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Abstract: With the development of Internet of Things (IoT) and edge computing technology, gas
sensor arrays based on Micro-Electro-Mechanical System (MEMS) fabrication technique have broad
application prospects in intelligent integrated systems, portable devices, and other fields. In such
complex scenarios, the normal operation of a gas sensing system depends heavily on the accuracy of
the sensor output. Therefore, a lightweight Self-Detection and Self-Calibration strategy for MEMS
gas sensor arrays is proposed in this paper to monitor the working status of sensor arrays and correct
the abnormal data in real time. Evaluations on real-world datasets indicate that the strategy has
high performance of fault detection, isolation, and data recovery. Furthermore, our method has
low computation complexity and low storage resource occupation. The board-level verification on
CC1350 shows that the average calculation time and running power consumption of the algorithm
are 0.28 ms and 9.884 mW. The proposed strategy can be deployed on most resource-limited IoT
devices to improve the reliability of gas sensing systems.

Keywords: gas sensor arrays; Internet of Things (IoT); intelligent gas sensing system; fault detection;
fault isolation and recovery; drift compensation; lightweight

1. Introduction

In recent years, with the rapid development of the IoT and advanced manufacturing
technology, as well as the growing demand for gas detection in various fields, gas sensors
have rapidly developed and have been widely used in smart terminals, environmental
monitoring, disease diagnosing [1–5], and other fields. The accuracy and sensitivity of gas
sensors have become better. In many complex application scenarios (e.g., IoT), due to the
cross sensitivity and low selectivity of sensors, multiple gas sensors with different sensitive
modes for the target gas are often combined into arrays for use in edge smart devices or
integrated sensing systems.

Metal Oxide Semiconductor (MOS) gas sensors have been widely used in many
fields [6,7] because of fast response, low cost, high sensitivity, simple circuit, etc. Traditional
MOS gas sensor arrays are generally bulky, and the power consumption and cost will
increase with the number of sensors. This also limits the application of MOS gas sensors
in energy-efficient or portable/wearable devices, such as health and safety detection,
electronic noses, and hand-held respiratory analyzers [1,8–12].

With the development of micro-fabrication and semiconductor technology during the
past decades, the MOS gas sensor arrays based on MEMS use the wafer-level manufac-
turing process to make a micro-hotplate on the Si-based substrate, which greatly reduces
the component volume and power consumption. Additionally, the MEMS gas sensor
array is easy to be integrated with Complementary Metal Oxide Semiconductor (CMOS)
circuit, which improves the compatibility between the gas sensors and Application Specific
Integrated Circuit (ASIC). Therefore, MEMS gas sensor arrays have great development and
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application prospects in the fields of edge computing, intelligent integrated systems, and
so on [13,14].

At the same time, gas sensor arrays often combine the corresponding signal processing
and machine learning algorithms to form an intelligent gas sensing system for use [15,16].
In the intelligent gas sensing system, the sensor arrays respond to different target gases
and generate a set of output signals, and then make classification decision or regression
prediction through feature extraction and pattern recognition algorithms.

As the data acquisition device in an intelligent gas sensing system, the stability and
reliability of gas sensor arrays are essential. For example, MOS gas sensors are limited by
the characteristics of metal oxide materials. Irreversible chemical reactions of materials (e.g.,
aging and oxidation) or external interference (e.g., temperature and humidity) may cause
sensor drift or failure, affect the measurement quality of the gas sensor array, and degrade
the performance of subsequent algorithms, which will lead to abnormal operation of the
system. In addition, considering that MEMS gas sensor arrays have the characteristics of
miniaturization and integration, and in many IoT scenarios, intelligent sensor systems are
often deployed in harsh environments, which means that the probability of failure for the
MEMS gas sensor array is greater than that of the single sensor and traditional MOS sensor
arrays. Therefore, it is necessary to adopt appropriate Self-Detection and Self-Calibration
algorithms to monitor the working status of MEMS gas sensor arrays and recover the fault
signal in time.

It cannot be ignored that gas sensing terminal devices in IoT or edge computing need
to process the streaming response data produced by sensor arrays in real time when in
use, and the computational complexity of the algorithms carried on the devices is limited
by restricted computing and storage resources. Therefore, the Self-Detection and Self-
Calibration algorithms are required to be lightweight, which means that they can perform
real-time computation while maintaining low resource consumption and low running
power consumption (mW level).

Over the years, many studies have made great efforts in realizing the monitoring of
operational status of gas sensors and improving the reliability of measurement signals. For
instance, a fault detection and recovery technique (FDRT) was proposed in [17] for wireless
sensor network (WSN) to identify and recover the failed cluster, and ref. [18] used the
structural response data measured with the redundant sensor network to detect, identify,
and quantify the sensor fault. However, Refs. [17,18] are oriented to WSN, and their
methods are not suitable for the operational framework of IoT and non-redundant sensor
arrays. Self-validating sensor technology was adopted in [19,20] to increase the reliability
of gas sensor measurements. Ref. [19] proposed a failure detection, isolation, and recovery
(FDIR) strategy based on Principal Component Analysis (PCA) and Relevance Vector
Machine (RVM) techniques. This strategy built a separate predicator for each sensor, which
had high requirements for the computing platform. Ref. [20] used PCA and contribution
plots methods to detect and isolate sensor faults. The accuracy of this method would be
seriously degraded in case of multiple faults. A convolutional neural network (CNN)
using the random forest (RF) classifier was used in [21] for hydrogen sensor fault diagnosis.
Ref. [22] used observer-based techniques and a fault detection and isolation scheme to
guarantee functional safety of sensors.

In addition, some studies have proposed adaptive correction methods to reduce the
effect of sensor drift [23,24]; however, most of the models used were complex and relied
on a large amount of long-term drift training data. Ref. [25] recalibrated the sensor by
periodically measuring the baseline response, which was time-consuming and laborious.
Estimation theory was used in [26] for online baseline drift compensation. Refs. [27,28]
have proposed the signal preprocessing method that used baseline processing to offset
the effect of drift. However, such methods [27,28] were generally used for data offline
processing. It cannot be applied in real time, and it ignores the impact of environmental
changes [26].
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Unlike traditional sensor arrays, MEMS gas sensor arrays are more prone to multiple
failures. Meanwhile, gas sensing terminal devices have strict requirements on speed, power
consumption, and resource occupation for the deployed algorithms. However, the existing
methods cannot effectively solve the above problems. Therefore, research on Self-Detection
and Self-Calibration methods for MEMS gas sensor arrays is challenging and practical.

