eight microphones, with 44.1 kHz sampling rate and 32 bit-depth, and saved in wav format.
We collected 18 audio tracks for approximately 10 h and 30 min. Only recordings containing
siren events have been considered for the experiments, identifying six tracks for about
3 h and 39 min. The content of each track was analyzed, and the portion of the audio
file in which the siren sound was audible, even weakly, with reference to the channels
corresponding to the external microphones, was selected. Spectrogram visualization helped
identify the presence of the fundamental frequencies and the upper harmonics of the two
siren tones for the correct trimming of the audio files. After the standardization procedure
application, 0.5 s siren segments have been assigned to the positive set. Given the wide
availability of urban traffic noise, samples preceding each siren event for the duration of
one minute have been chosen and attributed to the negative set. Figure 5 illustrates the
proposed audio selection method, and Table 1 shows the A3Siren-Recordings composition.

We have organized the siren and noise audio segments in two ways: (i) in separate
folders, each containing the samples selected in the individual recordings; and (ii) in a single
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folder in which all audio files are mixed regardless of the original track. The first strategy
allows the algorithm to be evaluated in identifying the siren sound in a specific background
noise context. In a single recording, the siren detection task is performed by contextualizing
the target sound within a background noise where the siren gradually appears with a low
signal level. The second data arrangement aims to discriminate between siren sounds and
traffic noises not belonging to the same recording. In this way, we evaluate the capability of
the network to recognize siren sounds in several background noises. In both cases, the siren
detection is performed separately in the eight channels of the audio tracks.
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Figure 5. A3S-Rec positive and negative audio data selection method.

Table 1. A3S-Rec audio file composition and recording environment.

Recording Siren (s) Noise (s) Location

20210506-1652 53 60 construction site
20210506-1714 19 60 coastal road
20210507-1421 38.5 60 shopping center
20210507-1426 38 60 residential suburb
20210507-1536 26 60 high-speed road
20210507-1640 25 60 city center

Total 199.5 360

4.2. Methods
4.2.1. Audio Pre-Processing and Features Extraction

The audio files of each collection have different characteristics due to the recording
devices and settings, so a pre-processing stage has been required to standardize them.
The stereo audio files have been made monophonic through the operation of amplitude
averaging of each audio channel; then they have been resampled to 16 kHz and encoded to
32-bit. Finally, they have been split into 0.5 s chunks with an overlap of 10 ms for sequenced
segments. We chose log-Mel spectrograms as time-frequency representation. For each
segment, log-Mel spectrograms represented by a 128 × 51 matrix have been computed
on 25 ms Hanning windowed frames with a hop size of 10 ms, a 1024-point fast Fourier
transform, and 128 Mel-frequency bands. Audio file pre-processing operations have been
conducted with the Python libraries NumPy [64] for operations on arrays and LibRosa [65]
for audio file loading, resampling, normalizing and writing. Feature extraction procedures
have also been performed with LibRosa and Torchaudio [66] libraries.

4.2.2. Harmonic Filtering

Our previous study [9] investigated the noise reduction and the siren harmonic com-
ponents enhancement in the ESD task. Hence, the effectiveness of the harmonic-percussive
source separation technique [58,59] is also evaluated in this work.
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The procedure consists of the signal transformation from the amplitude to the fre-
quency domain; then, horizontal and vertical median filters are applied to the spectro-
gram, resulting in one time-frequency representation with enhanced harmonic compo-
nents and the other with accentuated percussive ones. The harmonic-percussive sepa-
ration is also extended to a third residual component by drawing inspiration from the
sines+transients+noise (STN) audio model [67]. According to this, the original spectrogram
can be decomposed into three components:

S = H + P + R, (4)

where H contains the harmonic, P the percussive, and R the residual components not
included in H or P.

The relationship between the harmonic and percussive contents (and vice versa) of
the spectrograms obtained from the decomposition is regulated by two separation factors
(βh, βp) ≥ 1. In the experiments, we apply a harmonic separation factor βh = 3 margin
coefficient of librosa [65] library) that accentuates the harmonic contents and reduces the
percussive and residual ones.

4.2.3. Training Settings

We train prototypical networks in several (C, K) configurations. In few-shot algo-
rithms, it is not straightforward to design the validation process as an unbiased evaluation
of the training fit, usually performed by a percentage of training samples at the end of each
iteration. Therefore, we carry out episodic validation according to [33]: it is performed in
the C-way K-shot fashion at the end of a chosen number of training episodes, employing
validation folders split from the training ones. After each validation step, the average
loss is compared with the previous value, and the learned parameters of the model that
returned the best performance are stored for testing. We set the learning rate equal to 0.001,
Adam [68] optimizer, and 60,000 episodes, of which 1000 for validation every 5000 for
training, saving the model that performs best in the validation stage.

Then, the baseline model compared with the few-shot methods is computed with and
without fine-tuning for domain adaptation. First, the CNN is trained for 100 epochs with
a learning rate equal to 0.001, a decay rate of 0.1 every 30 epochs, and Adam optimizer,
saving the model that performs best in validation. Then, the previously trained model is
adapted with several (p, n) instances of the new task, according to the (p, n) combinations
employed for prototypical support embeddings. Because we use few data for domain
adaptation, the network is prone to quick overfitting. Hence, we freeze all the convolutional
layers and re-train only the two last linear layers with a low learning rate and a small
number of epochs. We set 20 epochs, Adam optimizer, learning rate between 0.0001 and
0.00001, and early stopping regulated by the training loss.

In our experiments, we used a NVIDIA DGX Station A100 with Dual 64-Core AMD
EPYC 7742 @3.4 GHz , and 8 NVIDIA A100-SXM4-40 GB GPUs. The server was running
Ubuntu 20.04.3 LTS, and we employed the PyTorch [69] deep learning framework to
implement the network designs.