For the failure of MEMS gas sensors caused by different unstable factors (physical or
chemical changes), the manifestation of the failure signal may be the same. This paper mainly
focuses on five common fault manifestations of gas sensor output signals [19,20,29–31]. The
different fault types and the corresponding fault manifestations and causes are shown
in Table 1.

Table 1. The fault types and corresponding fault manifestations.

Fault Types Manifestations Causes

Impulse Sudden change in output signal Uncontrollable gas, power interference, etc.
Bias Output signal deviates from the real signal Material structure transition, supply voltage deviation, etc.

Constant Output signal is a constant value Gas-sensitive material pollution, shedding, etc.
Broken-Circuit No output signal Power failure, electrode disconnection, etc.

Drift Output signal changes slowly Material aging, environmental impact, etc.

Considering the fault problems and resource constraints of MEMS gas sensor arrays
in the process of sensing tasks of IoT terminal devices, aiming at the limitations of existing
methods in architecture and application, this paper proposes a lightweight Self-Detection
and Self-Calibration strategy to improve the measurement reliability and environmental
adaptability of MEMS gas sensor arrays. Furthermore, an experimental system based
on MEMS gas sensor arrays was built to verify the effectiveness and feasibility of the
proposed method.

The specific contributions of this work are as follows:

(1) A novel and complete Self-Detection and Self-Calibration strategy for MEMS gas sensor
arrays is proposed to improve the stability of the sensor arrays. The strategy includes
the steps of fault detection, fault isolation, data recovery and drift compensation;

(2) A Self-Detection method combining different data preprocessing techniques is em-
ployed to realize the rapid detection of sensor array working status. This method
applies a PCA-SPE model and performs appropriate preprocessing for the possible
outliers and random noise in real-world dataset to improve detection accuracy;

(3) A Self-Calibration method that can cope with different fault conditions is proposed.
The method adopts data reconstruction and confidence interval prediction to achieve
isolation and recovery of single fault and multiple faults, and dynamic baseline
differential processing is used in this method to compensate the long-term drift signal
of gas sensor array in real time;

(4) The performance of the proposed methods was verified and evaluated using a variety
of metrics on a real-world dataset synthesized with different sensor faults, and a
comprehensive comparison with other algorithms was carried out. The comparative
and board-level validation results demonstrate that our methods can operate in the
gas sensing system efficiently and in a way that saves energy.

The rest of this paper is organized as follows: Section 2 introduces our Self-Detection
and Self-Calibration strategy and methods in detail, including the overall process and
specific algorithm principles and implementations. Then, detailed experiments and com-
parisons in Section 3 were used to verify the effectiveness of the proposed methods. Finally,
Section 4 concludes our work.
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2. Methodology
2.1. Overall Process of Self-Detection and Self-Calibration Strategy

The overall process of Self-Detection and Self-Calibration is shown in Figure 1. When
the input data collected by the MEMS sensor array arrives, our proposed strategy will go
through two phases: Self-Detection and Self-Calibration.
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The specific process of the Self-Detection phase is as follows: Firstly, the collected
data set under a normal working status is used to train the PCA-based fault detection
model. To avoid the influence of the contaminated real data on the model training, different
preprocessing techniques are used to improve the detection performance of model. Then,
when the testing data arrives, it will undergo the same normalization as the training data.
Finally, the sensor data are monitored online through the trained model to determine
whether the sensor is faulty and identify input data as normal or a fault signal.

The Self-Calibration phase includes fault isolation and recovery (FIR) and dynamic
drift compensation. The specific process is as follows: Firstly, the faulty signal will be
assumed to be a single fault signal (because the probability of single fault is generally much
higher than that of multiple faults), and then a method based on data reconstruction is
used to identify a faulty sensor in the sensor array. Then, data recovery is achieved by
replacing the faulty signal with the reconstructed values. However, multiple failures of
MEMS sensor arrays cannot be ignored. Therefore, if the system is still judged to have
faults after reconstruction, the proposed method based on confidence interval prediction
will be used to solve multi-fault problem. Thus, some faulty sensors in the sensor array
are identified, and the middle value of the prediction interval is used for data recovery. To
ensure prediction accuracy, historical normal data and recovery data within a certain range
are used to update the model.

In addition, as a long-term dynamic process, drift is a common problem in many
gas sensors. In our strategy, on-line dynamic drift compensation is performed on both
the normal signal and the signal after data recovery. Finally, a set of Self-Detection and
Self-Calibration output signals will be provided, including original data, fault recovery
data and drift compensation data, for the subsequent application algorithm to analyze.

It is worth mentioning that, considering that the possibility of single fault is relatively
greater than that of multiple faults, our strategy will start with the single FIR method (data
reconstruction) first when a sensor array failure is detected. If the fault is still detected
after reconstruction, multiple FIR methods (confidence interval prediction) will be carried
out. This operation can greatly reduce unnecessary computational burden and operating
power consumption.
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2.2. Self-Detection Methods
2.2.1. Data Preprocessing of Singular Points and Random Noise

In practical application scenarios, most sensor datasets are collected in the real world.
During the acquisition process, there may be unknown situations such as sudden changes
in gas composition or environmental quantities (e.g., temperature and humidity), supply
voltage changes, or human interference, which will lead to singular points or random noise
in the original data. It can be found that if these abnormal data are not processed, problems
such as missed detection or false alarm of faults will occur when the fault detection model
is built.

However, most of the current fault detection research mainly focused on the design
and implementation of algorithms [32–34]. They usually use the existing public datasets or
ignore the above-mentioned problems. Some studies simply preprocess the dataset, but this
usually degrades the performance of the algorithm in actual tests. Therefore, the processing
of the dataset is necessary. Next, the principle and performance evaluation index of the
data preprocessing methods adopted in this paper will be explained.

Singular points are “extreme values” that deviate from other normal observations of
the dataset, whose values are abnormally large or small and distribution is significantly
different from the overall samples [35]. In this paper, the processing of outliers is to detect
the unreasonable data points of dataset and delete them through the novelty detection
algorithm to avoid the impact of singular points on model training.

There are two commonly used novelty detection algorithms: statistical methods and
machine learning methods. Statistical methods will build a probability distribution model
based on the dataset and judge the probability that the data conforms to the model. Samples
with low probability are regarded as singular points. Machine learning methods will use
machine learning algorithms such as clustering or classification to judge outliers based
on the distribution of data features. This paper applies Z-Score, a statistical method, to
deal with outliers. In addition, another novelty detection algorithm based on machine
learning (Isolation Forest) will be compared through experiments in Section 3.2, and the
performance of the algorithm will be evaluated through two indicators: outlier detection
rate and false positive detection rate.

Z-Score is a novelty detection method in low-dimensional data feature space [36,37].
It is derived from “3σ principle” in statistics: if the data follow a normal distribution, an
outlier is defined as the value in a set of observations that deviates from the mean by more
than three standard deviations of the data. In other words, outliers are usually observations
near the tail of the data distribution. Therefore, singular points are usually far from the
average value of data, and this distance is represented by Zi of the normalized dataset in
Z-Score. As shown in Equation (1), where xi represents a data point, µ and σ represents the
mean and standard deviation of the dataset. When Zi is greater than the set threshold Zlimit,
it is determined as a singular point. The value of Zlimit needs to be adjusted according to
the distribution of the actual dataset, usually 2~3.

Zi =
xi − µ

σ
> Zlimit (1)

Isolation Forest is an unsupervised novelty detection method suitable for large datasets
of continuous data [38]. The method does not require labeled samples to train, but the
features must be continuous. In Isolation Forest, the dataset is randomly divided recursively
until all samples are isolated. Under this random segmentation strategy, the outliers usually
have shorter paths.

Filtering algorithms can minimize random noise in the dataset and restore the true
situation of the measured values. In this paper, the filtering algorithm is combined with the
novelty detection algorithm. After removing outliers in the dataset, filtering algorithms are
used to improve the quality of dataset and make it close to the real data distribution.

Commonly used filtering algorithms include Moving-Average filter, Discrete Wavelet
Transform, Savitzky–Golay filter and so on [39–41]. The selection of filtering method
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depends on the characteristics of dataset and the performance of filtering. The fluctuation
of gas sensor response is generally slow, and we hope that the original data features can be
better preserved after filtering. Considering that a Moving-Average filter will destroy the
boundary features of gas concentration changes, and Discrete Wavelet Transform needs to
select or design complex wavelet basis functions, this paper adopts Savitzky–Golay filter to
solve the random interference of dataset.

The Savitzky–Golay filter is a method based on local polynomials and least square
fitting in time domain. The advantage of this method is that it can ensure that the shape
and width of the signal remain unchanged while filtering out noise. Assuming a window
of length 2m + 1, Savitzky–Golay performs fitting based on k − 1 (k < 2m + 1) degree
polynomial for all measurement points in this window:

y = a0 + a1 ∗ x + a2 ∗ x2 + . . . + ak−1 ∗ xk−1 (2)

Express Equation (2) in matrix form, where the data vector is Y, the coefficient matrix
is A, the independent variable matrix is X, and the residual is ε:

Y = A ∗ X + ε (3)

The sparse matrix Â is obtained through the least square method, and the fitted data
prediction value Ŷ is shown in Equation (4). In this way, the window slides from left to
right to fit all data points, thus realizing smoothing of the data.

Ŷ = X ∗ Â = X ∗
(

XT ∗ X
)−1
∗ XT ∗Y (4)

Furthermore, to verify the filtering performance of the Savitzky–Golay filter and
the ability to preserve the original data features. In this paper, the signal to noise ratio
(SNR) and Pearson correlation coefficient (R) are selected as test indexes to compare the
performance of Savitzky–Golay filter and Moving-Average filter. The SNR measures the
size of the noise component in the filtered data, which can evaluate the quality of filtering.
The Pearson correlation coefficient represents the correlation between the filtered data
and the original data, which can evaluate the ability of filter to retain the data features.
The calculation of SNR and R is shown in Equations (5) and (6), where Ps is the original
signal power, Pn is the noise signal power, X and Y are the original dataset and the filtered
dataset, respectively.

SNR = 10lg
(

Ps

Pn

)
(dB) (5)

R = ρX,Y =
cov(X, Y)

σxσY
=

E[(X− µX)(Y− µY)]

σxσY
(6)

2.2.2. Fault Detection Based on PCA-SPE Model

Gas sensor arrays usually contain several different types of sensor elements, and the
signals output by the array often related to each other. As a data-driven multivariate
analysis method, PCA can express the internal relationship of multiple variables in a
low-dimensional manner to obtain potential connections between variables. In addition,
PCA-based fault detection methods use historical normal datasets to build statistical model,
which takes up less memory and has fast computation speed. Therefore, this section studies
the method based on PCA to realize the online monitoring of the working status of MEMS
gas sensor array.

When the MEMS sensor array is running normally, it is assumed that there are n
sensors in the array, each sensor has taken m samples at different calibration points, and
the training dataset xm×n is collected. This dataset contains the output signal of the sensor
array at different times of the calibration point. Fault detection based on PCA is to establish
the relationship model between sensors in the array according to the normalized dataset
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under normal working status and then judge whether the fault occurs by the change value
of the statistics in the projection space.

The fault detection process based on PCA is as follows: Firstly, standardize the sample
matrix xm×n, and obtain the data matrix Xm×n after processing. The PCA is then performed,
as shown in Equations (7) and (8). Obtain the correlation coefficient matrix R of Xm×n,
and then perform singular value decomposition on R to obtain the eigen value matrix
Λ = diag(λi, i = 1, 2, . . . , n) and the eigen vector matrix P = [p1, p2, . . . , pn].

R =
XTX
m− 1

(7)

R = PΛPT (8)

Then, as shown in Equation (9), according to the Cumulative Percent Variance (CPV),
the first k principal components are selected for dimensionality reduction, and the fault
detection model of sensor array is built. In this paper, CPV is 0.95.

CPV =
k

∑
i=1

λi /
m

∑
i=1

λi × 100% (9)

As shown in Equations (10) and (11), Xm×n is projected into the Principal Component
Subspace (PCS) and the Residual Subspace (RS). The space composed of the first k linearly
independent eigen vectors P̂ is PCS, and the space composed of the last n-k linearly
independent eigen vectors P̃ is RS.