4.2.4. Performance Metrics

Performance is evaluated in terms of the area under precision-recall curve (AUPRC),
a metric used in binary classification with unbalanced data, focusing on positive examples.
AUPRC scores range from 0 to 1. A model achieves a perfect AUPRC (equal to 1) when all
true positive examples are correctly classified with neither false positives (perfect precision)
nor false negatives (perfect recall). Both for prototypical networks and the fine-tuned
baseline, the random selection of positive and negative instances could affect the results
because of the variability of the sample characteristics, even within the same class. So,
the experiments are repeated ten times with different random (p, n) examples, and the
AUPRC scores are averaged to generalize the performance over the available data.
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5. Experiments and Discussion
5.1. Few-Shot Models Analysis

The first step of our experiments aims to find the (C, K, p, n) combination that re-
turns the best results in the classification of a target word (SWC), an environmental sound
(US8K), and an ambulance siren (A3S-Synth). We train prototypical networks in the
(C, K) ∈ {(2, 1), (2, 5), (5, 1), (5, 5), (10, 1), (10, 5), (10, 10)} configurations with SWC and
US8K datasets, while we employ (C, K) ∈ {(2, 1), (2, 5), (2, 10)} with A3S-Synth. At in-
ference time, all models are evaluated by constructing positive and negative support
embeddings in the same (p, n) combinations with p ∈ {1, 5} and n ∈ {1, 5, 10, 50}. The re-
sults show the standard deviation across the AUPRC scores computed for each folder and
averaged over 10 iterations.

Figure 6 illustrates the performance of prototypical networks with the SWC dataset.
The experimental results correlate better scores with higher (C, K, p, n). The 10-way 10-shot
model returns an AUPRC of 0.83 in the (p, n) = (5, 50) combination and 0.77 averaged
across all the (p, n) settings.
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Figure 6. AUPRC results for prototypical networks trained and tested with SWC in several
(C, K, p, n) combinations.

Figure 7 exposes the outcomes of prototypical networks using the US8K dataset. Again,
the 10-way 10-shot model yields the best results. The AUPRC for (p, n) = (5, 50) is equal to
0.76, and the average score is 0.72 over all (p, n) combinations.
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Figure 7. AUPRC results for prototypical networks trained and tested with US8K in several
(C, K, p, n) combinations.
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Figure 8 presents the prototypical results with the A3S-Synth dataset. Because C is
fixed and equal to 2, we analyze the performance varying (K, p, n). Across the examined
cases, the 2-way 10-shot model returns the best score with an AUPRC equal to 0.99 employ-
ing (p, n) = (5, 50) and 0.96 averaged over all the (p, n) combinations.
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Figure 8. AUPRC results for prototypical networks trained and tested with A3S-Synth in several
(C, K, p, n) combinations.

We now analyze the experimental results in each dataset varying (C, K, p, n). Option-
ing multiple values of C ways is allowed only in multiclass datasets, so we first examine
the SWC and US8K experiments by fixing C = (2, 5, 10) and averaging the AUPRC scores
over all the (K, p, n) corresponding configurations. In both datasets, we observe that many
C ways improve the average scores: multiclass training expands the prior knowledge of
the model by increasing the discriminative capability among many classes of sounds and
facilitating the discernment between examples belonging to new classes at the inference
stage. The 10-way setting returns an average AUPRC equal to 0.76 for the SWC dataset and
0.72 for the US8K. One possible explanation for this lower performance is that the US8K
comprises only ten classes, and few classes in training are limiting for constructing a model
with high generalization capability.

We proceed to investigate the impact of different K values within the same C-way
setting. For the SWC, many K shots return better performance: a higher number of
examples creates a prototype that more closely collects the patterns of the original class,
so the mean feature vector is more representative and facilitates the mapping between
the positive queries and the corresponding support prototype. For the A3S-Synth, we
observe that the 1-shot condition is the least effective, and at the same time, there is no
substantial improvement between the 5-shot and 10-shot settings. It is probably due to the
low inter-class variance of support examples and the significant background noise level in
the audio files, which could penalize the prototype generation with many examples. Finally,
the dataset that shows the least benefit in using multiple K shots in the training prototype
generation is the US8K. Again, the low interclass variability might invalidate the creation of
representative prototypes with numerous examples, especially for stationary sounds such
as those belonging to the air conditioner, drilling, engine idling, and jackhammer classes.
In addition, other sounds might not be adequately represented by a 0.5-s time window,
which is too wide for gunshot or too narrow for street music or children playing classes.

The outcomes of individual C-way K-shot cases by varying (p, n) are now explored.
For all datasets and in all the (C, K, n) configurations, the performance of prototypical
networks with p = 5 is better than p = 1 because the prototype created by one example
is not always representative of an entire class. On the other hand, increasing n does not
provide univocal results for all datasets. With the SWC and A3S-Synth, we notice an
improvement in AUPRC scores as n increases, and the n = 50 case returns the best results
in all simulation contexts. Hence, using more examples to create the negative support
prototype enhances the capability of the network to classify the positive instances correctly.
However, this is not the case with the US8K dataset, which shows a similarity between n at
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inference time and K in the training phase, where the use of an increasing number of shots
does not produce a more robust prototypical representation.

5.2. Siren Detection with Prototypical Networks
5.2.1. Evaluation within Individual Recordings

This first analysis assesses the ESD task within individual recordings composed of
audio segments with only traffic noise and others with additional sirens gradually arising
from the background. In this way, we test the models to promptly identify the target sound
in contexts where the background noise is significant, variable, and unpredictable. In the
experiments, we separately analyze the performance of the recording sensors for each
microphone position inside and outside the passenger compartment to evaluate which
setup provides the best response.

Tables 2–4 present the results of the best prototypical models trained with the SWC,
US8K, and A3S-Synth datasets, respectively, and tested on the single audio tracks of the
A3S-Rec dataset for each acquisition sensor. We analyze several (p, n) configurations with
p ∈ {1, 5, 10} and n ∈ {1, 5, 10, 50} support examples. AUPRC is the average of the scores
calculated for the six individual recordings over 10 iterations with random (p, n) support
instances. Compared to the previous experiments for selecting the most performing models,
we also investigate the combination with p = 10 as the three datasets have returned the
best results in the 10-shot condition.

The results obtained by varying (p, n) for each training dataset and audio recording
channel are now discussed.

With n fixed and p variable, we observe that the three models provide outcomes with
the same trend in all audio channels: p = 1 offers the worst performance and p = (5, 10)
shows improvements. In most cases, the AUPRC scores increase along with p = (1, 5, 10),
although there are configurations in which p = 5 equals or exceeds p = 10 in performance.
The smallest gap between the results with p = 5 and p = 10 can be observed in the channels
5–8. The reason is attributable to the noise in the recordings acquired inside the trunk
and behind the license plate: using more examples does not always help create a more
representative prototype of the target class if the audio segments of the support set are
affected by conspicuous background noise.

Similarly, analyzing the results by fixing p and varying n leads to uniform outputs:
the AUPRC scores increase as n = (1, 5, 10, 50) increases, with rare exceptions in the
configuration with p = 1. This fact confirms that the 1-shot setting, employed for both
positive and negative classes or only one of them, is not a suitable approach for classifying
sound events with quick fluctuations in intensity and frequency distribution.

Table 2. A3S-Rec dataset: AUPRC of the 10-way 10-shot SWC prototypical model tested on individual
recordings for each acquisition sensor.

(p, n) ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8

(1, 1) 0.64 ± 0.09 0.65 ± 0.08 0.66 ± 0.10 0.66 ± 0.10 0.62 ± 0.08 0.63 ± 0.09 0.68 ± 0.07 0.68 ± 0.07
(5, 1) 0.71 ± 0.11 0.69 ± 0.10 0.68 ± 0.11 0.71 ± 0.11 0.67 ± 0.11 0.67 ± 0.12 0.75 ± 0.06 0.72± 0.07

(10, 1) 0.69 ± 0.10 0.70 ± 0.10 0.69 ± 0.11 0.70 ± 0.11 0.65 ± 0.10 0.66 ± 0.10 0.75 ± 0.06 0.73 ± 0.06
(1, 5) 0.68 ± 0.11 0.66 ± 0.08 0.67 ± 0.09 0.67 ± 0.11 0.65 ± 0.13 0.67 ± 0.12 0.71 ± 0.08 0.69 ± 0.10
(5, 5) 0.72 ± 0.11 0.72± 0.10 0.73 ± 0.11 0.74 ± 0.11 0.68 ± 0.14 0.69 ± 0.13 0.77 ± 0.09 0.77 ± 0.09

(10, 5) 0.73 ± 0.12 0.73± 0.10 0.73 ± 0.12 0.75 ± 0.11 0.69 ± 0.14 0.70 ± 0.13 0.78 ± 0.09 0.76 ± 0.09
(1, 10) 0.70 ± 0.11 0.69 ± 0.10 0.69 ± 0.11 0.69 ± 0.11 0.67 ± 0.13 0.67 ± 0.13 0.71 ± 0.11 0.70 ± 0.11
(5, 10) 0.74 ± 0.11 0.74 ± 0.11 0.74 ± 0.11 0.76 ± 0.11 0.70 ± 0.14 0.71 ± 0.14 0.80 ± 0.09 0.78 ± 0.10
(10, 10) 0.74 ± 0.12 0.75 ± 0.10 0.75 ± 0.11 0.77 ± 0.10 0.70 ± 0.14 0.71 ± 0.14 0.80 ± 0.10 0.80 ± 0.10
(1, 50) 0.69 ± 0.11 0.70 ± 0.10 0.70 ± 0.10 0.71 ± 0.10 0.67 ± 0.14 0.68 ± 0.13 0.72 ± 0.09 0.72 ± 0.09
(5, 50) 0.73 ± 0.12 0.74 ± 0.11 0.74 ± 0.11 0.77 ± 0.10 0.69 ± 0.14 0.70 ± 0.13 0.81 ± 0.09 0.79 ± 0.11
(10, 50) 0.75 ± 0.11 0.75 ± 0.10 0.77 ± 0.10 0.79 ± 0.09 0.70 ± 0.14 0.73 ± 0.12 0.82 ± 0.09 0.82 ± 0.10

avg 0.71 ± 0.11 0.71 ± 0.10 0.71 ± 0.11 0.73 ± 0.10 0.67 ± 0.13 0.68 ± 0.12 0.76 ± 0.09 0.75 ± 0.09
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Table 3. A3S-Rec dataset: AUPRC of the 10-way 10-shot US8K prototypical model tested on individual
recordings for each acquisition sensor.

(p, n) ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8

(1, 1) 0.65 ± 0.10 0.63 ± 0.07 0.67 ± 0.09 0.65 ± 0.09 0.63 ± 0.09 0.63 ± 0.09 0.69 ± 0.07 0.68 ± 0.08
(5, 1) 0.71 ± 0.12 0.67 ± 0.09 0.69 ± 0.10 0.69 ± 0.10 0.67 ± 0.11 0.65 ± 0.11 0.74 ± 0.06 0.73 ± 0.07

(10, 1) 0.68 ± 0.11 0.68 ± 0.10 0.70 ± 0.11 0.68 ± 0.10 0.68 ± 0.10 0.67 ± 0.11 0.74 ± 0.05 0.73 ± 0.07
(1, 5) 0.67 ± 0.12 0.64 ± 0.09 0.66 ± 0.11 0.65 ± 0.14 0.64 ± 0.13 0.63 ± 0.13 0.67 ± 0.08 0.66 ± 0.10
(5, 5) 0.71 ± 0.13 0.69 ± 0.12 0.71 ± 0.14 0.69 ± 0.14 0.67 ± 0.13 0.67 ± 0.13 0.73 ± 0.08 0.73 ± 0.09