P̂ = [p1 p2 . . . pk] (10)

P̃ = [pk+1 pk+2 . . . pm] (11)

Transform the samples into PCS and RS by projection matrix C:

X = X̂ + X̃ (12)

X̂ = CX = P̂P̂TX (13)

X̃ = (I − C)X = P̃P̃TX (14)

where X̂ and X̃ are the projections of X in PCS and RS, respectively.
The PCA-based fault detection model uses process statistics in PCS or RS to measure

the projected changes of the samples to be tested in these two spaces. The change value of
statistics indicates the deviation degree from the normal data distribution, which is used to
test whether a fault is currently occurring.

Generally, Squared Prediction Error (SPE) and Hotelling’s T2 (T2) statistics were used
to detect whether the system is abnormal [19,42,43]. In practical application, it is necessary
to select SPE or T2 according to the actual situation of dataset. Squared Prediction Error
is more sensitive to faults, so it is more capable of detecting faults of the same magnitude
than T2. Considering the weak amplitude and variation of the collected gas response data,
SPE statistic is selected in our work to realize the fault detection of MEMS sensor array.
The experimental section later in this paper will also compare and verify the detection
performance of these two statistics.

The calculation of the SPE statistic is shown in Equation (15). Squared Prediction
Error measures the change degree in the projection of observed samples in RS. Normally,
because the correlation between variables in RS is weak, the relative variation of data in RS
is not obvious. When the sensor of array fails, the correlation between variables changes,
and the established PCA model cannot adapt to the existing correlation, resulting in the
increase in SPE. When SPE exceeds the control limit δα, the sensor array is considered to
be faulty, otherwise it is in a normal working status. The detailed calculation process of
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δα is shown in Equations (16)–(18), where Cα is the critical value of confidence level α of
normal distribution.

SPE =
∣∣∣|X̃|∣∣∣2 = XT

i (I − C)Xi ≤ δα (15)

δα = θ1

[
1 +

Cαh0
√

2θ2

θ1
+

θ2h0(h0 − 1)
θ2

1

] 1
h0

(16)

θi =
n

∑
j=k+1

λi
j, i = 1, 2, 3 (17)

h0 = 1− 2θ1θ3

3θ2
2

(18)

Figure 2 shows the flowchart of the Self-Detection method proposed in this paper.
The left side is the establishment process of Self-Detection model, and the right side is
the monitoring process of sensor working status using the trained model. This method
uses SPE statistics as the stop criterium to control the procedure. When the MEMS sensor
array fails, the correlation between variables changes, and the established PCA statistical
model cannot adapt to the existing correlation, resulting in the increase in SPEi. When
SPEi exceeds the control limit δα, it is considered that the sensor array is faulty. The Self-
Detection procedure is stopped at this time and the Self-Calibration process will be carried
out. The specific process of Self-Detection method is as follows:

(1) The singular points in the original normal dataset xm×n are detected and removed by
Z-Score algorithm, and then the noise components are removed by the Savitzky–Golay
filter, and the processed data are normalized to Xm×n;

(2) The covariance matrix R of Xm×n is obtained by Equation (8) and eigen values Λ and
eigen vectors P can be obtained by singular value decomposition;

(3) The number of principal components k is obtained according to CPV, and the threshold
δα of SPE statistic and projection matrix C are calculated;

(4) When the test sample y1×n is input, use the mean and variance in step (1) to normalize
the testing data to obtain Y1×n;

(5) Project the testing sample into RS through C, calculate and compare SPEi and δα to
judge whether a fault occurs;
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2.3. Self-Calibration Methods

When the fault of the MEMS sensor array is detected, it is necessary to isolate the fault
sensor, that is, to determine the location of the fault sensor in array. Then, the fault data are
recovered according to the normal data or the historical recovery data. Finally, whether
it is normal or faulty sensor data, drift compensation will be carried out to complete the
Self-Calibration of the sensor array.

Most of the existing research on sensor fault isolation and recovery has focused on the
case of single fault [32,44]. This is because the possibility of multiple faults occurring in
the sensor array is relatively small, so the problem of multiple faults is rarely considered.
However, due to the characteristics of miniaturization and high integration, the probability
of multiple faults of the MEMS gas sensor array is much higher than that of traditional
sensor arrays. Therefore, in addition to single fault, this section will also focus on the case
of multiple faults.

Single FIR: Contribution plots is a commonly used fault isolation method [45]. It
realizes fault isolation by calculating the contribution rate of each variable to the change
of fault detection statistics. However, this method has a tailing effect, which may lead to
low accuracy. At the same time, most fault recovery algorithms were based on artificial
neural network (ANN) [46]. This method requires many historical samples to establish and
constantly update the model. However, most of the collected gas response datasets have
few calibration points and weak signal change. It is difficult to meet the requirements of
ANN for training samples, which will lead to low data recovery accuracy.

In addition, most of the current data recovery algorithms (ANN, RVM [19], etc.) need
to build a separate prediction model for each sensor in array. In the prediction process,
many historical data must be used to constantly update the model, which increases the
computational burden of system. The computation and storage resources of gas sensing
systems in IoT scenarios are extremely limited, which will make these models difficult to
meet the requirements of real-time computing, or even unable to be deployed. Therefore,
the method of data reconstruction based on SPE statistics is studied in Section 2.3.1 to
realize single FIR.

Multiple FIR: At present, there is relatively little research in this field. The existing
algorithms are like the data recovery algorithms in the case of single FIR. These methods
will build a separate model (e.g., ANN, RVM) for each sensor and then isolate and recover
faults according to the deviation between the predicted values of model and the original
measured values.

However, these existing algorithms for multiple FIR occupy too much memory and
are too computationally complex to be deployed in edge or portable gas sensing systems.
Therefore, Section 2.3.2 proposes a multiple FIR method based on confidence interval
prediction. The data recovery accuracy of this algorithm is high, and the parameters and
computation of this algorithm are much less than that of ANN, RVM, and so on. The most
important thing is that this method can realize real-time fault isolation and recovery on the
resource-limited terminal devices.

Drift Compensation: Baseline drift [23–28] of gas sensors may be caused by slow
changes in the environment, sensor aging, etc. Sensor drift causes input-output character-
istics to change over time. This phenomenon affects the selectivity and sensitivity of the
gas sensor, which may result in wrong response. To solve the above problems, an online
compensation method for baseline drift is proposed in Section 2.3.3. It uses a dynamic
matrix to update and store the baseline response according to environmental changes, and
then compensates in real-time for the baseline drift by means of differential processing,
thereby improving the stability of the sensor array over time.