(10, 5) 0.71 ± 0.14 0.70 ± 0.12 0.72 ± 0.13 0.71 ± 0.13 0.68 ± 0.13 0.68 ± 0.13 0.74 ± 0.08 0.73 ± 0.09
(1, 10) 0.68 ± 0.14 0.67 ± 0.11 0.68 ± 0.13 0.67 ± 0.13 0.65 ± 0.13 0.66 ± 0.14 0.68 ± 0.10 0.67 ± 0.10
(5, 10) 0.72 ± 0.14 0.71 ± 0.12 0.72 ± 0.14 0.71 ± 0.14 0.68 ± 0.14 0.68 ± 0.15 0.75 ± 0.09 0.74 ± 0.10
(10, 10) 0.71 ± 0.14 0.71 ± 0.13 0.73 ± 0.14 0.72 ± 0.14 0.68 ± 0.14 0.68 ± 0.15 0.75 ± 0.09 0.75 ± 0.09
(1, 50) 0.68 ± 0.14 0.67 ± 0.11 0.68 ± 0.13 0.67 ± 0.11 0.65 ± 0.14 0.64 ± 0.13 0.69 ± 0.09 0.67 ± 0.09
(5, 50) 0.71 ± 0.13 0.72 ± 0.13 0.73 ± 0.14 0.72 ± 0.13 0.68 ± 0.15 0.68 ± 0.15 0.74 ± 0.10 0.73 ± 0.10
(10, 50) 0.73 ± 0.14 0.72 ± 0.12 0.74 ± 0.13 0.73 ± 0.14 0.70 ± 0.14 0.68 ± 0.15 0.77 ± 0.08 0.76 ± 0.09

avg 0.70 ± 0.13 0.68 ± 0.11 0.70 ± 0.12 0.69 ± 0.12 0.67 ± 0.13 0.66 ± 0.13 0.72 ± 0.08 0.71 ± 0.09

Table 4. A3S-Rec dataset: AUPRC of the 2-way 10-shot A3S-Synth prototypical model tested on
individual recordings for each acquisition sensor.

(p, n) ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8

(1, 1) 0.63 ± 0.09 0.63 ± 0.08 0.63 ± 0.09 0.65 ± 0.11 0.61 ± 0.09 0.60 ± 0.08 0.69 ± 0.10 0.70 ± 0.10
(5, 1) 0.66 ± 0.12 0.67 ± 0.10 0.65 ± 0.11 0.68 ± 0.12 0.65 ± 0.14 0.64 ± 0.12 0.75 ± 0.12 0.76 ± 0.10

(10, 1) 0.67 ± 0.11 0.69 ± 0.09 0.68 ± 0.11 0.70 ± 0.13 0.63 ± 0.12 0.63 ± 0.10 0.75 ± 0.11 0.75 ± 0.09
(1, 5) 0.66 ± 0.11 0.67 ± 0.08 0.66 ± 0.09 0.69 ± 0.13 0.65 ± 0.13 0.65 ± 0.11 0.77 ± 0.07 0.76 ± 0.09
(5, 5) 0.72 ± 0.11 0.74 ± 0.09 0.74 ± 0.11 0.76 ± 0.12 0.69 ± 0.13 0.69 ± 0.12 0.83 ± 0.09 0.84 ± 0.07

(10, 5) 0.73 ± 0.12 0.76 ± 0.10 0.75 ± 0.12 0.78 ± 0.12 0.70 ± 0.13 0.70 ± 0.12 0.83 ± 0.08 0.84 ± 0.07
(1, 10) 0.67 ± 0.11 0.69 ± 0.09 0.69 ± 0.10 0.70 ± 0.12 0.66 ± 0.12 0.65 ± 0.12 0.77 ± 0.10 0.77 ± 0.09
(5, 10) 0.74 ± 0.11 0.76 ± 0.10 0.76 ± 0.11 0.79 ± 0.11 0.71 ± 0.13 0.70 ± 0.12 0.85 ± 0.06 0.86 ± 0.07
(10, 10) 0.75 ± 0.11 0.78 ± 0.10 0.77 ± 0.11 0.80 ± 0.12 0.71 ± 0.13 0.72 ± 0.12 0.86 ± 0.08 0.89 ± 0.05
(1, 50) 0.67 ± 0.11 0.70 ± 0.09 0.68 ± 0.08 0.71 ± 0.09 0.66 ± 0.12 0.65 ± 0.12 0.79 ± 0.09 0.79 ± 0.08
(5, 50) 0.73 ± 0.11 0.76 ± 0.11 0.76 ± 0.11 0.80 ± 0.10 0.70 ± 0.14 0.71 ± 0.12 0.87 ± 0.05 0.88 ± 0.06
(10, 50) 0.76 ± 0.11 0.79 ± 0.09 0.78 ± 0.09 0.83 ± 0.08 0.73 ± 0.13 0.74 ± 0.10 0.89 ± 0.05 0.90 ± 0.05

avg 0.70 ± 0.11 0.72 ± 0.09 0.71 ± 0.10 0.74 ± 0.11 0.68 ± 0.13 0.67 ± 0.11 0.80 ± 0.08 0.81 ± 0.08

As expected, the scores obtained from the A3S-Synth-trained model are better than
the SWC ones, followed by the US8K model outcomes. The A3S-Synth dataset provides
the best performance in the combination (p, n) = (10, 50) with an AUPRC score of 0.90 at
channel 8, and among the several models, it benefits most from multiple support examples.

If we analyze the AUPRC values in each audio channel, there are no substantial differ-
ences between microphone positions in the same installation context. The microphones
behind the license plate (positions 7–8) achieve the best performance, followed by those
inside the passenger compartment (positions 1–4) and finally in the trunk (positions 5–6).

5.2.2. Evaluation with Internal Labeling

In previous simulations, we tested few-shot models on data extracted from recordings
acquired by eight microphones outside and inside the cockpit. The audio segments have
been annotated by listening to the audio signals recorded by the sensors behind the license
plate and applying the same label to all channels. In fact, audio data of microphones
7-8 show the presence of the ambulance sooner than the other positions being installed
externally. We have also ascertained that they return the best performance in the ESD task,
as illustrated in Tables 2–4.

We now investigate the behavior of the sensors inside the passenger compartment,
focusing on the influence of cockpit sound attenuation. Because the chassis is made of
soundproofing material, it acts as a barrier to the entry of the siren sound when its level is
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below the enclosure transmission loss at the siren tones frequencies. This fact results in a
shorter duration of siren sound events in the internal recordings than in the external ones.
To indirectly assess the influence of cockpit attenuation in the ESD task, we have repeated
the experiments after revising the annotations only for channels 1, 2, 3, and 4. For this
purpose, we have changed the labeling from siren to noise in the audio segments where
the siren sound has been fully attenuated. In each audio track, the chassis soundproofing
has operated differently, depending on the initial distance between source and receiver,
the acquisition scenario, and the traffic noise level.

After the internal labeling operation, siren instances were reduced by about 13%.
Figure 9 shows an example of spectrograms of the same siren occurrence recorded by
sensors inside the passenger compartment and behind the license plate. Because the siren
sound in the first 5 s of the internal recording is attenuated, we attributed the noise class to
this audio segment.
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Figure 9. Spectrograms of siren recordings acquired by sensors inside (top) and outside (bottom) the
passenger compartment with different labeling criteria for the internal channel.

Tables 5–7 present testing results on channels 1-2-3-4 of the A3S-Rec dataset with
internal labeling employing the SWC/US8K/A3S-Synth best prototypical models.

Considering channels 1-2-3-4, the outcomes of the recordings with internal labeling
show equal or better AUPRC scores than those with external annotations in all (p, n)
settings. As for the results obtained with external labeling, the few-shot configurations with
(p, n) = (10, 50) provide the best performance and generally show greater boosting than
the 1-shot setting. We calculated the average relative percentage increment between the
external and internal labeling results: the SWC model provides the highest increase in the
AUPRC score, at about 7%. This aspect shows that the good generalization capability of a
model is related to the matching between the source and target domains. In fact, removing
the noisiest instances from the positive class resulted in cleaner siren prototypes, more
similar to the SWC ones computed from clean speech recordings.

The performance improvement with the internal labeling is correlated to the noise class
attribution of uncertain siren events resulting from cockpit sound attenuation and internal
car noise. Whereas the impact of the attribution of not clearly identifiable siren events to
the noise class is reflected in higher scores, the algorithm exhibits delayed responsiveness
in the siren recognition, as visible in Figure 9. We thus refer to the external labeling for an
unbiased comparison of the effectiveness of the acquisition sensors.
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Table 5. A3S-Rec dataset: AUPRC of the 10-way 10-shot SWC prototypical model, considering internal
labeling for the recordings of channels 1-2-3-4.

(p, n) ch1 ch2 ch3 ch4

(1, 1) 0.71 ± 0.09 0.71 ± 0.08 0.69 ± 0.10 0.71 ± 0.09
(5, 1) 0.74 ± 0.09 0.73 ± 0.10 0.75 ± 0.10 0.75 ± 0.07
(10, 1) 0.75 ± 0.09 0.76 ± 0.08 0.75 ± 0.10 0.75 ± 0.09
(1, 5) 0.71 ± 0.11 0.71 ± 0.10 0.69 ± 0.10 0.75 ± 0.09
(5, 5) 0.79 ± 0.09 0.78 ± 0.08 0.79 ± 0.10 0.79 ± 0.09
(10, 5) 0.79 ± 0.08 0.79 ± 0.08 0.79 ± 0.09 0.80 ± 0.09
(1, 10) 0.72 ± 0.10 0.72 ± 0.10 0.70 ± 0.09 0.75 ± 0.09
(5, 10) 0.79 ± 0.09 0.78 ± 0.09 0.79 ± 0.09 0.80 ± 0.09
(10, 10) 0.81 ± 0.07 0.82 ± 0.07 0.81 ± 0.08 0.82 ± 0.08
(1, 50) 0.71 ± 0.10 0.72 ± 0.09 0.71 ± 0.10 0.77 ± 0.09
(5, 50) 0.80 ± 0.08 0.80 ± 0.08 0.80 ± 0.09 0.81 ± 0.09
(10, 50) 0.81 ± 0.07 0.82 ± 0.07 0.81 ± 0.08 0.82 ± 0.10

avg 0.76 ± 0.09 0.76 ± 0.08 0.76 ± 0.09 0.78 ± 0.09

Table 6. A3S-Rec dataset: AUPRC of the 10-way 10-shot US8K prototypical model, considering
internal labeling for the recordings of channels 1-2-3-4.

(p, n) ch1 ch2 ch3 ch4

(1, 1) 0.69 ± 0.12 0.67 ± 0.10 0.67 ± 0.11 0.68 ± 0.09
(5, 1) 0.72 ± 0.13 0.68 ± 0.10 0.70 ± 0.12 0.72 ± 0.11
(10, 1) 0.70 ± 0.13 0.69 ± 0.10 0.70 ± 0.12 0.72 ± 0.11
(1, 5) 0.71 ± 0.14 0.68 ± 0.13 0.68 ± 0.11 0.69 ± 0.11
(5, 5) 0.72 ± 0.13 0.72 ± 0.14 0.73 ± 0.13 0.76 ± 0.12
(10, 5) 0.75 ± 0.14 0.73 ± 0.14 0.75 ± 0.13 0.77 ± 0.12
(1, 10) 0.70 ± 0.14 0.69 ± 0.13 0.69 ± 0.14 0.69 ± 0.12
(5, 10) 0.74 ± 0.15 0.72 ± 0.16 0.74 ± 0.14 0.76 ± 0.12
(10, 10) 0.76 ± 0.13 0.74 ± 0.15 0.76 ± 0.13 0.78 ± 0.12
(1, 50) 0.70 ± 0.14 0.68 ± 0.13 0.69 ± 0.13 0.70 ± 0.12
(5, 50) 0.75 ± 0.14 0.72 ± 0.15 0.75 ± 0.14 0.78 ± 0.12
(10, 50) 0.77 ± 0.14 0.74 ± 0.15 0.76 ± 0.14 0.79 ± 0.11

avg 0.73 ± 0.14 0.71 ± 0.13 0.72 ± 0.13 0.74 ± 0.11

Table 7. A3S-Rec dataset: AUPRC of the 2-way 10-shot A3S-Synth prototypical model, considering
internal labeling for the recordings of channels 1-2-3-4.