2.3.1. Single FIR Based on Data Reconstruction

The fault sample vector can be expressed as:

Xi = Xi + f ε (19)



Sensors 2022, 22, 4315 10 of 26

where Xi is the normal component of Xi, f is the fault amplitude component, ε is the unit
matrix of fault direction, and its non-zero element fi represents the fault sensor i.

As shown in Figure 3, the idea of data reconstruction is based on Equation (13). The
observation value of fault sensor is projected along the fault direction vector into PCS of
the established PCA model during fault detection. According to the theory of PCA, the
reconstructed value obtained by projection can be considered as the best estimation of fault
recovery data. This method is simple, direct, and has few computations. However, this
method applies fault measurements when calculating the projection, which may bring
reconstruction error. In this section, multiple iterations are used for reconstruction to
reduce the interference of faulty data, while the general reconstruction method only iterates
once [32]. The formula for loop iteration is as follows:

x̂i = Cxi = [x1, x2, . . . , xm][c1i, c2i, . . . , cmi]
T =

[
cT
−i 0 cT

+i

]
x + ciixi (20)

where
[
cT
−i 0 cT

+i
]

represents the vector which the i-th column of matrix C is replaced
by zero.
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According to the orthogonality of matrix P, it can be proved that cii is less than 1, then
x̂i can finally converge. That is, when x̂i = xi, the formula of final iterative reconstruction
can be obtained:

x̂i =

[
c1i, c2i, . . . , c(i−1)i, 0, . . . , cmi

]T
x

1− cii
(21)

Before iterative reconstruction, because the fault direction is uncertain, we will assume
a set D = {d1, d2, . . . } containing all fault directions (where di is obtained by the combination
function C (n, d), and d is the number of fault sensors). Then, iterate continuously according
to the fault direction in set D until the reconstructed SPE value is lower than the control
limit. At this time, the recovery is considered successful, and the fault direction and
corresponding recovery data are obtained. If the reconstructed SPE value is still higher than
threshold after iteration of all fault direction, it is considered that a multi-fault problem has
occurred, and multiple FIR will be performed. In iterative reconstruction, the T2 statistic
can also be used for iteration. In the experimental part of this paper, the appropriate statistic
will be selected by comparison.

The data reconstruction method is mainly judged by the projection change of the
reconstructed data in RS. In this method, when multiple faults occur, the reconstructed SPE
value is always greater than the control limit, so it cannot effectively isolate and recover
multiple faults. The multiple FIR method will be discussed in the following section.

2.3.2. Multiple FIR Based on Confidence Interval Forecast Using Bootstrap

The data reconstruction method has good isolation and recovery performance in single
fault. However, in the face of multi-fault problem, the number of fault direction set D will
increase exponentially with the number of sensors, and with the increase in fault data, the
recovery accuracy will decline seriously. In addition, the commonly used multiple FIR
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methods (e.g., ANN, RVM) are computationally complex and time-consuming, making it
difficult to meet the requirement of computing speed.

To solve the above problems, we propose a multiple FIR method based on confidence
interval prediction using bootstrap. This method builds the model with less historical data
and applies a bootstrap-based confidence interval forecasting method of time series. In
case of multiple faults, the confidence interval is the prediction of fluctuation range of the
current measurement. If the current measurement value exceeds the interval range, the
sensor is identified as faulty, thus completing the fault isolation. Failure recovery uses the
middle of the prediction interval to replace the failure measurement. After experimental
verification, this method can complete the accurate isolation and recovery of multiple faults
when using less historical data. Computational speed and storage occupation are also
better than other methods such as ANN or RVM.

Bootstrap-based confidence interval prediction uses the bootstrap method to simulate
a set of predicted values at a certain time when the distribution of prediction errors is
unknown. Then, take the quantile of prediction values set as the prediction interval
according to the confidence. The prediction error et is defined as:

et = yt − ŷt (22)

where yt refers to the actual measured value, and ŷt is the predicted value at the current
moment using historical data.

Equation (22) can be rewritten as (23), so we can use Equation (24) to simulate the next
observation. Assuming that the prediction error in the next step is similar to that in the
past, then et+1 can be replaced by sampling from the set of prediction errors (residuals)
obtained in the past. That is, the set of prediction errors {et, et−1, . . . , et−m} at different
times is obtained from the historical observation sequence {yt, yt−1, . . . , yt−m} and the
predicted value sequence

{
ŷt, ŷt−1, . . . , ŷt−m

}
(m is called residual stride). A series of et+1

can be obtained by repeatedly sampling the prediction error set (the sampling times is
denoted as B). Then, the future predicted value set {yt+1} is obtained by Equation (24).

yt = ŷt + et (23)

yt+1 = ŷt+1 + et+1 (24)

Then, according to the confidence k, the quantile of {yt+1} is taken as the upper and
lower limits of the prediction interval. The lower limit L of the interval is
quantile({yt+1}, (1− k)/2), and the upper limit U is quantile({yt+1}, 1− (1− k)/2). For
example, a bootstrap-based prediction interval with a confidence level of 95% has a lower
bound of quantile({yt+1}, 2.5%) and an upper bound of quantile({yt+1}, 97.5%).

In addition, to reduce the computational complexity of the algorithm, the method for
predicting the next step is the weighted average prediction. That is, the predicted value at
the next moment is equal to the weighted average of the current measured value and the
predicted value at the previous moment. Its calculation is shown in (25). In this paper, α is
taken as 0.5.

ŷt+1 = αyt + (1− α)ŷt (25)

When a fault is detected at the current moment, and the data reconstruction method
cannot correctly isolate the fault, the multiple FIR algorithm is activated. That is, the
above bootstrap-based confidence interval prediction method is applied to estimate the
confidence interval of the predicted value at the current moment. This interval is considered
as the fluctuation range of the normal measured value. When the measurement value of
several sensors in the sensor array exceeds the upper or lower limit of the corresponding
interval, it is considered that the current sensor is faulty, that is, the multi-fault isolation
is completed. Then, the middle value (Li + Ui)/2 of confidence interval corresponding to
the faulty sensor i is used to replace the erroneous measurement value to complete the
recovery of faulty data.
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2.3.3. Dynamic Drift Compensation

Figure 4 shows the dynamic response of a gas sensor with baseline drift. To obtain a
stable sensor response, the baseline difference method shown in Equation (26) is usually
used to compensate for baseline drift:

xc(t) = xs(t)− xb(0) (26)

where xs(t) is the real-time response of sensor to the target gas, xb(0) is the estimated
baseline response, and xc(t) is the sensor response after drift compensation. In the off-line
signal preprocessing, xb(0) usually takes the average value of a steady-status response of
sensor in pure air.
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However, in the actual test environment, uncontrollable factors such as ambient
temperature or humidity will cause the drift of sensor baseline, resulting in larger or
smaller xb of different sensors in the array. At this time, if the initial xb(0) is still used
for compensation, an error response including baseline drift will be obtained. Therefore,
we propose a dynamic drift compensation method that can be operated online. It uses a
dynamic baseline matrix to update the baseline response in the current environment in
real time, and then performs differential processing on the current data according to the
baseline matrix:

Xc = Xs − Xb (27)

where Xs and Xc are the real-time response matrix and the compensated response matrix
of the sensor array, respectively, Xb is the dynamically updated baseline matrix, the size of
these matrices is 1 × n, n represents the number of gas sensors.

Baseline drift is a slowly changing process, and short-term effects can be temporarily
ignored. A dynamic update step (stride) is added to reduce the frequency of updating
the baseline matrix, thereby reducing the computational cost. In addition, when the
sensor array fails, the recovered value of faulty data may be lower than the actual baseline
response. To avoid the influence of the fault recovery data on the baseline matrix, a
parameter (fault_flag) is added to control the baseline matrix Xb to be updated when there
is no failure.

In summary, the flow of the Self-Calibration algorithm is shown in Figure 5. The
proposed Self-Calibration method will go through three subprocesses: single FIR, multiple
FIR, and drift compensation successively from left to right. The specific step of the first two
subprocesses is as follows:

(1) For faulty data, iterative data reconstruction is first performed on the set D of fault
directions. The fault isolation is completed until the SPE statistic of the reconstructed
value is lower than the threshold. Then, the reconstructed value ŷi is used to recover
the faulty data;

(2) If the SPE value is still greater than the threshold after reconstruction in all single-fault
direction sets, then the multiple FIR based on confidence interval prediction will be
carried out;
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(3) Combined with the historical data within the set step size m, bootstrap is used to
predict the confidence interval of the current measurement value. If the output of
sensor is out of range, the current sensor is isolated, and the interval middle value
(Li + Ui)/2 is used for data recovery.
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Finally, the baseline drift is compensated for the fault recovery data or normal data.
The specific process is as follows:

(1) Initialize the baseline matrix Xb(0) using the response of the sensor array in pure air;
(2) Determine whether the current step is less than the update step stride. If yes, the drift

compensation will not be performed at the current moment. The data will be received
again, and the step value will be increased. If not, judge whether the current data are
the fault recovery data and initialize step to zero;

(3) If the current fault_flag is 1, a fault has occurred. The update process of the baseline
matrix is skipped, and the baseline difference is processed directly. If fault_flag is 0, it
means that drift compensation is being performed on normal data, and the baseline
matrix will be updated at this time.

3. Experimental Results and Discussion

To verify the effectiveness of the Self-Detection and Self-Calibration strategy pro-
posed in this paper, the performance analysis and board-level verification were carried out.
The output response of the sensor array used in experiments were all collected from the
real mixed gas environment. Section 3.1 introduces the construction of the experimental
platform and the collection of the dataset. Sections 3.2 and 3.3, respectively, conducted com-
prehensive performance tests and comparisons on the data preprocessing, fault detection,
fault isolation and recovery, and drift compensation algorithms applied in Self-Detection
and Self-Calibration methods using different indices. Section 3.4 examines the deployed
and tested complete Self-Detection and Self-Calibration methods on a resource-limited
embedded hardware platform (CC1350), thereby proving the advantages of our method in
speed, power consumption and resource occupation on the terminal equipment of IoT or
edge computing.

3.1. Experimental Setup

We built the experimental platform as shown in Figure 6. The platform was used to
collect gas sensor response data and verify the capability of the proposed Self-Detection
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and Self-Calibration strategy. The combination of MEMS sensor array and control unit
was placed in a sealable gas chamber (Figure 7). The gas chamber was equipped with
a fan which was used to accelerate the diffusion of the gas. The devices in the chamber
were powered by an external 5 V DC power supply. After the gas was injected into the gas
chamber using a syringe, the conductivity of the sensor sensitive material would change.
Then, the gas variation was converted into an analog signal through the measurement
circuit for acquisition. The air pump was used to clean the gas chamber after each test.
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The control board used CC1350 MCU of Texas Instruments (TI). The CPU clock
frequency of CC1350 is 48 MHz and is equipped with 128 KB FLASH and 28 KB RAM.
It was used for data communication with PC during data acquisition. In fact, the main
function of CC1350 was to be used to simulate the control system of the actual IoT terminal
devices to verify the applicability of our lightweight strategy on resource-limited platforms.

Once all equipment was connected and checked, the collection of gas response data
began. The dataset collected in this paper was the sensor response data of mixed gas for
diabetes exhalation diagnosis. We used four MEMS gas sensors (GM-512B, GM-802B, GM-
302B, GM-502B) to form a non-redundant sensor array. Although each sensor had different
sensitivity characteristics, they were all responsive to acetone. The gas composition and
concentration ranges referred to the composition of the exhaled gas of diabetic patients [47].
The target gas was acetone, the concentration range was 0.2 ppm~5.0 ppm, and the response
data of 5 calibration points (0.2/0.5/0.8/2.5/5.0 ppm) were collected. The specific process
of data collection was as follows:

(1) Before the test, preheat the sensor array to a certain extent;
(2) Place the sensor in pure air, that is, do not inject the target gas into the gas chamber.