(p, n) ch1 ch2 ch3 ch4

(1, 1) 0.66 ± 0.10 0.65 ± 0.08 0.65 ± 0.12 0.68 ± 0.11
(5, 1) 0.70 ± 0.12 0.68 ± 0.11 0.72 ± 0.10 0.75 ± 0.10
(10, 1) 0.70 ± 0.13 0.69 ± 0.10 0.71 ± 0.11 0.75 ± 0.11
(1, 5) 0.69 ± 0.11 0.68 ± 0.08 0.67 ± 0.10 0.70 ± 0.10
(5, 5) 0.76 ± 0.12 0.77 ± 0.09 0.76 ± 0.10 0.80 ± 0.10
(10, 5) 0.77 ± 0.11 0.77 ± 0.09 0.78 ± 0.10 0.81 ± 0.09
(1, 10) 0.69 ± 0.11 0.69 ± 0.07 0.69 ± 0.09 0.71 ± 0.09
(5, 10) 0.77 ± 0.11 0.78 ± 0.08 0.78 ± 0.10 0.81 ± 0.09
(10, 10) 0.79 ± 0.11 0.81 ± 0.07 0.80 ± 0.08 0.82 ± 0.09
(1, 50) 0.69 ± 0.11 0.69 ± 0.10 0.70 ± 0.10 0.71 ± 0.10
(5, 50) 0.77 ± 0.12 0.79 ± 0.09 0.79 ± 0.10 0.81 ± 0.10
(10, 50) 0.80 ± 0.10 0.81 ± 0.08 0.80 ± 0.09 0.83 ± 0.10

avg 0.73 ± 0.11 0.74 ± 0.09 0.74 ± 0.10 0.77 ± 0.10
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We observe that the internally labeled audio data yield comparable or slightly bet-
ter AUPRC scores than recordings at positions 7–8 for the experiments conducted with
the SWC and US8K models. In contrast, with A3S-Synth, the external channels again
outperform the internal ones. This behavior can be attributed to the similarity between
the synthetic dataset generated by adding siren sounds to traffic noise recordings in the
external environment and the recordings of sensors behind the license plate.

Moreover, in all models, the microphone at position 4 provides the best emergency
siren detection scores. One possible reason is that the ambulances often approached the
equipped car from the same direction of travel during the acquisition campaign. Thus,
the alarm sound first impacted the rear, incurring less reflection from the source to the
recording sensors on the back. The better response of the sensor at position 4 compared to
the specular one could be due to the operator sitting near position 3, which represented an
absorption surface for the incoming sound.

We have not performed tests with different labeling for audio data acquired by the
microphones inside the trunk. Recordings at positions 5–6 are simultaneously affected by
cabin soundproofing and mechanical component noise, so an internal labeling criterion
would have resulted in an excessive reduction of siren instances.

5.2.3. Evaluation across All Recordings

In the next set of experiments, we assess the few-shot techniques across all the record-
ings. We have identified the siren sound within individual audio tracks, so the classification
task is extended over all the recordings performed by a specific sensor. If the detection in
individual recordings can be interpreted as identifying the background noise perturbation
produced by the siren signal, the detection across all recordings represents a generalization
of the previous case. In this way, we rely on the prototypical networks for the more chal-
lenging task of discriminating a siren sound from background noise acquired in several
contexts and varying both in terms of sound intensity and spectral content.

For this purpose, we have organized the instances of each audio track recorded by
a given sensor in a single folder, considering channels 4, 7, and 8 as they provided the
best results in the analysis within individual recordings. We construct the support set by
employing the most robust (p, n) combination and evaluate the influence of increasing pos-
itive support examples. Consequently, the experiments are conducted with p ∈ {10, 20, 50}
and n = 50, computing AUPRC scores averaged over 10 iterations with different random
support and query sets.

Table 8 presents the prototypical results across all the recordings acquired by micro-
phones in positions 4-7-8. With a fixed n = 50, a more significant number of p improves
the scores. The best value is equal to 0.86, obtained by the A3S-Synth model in the
(p, n) = (50, 50) combination with data belonging to channel 7.

Table 8. A3S-Rec dataset: AUPRC of the best prototypical models across all the recordings of
channels 4-7-8.