Wait until the data are stable before collecting. The data collected at this time serves
as the baseline response of the sensor array, which could be used to simulate constant
output fault and initialize the baseline matrix;
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(3) Inject the target gas to be measured and use a fan to evenly distribute the gas in the gas
chamber. Then, the changing gas response data are collected on the PC through the
data acquisition card. During the acquisition process, some samples of broken-circuit
faults can be obtained by disconnecting the power supply, which could provide a
reference for the generation of subsequent faulty testing samples;

(4) After collection, use the air pump to discharge the target gas in the gas chamber
and open the intake valve to let the air into gas chamber. This process repeats
until the response of sensors approach the baseline, thereby restoring the initial
test environment.

Figure 8a shows the partial collected steady-status response data of the sensor array
under normal working status. The dataset as shown in Figure 8a contained the output
steady-status signals of four different MEMS gas sensors under different acetone concentra-
tions (0.2/0.5/0.8/2.5/5.0 ppm), which would be used to train the Self-Detection model.
Figure 8b shows the complete response data of the sensor GM-302B including baseline and
steady-status process, which would be used to validate the proposed drift compensation
algorithm. It can be clearly seen from Figure 8b that the baseline response will change at
different times and different gas concentrations. In addition, the faulty data of the sensors
were difficult to obtain in actual acquisition process. Therefore, 1200 faulty testing samples
were randomly generated through the fault stack-based approach [19,20,29], including
300 each of impulse faults, bias faults, constant output faults and broken-circuit faults,
as the testing dataset of the Self-Detection and Self-Calibration methods. Among them,
the impulse and bias fault superimpose 4~5% of the average value of signal amplitude.
The constant output fault was the steady response in pure air, and the broken-circuit fault
was simulated by opening the electrode [19,29]. Constant output and broken-circuit faults
can be regarded as special bias faults with a baseline response and close to zero magni-
tude. Therefore, these four different faults can also be divided into transient faults and
persistent faults.
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It should be noted that Sections 3.2 and 3.3 were completed on PC. In addition to
collecting and constructing training datasets, PC was also used to train Self-Detection and
Self-Calibration models and for performance analysis and comparison of algorithms. CPU
of PC was Intel Core i5-8257U 1.40 GHz. Section 3.4 applied the parameters of trained
model to deploy and test algorithms on CC1350.

3.2. Self-Detection of Different Sensor Fault Types

Self-Detection methods include two parts: data preprocessing and the PCA fault
detection model. Data preprocessing is the processing of singular points and random noise.
Firstly, to verify the detection performance of Z-Score and Isolation Forest for outliers in
dataset, 5, 10, 15, 20, 50, and 100 outliers were added to the dataset, respectively. Table 2
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shows the detection rate (DR) and false positive detection rate (FPR) of these two algorithms
for outliers.

Table 2. Comparison of different novelty detection algorithms.

Algorithms Number of Outliers 5 10 15 20 50 100

Z-Score
DR (%) 100 100 100 100 96 96
FPR (%) 0 0 0 0 0 0

Isolation Forest
DR (%) 100 100 100 100 100 100
FPR (%) 25.1 14.6 8.0 2.5 1.1 0.5

If there were many singular points in the dataset, it would affect the mean and variance
of data, thereby affecting the DR of Z-Score. The detection of normal data by Z-Score was
rarely wrong. Isolation Forest was more suitable for continuously changing data, but the
gas sensor response data fluctuated slowly, and Isolation Forest was prone to overfitting
during training, resulting in false detection. Although Isolation Forest worked better when
the number of outliers was large, the number of outliers in the actual dataset was generally
less. Moreover, Isolation Forest had multiple hyperparameters, which were complex to
adjust. Therefore, we adopted Z-Score for novelty detection of the dataset.

To compare the filtering performance of Savitzky–Golay and Moving-Average filter,
50 dB Gaussian noise was added to the original dataset. Table 3 uses the SNR and R
introduced in Section 2.2.1 to compare their filtering performance and ability to preserve
the original features of data. The signal waveforms before and after Savitzky–Golay and
Moving-Average filtering are shown in Figure 9. It can be found that the SNR and R of
Savitzky–Golay filter were higher than those of the Moving-Average filter, which means
that it could better retain the original characteristics of data while filtering out noise. It can
also be seen from Figure 9 that Moving-Average filter would lead to distortion of the signal
waveform. In addition, to better preserve the original features of data, we used piecewise
Savitzky–Golay filtering. Mirror processing was used for border points, which could avoid
boundary effect during filtering. The stride and polynomial order of Savitzky–Golay were
5 and 3, respectively, and the window length of Moving-Average was 25 in the experiment.

Table 3. Comparison of different filters.

Filters Savitzky–Golay Moving-Average

SNR 51.7 41.4
R 0.997 0.970
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The steady-status outputs of the sensor array under normal operation at different
calibration points were used as the training set for the PCA fault detection model, and the
generated fault samples were used for the testing set. Table 4 shows the DR and FPR of
different fault types using fault detection models with different statistics (SPE or T2). It can
be found that the PCA model based on SPE (PCA-SPE) could identify four different types
of faults more accurately, and the detection performance was better than the model based
on T2. In addition, the applied data preprocessing techniques enabled the model to have
no false positives during testing.

Table 4. DR and FPR of different fault types.

Models Fault Types Impulse Bias Constant Broken-Circuit

PCA-SPE
DR (%) 99.3 99.6 98.0 100.0
FPR (%) 0 0 0 0

PCA-T2 DR (%) 12.0 33.3 33.3 100.0
FPR (%) 0 0 0 0

Figures 10 and 11 show the detection performance of the PCA model on transient
faults (impulse) and persistent faults (bias), respectively. Among them, Figure 10a marks
four impulse faults (the 50th, 150th, 250th, and 350th samples), and Figure 11a marks
one bias fault (the 150th~300th samples). The SPE statistics in Figures 10b and 11b rose
substantially and exceeded the control limit when a fault occurred. Although T2 statistic
would also change, it was still less than the control limit in most cases, so it is difficult to
detect faults.
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Table 5 verifies that when there were outliers in the dataset (4 outliers were added), the
performance of fault detection model would be severely degraded. This is because outliers
would raise the control limit of the statistic, thereby reducing the fault detection rate.

Table 5. Influence of outliers on fault detection.