SWC US8K A3S-Synth

(p, n) ch4 ch7 ch8 ch4 ch7 ch8 ch4 ch7 ch8

(10, 50) 0.59 ± 0.05 0.72 ± 0.07 0.76 ± 0.04 0.59 ± 0.05 0.65 ± 0.03 0.66 ± 0.03 0.67 ± 0.03 0.82 ± 0.02 0.82 ± 0.02
(20, 50) 0.62 ± 0.05 0.77 ± 0.02 0.78 ± 0.03 0.62 ± 0.04 0.67 ± 0.02 0.69 ± 0.02 0.73 ± 0.05 0.84 ± 0.02 0.83 ± 0.03
(50, 50) 0.64 ± 0.05 0.81 ± 0.03 0.80 ± 0.02 0.63 ± 0.02 0.67 ± 0.01 0.69 ± 0.01 0.73 ± 0.03 0.86 ± 0.02 0.85 ± 0.02

Despite considering the best performing audio channels and employing more instances
to compute the prototypes, the detection across all recordings achieves lower scores than
those within the single audio tracks. The reason can be attributed to the variability of
the background noise affecting the support and query sets. Prototypes generated from
spectrograms with dissimilar frequency distributions might not always enhance the features
of a weak target signal, so query samples would not be distinctly associable with the positive
or negative class. As confirmation of this aspect, we found that increasing the number of
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positive examples to p = 20 in the experiments with individual recordings does not make
significant contributions, achieving a maximum improvement of one percentage point.
In that case, the use of only p = 10 instances yields a stable representation that captures
the variance of the signal in a single audio track; on the other hand, in the experiments
across all recordings, the use of many support examples proves beneficial in almost all
combinations. Again, the task-related model computed with the A3S-Synth dataset is the
most effective.

In addition, we examine noise reduction effects by applying the harmonic-percussive
source separation technique [59] to the A3S-Rec dataset. Table 9 presents prototypical
results across all the recordings acquired by microphones in position 4-7-8 after harmonic
filtering with a separation factor βh = 3. We observe an appreciable improvement provided
by the filtering operations, especially for the external channels. The best AUPRC scores are
attributed to the A3S-Synth model in the (p, n) = {(20, 50), (50, 50)} combinations with
data belonging to channel 8.

Table 9. A3S-Rec dataset: performance of the best prototypical models across all the recordings of
channels 4-7-8 with harmonic filter.

SWC US8K A3S-Synth

(p, n) ch4 ch7 ch8 ch4 ch7 ch8 ch4 ch7 ch8

(10, 50) 0.67 ± 0.05 0.86 ± 0.01 0.88 ± 0.01 0.60 ± 0.05 0.76 ± 0.02 0.80 ± 0.03 0.70 ± 0.04 0.85 ± 0.02 0.90 ± 0.01
(20, 50) 0.71 ± 0.02 0.86 ± 0.01 0.87 ± 0.01 0.62 ± 0.04 0.78 ± 0.02 0.82 ± 0.02 0.75 ± 0.02 0.87 ± 0.01 0.91 ± 0.01
(50, 50) 0.71 ± 0.02 0.86 ± 0.00 0.88 ± 0.01 0.62 ± 0.03 0.78 ± 0.02 0.83 ± 0.02 0.75 ± 0.02 0.86 ± 0.01 0.91 ± 0.00

The results show that channels 7–8 yield better performance than channel 4. One pos-
sible explanation is that the high noise in the external recordings is easily separated and
assigned to the percussive and residual components, emphasizing the harmonic siren
sound. On the other hand, filtering operations in cleaner internal recordings do not im-
prove appreciably over unfiltered audio data. We also note that using more positive
examples often does not lead to better outcomes. In the filtered condition, spectrograms
highlight the harmonic content of the signal, and thus, even few instances can create a
representative prototype. Finally, we comment on the better scores of channel 8 compared
to 7. Despite being in specular positions, the microphone at position 7 is located on the
left side of the license plate. The corresponding recordings may be affected by noises with
tonal components from cars in the other direction of travel, which explains the loss of
performance with the filtered audio data.

5.3. Siren Detection with Baseline

The last experiments concern classifying the audio files belonging to the A3S-Rec
dataset by using the baseline computed by the CNN described in Section 3.3.2. Training is
performed with the A3S-Synth dataset as it provided the best ESD models in the previous
experiments. Moreover, the use of synthetic datasets is often an effective strategy to build
a representative model in the condition of scarce availability of actual data. We evaluate
the CNN performance across all the recordings with and without fine-tuning for domain
adaptation. For a comparison with prototypical networks, the (p, n) combinations of
instances used to construct the support embeddings are employed to update the weights of
the two last linear layers, as described in Section 4.2.3. The AUPRC scores are averaged over
10 different (p, n) combinations to account for the variability of the fine-tuning instances.

Table 10 presents the outcomes of the baseline model without fine-tuning tested across
all the recordings of A3S-Rec (channels 4-7-8) in unfiltered and harmonic filtered conditions.



Sensors 2022, 22, 4338 21 of 26

Table 10. A3S-Rec dataset: AUPRC of the baseline model without fine-tuning for ESD across all the
recordings of channels 4-7-8.

Filtering ch4 ch7 ch8

no 0.60 0.65 0.65

harmonic 0.62 0.64 0.64

Although the results do not differ significantly, we observe the best scores for the
external channels in the unfiltered conditions with an AUPRC equal to 0.65. The reason
is the affinity between source and target domains, as the synthetic siren audio files have
been generated simulating siren alarms immersed in urban traffic noise in the outdoor
environment. On the other hand, inference on filtered data shows a slight decrease in
performance at channels 7-8. Because the training was conducted on unfiltered data and
the filtering accentuates any harmonic components, generic tonal sounds recorded by the
external sensors may be confused with the siren alarm.

Table 11 illustrates the results of the baseline model with fine-tuning, again in unfil-
tered and harmonic filtered conditions.

Table 11. A3S-Rec dataset: AUPRC of the baseline model with fine-tuning in several (p, n) combina-
tions for ESD across all the recordings of channels 4-7-8.

Filtering (p, n) ch4 ch7 ch8

(10,50) 0.45 ± 0.07 0.78 ± 0.04 0.80 ± 0.02
no (20,50) 0.65 ± 0.03 0.81 ± 0.01 0.81 ± 0.01

(50,50) 0.70 ± 0.03 0.84 ± 0.02 0.83 ± 0.01

(10,50) 0.57 ± 0.07 0.82 ± 0.01 0.84 ± 0.02
harmonic (20,50) 0.71 ± 0.04 0.83 ± 0.01 0.86 ± 0.01

(50,50) 0.73 ± 0.03 0.85 ± 0.01 0.88 ± 0.02

The analysis of the fine-tuned baseline results mirrors the trend of prototypical AUPRC
scores with the A3S-Synth model shown in Tables 8 and 9. In both unfiltered and harmonic
filtered conditions, many (p, n) instances for the fine-tuning improve the classification
performance. Again, the effectiveness of the noise reduction technique is proven by the
best results obtained with filtered data belonging to the external channels. For the internal
channel, we note that fine-tuning with only 10 positive examples decreases the performance
of the baseline without domain adaptation. In this case, few positive examples affected by
cockpit attenuation and rapid model overfitting lead to erroneous learning of the siren class.
This aspect shows an additional advantage of prototypical networks in the low-data regime.
Whereas the convolutional neural network used for the baseline has been trained with
few epochs to reduce the problem of overfitting on the fine-tuning data, for prototypical
networks, this excessive adaptation does not affect the results due to the distance-based
metrics, as investigated in [26].

In Table 12, the relative percentage increase of the few-shot achievements with respect
to (CNN + fine-tuning) is presented.

Table 12. A3S-Rec dataset: AUPRC relative percentage increase from fine-tuned baseline to best
prototypical score across all the recordings of channels 4-7-8.

Filtering (p, n) ch4 ch7 ch8

(10, 50) 48.8% 5.7% 3.0%
no (20, 50) 12.8% 4.6% 2.6%

(50, 50) 4.4% 1.8% 2.0%

(10, 50) 21.6% 4.1% 6.6%
harmonic (20, 50) 6.0% 4.3% 4.8%

(50, 50) 2.5% 1.0% 4.0%
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In almost all cases, the most significant increments occur in the combination (p, n) = (10, 50)
and decrease with higher p values. This fact indicates that by increasing the (p, n) examples,
AUPRC scores of the fine-tuned baseline approximate the few-shot outcomes. However, proto-
typical networks demonstrate their superior efficacy because they perform equally well with a
very limited amount of support instances.

In addition, the improvement with the lowest number of data used in the (p, n) = (10, 50)
combination is more evident in the case of the internal microphone, meaning that the few-shot
solution performs better than the (CNN + fine-tuning) when the mismatch between training
and testing conditions is high.

5.4. Discussion

In light of the results, prototypical networks have shown to be a robust method in
emergency siren detection. Similarity learning between instances and prototypes of the
same class demonstrates a more effective method than learning single examples that are
not always representative of the belonging class. Moreover, adopting a training dataset
that matches the target domain facilitates the classification task.

However, not all few-shot techniques are as successful as prototypical networks. We
have also performed experiments with relation networks [33], but they have not equaled
the prototypical ones despite obtaining fair results. We attribute the motivation to the
embedding generation method, considering the high noise level in our recordings. In the
prototypical embedding, the noise and siren feature maps are averaged, so the noise
is redistributed among all frequencies. On the other hand, in the relation embedding,
the feature maps are summed element-wise, and the sum amplifies the noise representation
over the siren.

In this work, our investigations have provided valuable insights for implementing
in-car emergency vehicle detection systems, summarized as follows.

1. The best location for the acquisition sensor is outside the vehicle behind the license
plate. This placement is not affected by wind nor cabin attenuation and gives a fast
response to siren sound detection. The related disadvantage of the installation is the
requirement for weatherproof sensors.

2. Because the high noise level of external recordings affects the siren detection task,
a noise reduction filter such as the one proposed should be included to improve the
external sensor performance.

3. Due to the effectiveness of few-shot techniques compared with traditional methods
under conditions of few data and mismatch between training and test sets, the sensors
inside the passenger compartment can be employed with significant deployment
benefits. Although disadvantages arise from reduced responsiveness resulting from
cockpit soundproofing, people talking, or the sound system, internal microphones
installed in a weather-protected environment present lower costs and maintenance
than the external ones.

4. The most common and dangerous situation is an ambulance approaching a car in the
same direction of travel, so the most suitable microphone placement is at the rear of
the vehicle. If the internal installation is chosen, interference with sound-absorbing
surfaces should be avoided.

6. Conclusions and Future Works

In this work, we investigated a novel approach based on few-shot learning for emer-
gency siren detection. Because our goal was to detect siren sounds acquired with recording
sensors outside and inside an equipped car, collecting enough audio data to train tradi-
tional supervised deep learning models proved challenging and laborious. Thanks to
few-shot strategies that require only few instances of the target domain in the learning
process, we performed an exhaustive analysis of prototypical network capabilities in a
real-world application. In addition, the performance of the recording sensors at different
positions outside and inside the cabin provided insights for devising an emergency vehicle
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detection system. The experimental workflow was conducted by (i) training prototypical
networks with three datasets differing in the genre and amount of audio data in several
C-way K-shot combinations; (ii) testing each model on data from the same audio collection
used in training, approaching the classification task as an open-set problem; (iii) perform-
ing emergency siren detection by applying the best prototypical models to inference on
the new dataset; (iv) comparing the few-shot outcomes with a CNN baseline, with and
without fine-tuning for domain adaptation; and (v) evaluating the contribution of filtering
techniques for background noise reduction.

In the experiments, prototypical networks achieved promising results and outper-
formed a fine-tuned convolutional baseline, demonstrating superior robustness in con-
ditions with very limited data. Our study represents the starting point for future works.
From the comparative perspective, other models such as Generative Adversarial Networks
could be a viable solution for creating new examples of the target class by adapting a
generic training set. Possible innovations to the few-shot method could be achieved by
hybrid embedding models that gain specific knowledge of the target task or by zero-shot
learning techniques, which can enable the classification of new sirens without providing
examples for training, but only from semantic embeddings (e.g., annotations, textual de-
scriptions, musical notes). Finally, applicative developments can be achieved by testing the
effectiveness of prototypical networks on a larger number of examples and noise contexts
generated in a controlled environment such as a semianechoic chamber and deploying a
framework for real-time siren detection on embedded systems.
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