Fault Types Impulse Bias Constant Broken-Circuit

PCA-SPE (%) 0 50 50 100
PCA-T2 (%) 0 0 0 100

To illustrate the impact of random noise on fault detection, Table 6 compares the
change in detection rate of impulse faults when using normal data, noisy data, and filtered
data. It can be seen from Table 6 that noise had a great influence on the detection of impulse
faults. This is because noise increased the tolerance of model, which made some failures
difficult to detect. After Savitzky–Golay (S-G) filtering, the fault detection performance
returned to normal. The performance of Moving-Average (M-A) filtering was seriously
degraded because it destroyed the original data features. Other types of faults had a large
SPE variation, so they were not easily affected by noise, which are not mentioned in Table 6.
However, when the noise increased to a certain extent, it would also be affected. This
proves that data preprocessing for outliers and noise is necessary.

Table 6. Influence of random noise on fault detection.

Datasets Normal Noisy S-G Filtered M-A Filtered

DR of Impulse Faults (%) 99 95 99 33

3.3. Self-Calibration of Fault Signals

Self-Calibration methods include FIR and dynamic drift compensation. Fault iso-
lation and recovery has designed separate methods for single fault and multiple faults.
The experiments in this section were also divided into tests on single-fault and multi-
fault samples. The three indexes of fault isolation accuracy, Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE), were used to evaluate the performance
of the proposed algorithms and other common FIR algorithms. The first of which repre-
sents the performance of fault isolation, and the latter two measures the accuracy of fault
data recovery.

3.3.1. FIR of Single Sensor Fault

Firstly, Self-Calibration applied data iterative reconstruction based on SPE statistics
(SPE-IR) to implement single FIR. Table 7 compares the single-fault isolation accuracy of
data iterative reconstruction methods using different statistics (SPE or T2) and contribution
plots method. Table 8 compares the data recovery performance of different reconstruction
methods. From the comparison results in Tables 7 and 8, it can be found that the average
isolation accuracy of SPE-IR was higher than that of the T2-based iterative reconstruction
(T2-IR) and contribution plots method. Additionally, the data recovery accuracy of SPE-IR
was also better than T2-IR and general reconstruction method (iterative once).

Table 7. Isolation Accuracy of Different Fault Isolation Methods.

Fault Types Impulse Bias Constant Broken-Circuit Accu

SPE-IR 99 98 99 100 99
T2-IR 63 45 100 100 77

Contribution Plots (SPE) 58 69 58 75 65
Contribution Plots (T2) 16 25 38 75 38.5
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Table 8. Data Recovery Error (MAE/MAPE) of Different Reconstruction Methods.

Figure Impulse Bias Constant Broken-Circuit MAE/MAPE

SPE-IR 0.00176/0.0615 0.00229/0.0766 0.00481/0.1811 0.00255/0.1021 0.00285/0.1053
T2-IR 0.00727/0.2483 0.01611/0.5367 0.00220/0.0939 0.00255/0.1021 0.00703/0.2452

General Reconstruction 0.00624/0.2213 0.00971/0.3340 0.05600/1.9288 0.24873/8.3187 0.08017/2.7007

The data recovery waveforms of SPE-IR for transient fault and persistent fault are
shown in Figure 12. SPE-IR could successfully isolate and recover the error response of the
faulty sensor, which proves the effectiveness of the SPE-IR method for single-fault isolation
and data recovery.
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In addition to comparing SPE-IR with other data reconstruction methods, two typical
algorithms (ANN, RVM) for data recovery were also compared. Unlike data reconstruction,
ANN and RVM used historical data to build an updating model for each sensor. When
recovering the faulty data, the models needed to be updated online and make predictions.

Figures 13 and 14 show the data recovery performance of ANN and RVM. As shown
in Tables 9 and 10, to make a more comprehensive comparison of algorithm performance, in
addition to comparing the data recovery error, the computation speed and model size were
also compared to verify the feasibility of the algorithm being deployed on IoT terminal
platforms. The hyper-parameters were set as follows: ANN’s update stride was 20, hidden
layer was (100, 50), activation function was ReLu, optimizer was Adam. RVM’s update
stride was 20 and kernel function was RBF. Model size in Table 10 only counted the
parameter size during algorithm inference. The storage resources occupied by the storage
of intermediate results and the training process were not considered, so the real storage
resources occupied by ANN and RVM would be larger.
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Table 9. Comparison of data recovery error (MAE/MAPE).

Methods Transient Fault (10−5) Persistent Fault (10−3)

SPE-IR 0.1763/6.2673 0.3839/20.6146
ANN 2.3454/83.3408 3.8944/208.7939
RVM 0.8262/29.3595 1.5227/81.5597

Table 10. Comparison of computation speed and model size.

Methods Computation Speed (ms) Model Size (Bytes)

SPE-IR 0.21 40
ANN 134.69 28.8 K
RVM 16.59 17.1 K

From the comparison results in Tables 9 and 10, it can be found that SPE-IR could
achieve better recovery accuracy for both transient and persistent faults. In addition, the
computation speed of SPE-IR could meet the real-time requirements, and its model size was
also much smaller than that of ANN and RVM. However, ANN took a long time to train
and needed enough samples (200~300) to obtain better prediction performance. Moreover,
ANN was prone to fall into local minimum, which made it difficult to converge effectively.
Especially for persistent faults (Figure 14b), ANN could only achieve a certain degree of
effective recovery within a very limited step size, after which the predicted data would
diverge and deviate from the normal range.

Compared with ANN, the modeling and computation time of RVM were greatly
reduced, and the data recovery accuracy was also better than that of ANN. However, the
performance of RVM was still not as good as SPE-IR due to the online update of model and
complex computation of kernel function.

The weak change of sensitive unit output responses in the gas sensor array made it
difficult for machine learning algorithms (e.g., ANN, RVM) to extract valid features for
learning from a limited number of samples. While using more samples might improve
performance, it would inevitably bring greater storage and computational burdens.

3.3.2. FIR of Multiple Sensor Faults

This section used the proposed Confidence Interval Forecast using Bootstrap (CIFB)
method to conduct experiments of multiple FIR. The algorithm performance, computing
speed, and model size were tested and compared. In the experiment, two kinds of multi-
fault samples, superimposed transient faults, and superimposed persistent faults were
tested, respectively. Figure 15 shows the waveforms of multiple FIR based on CIFB. It can
be seen that CIFB could effectively isolate and recover both multi-fault samples. It should
be noted that when CIFB performed FIR, two parameters (residual stride m and sampling
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length B) needed to be selected. If m and B were too small, the prediction interval would be
shifted due to incomplete sampling of the residual distribution. The larger m and B, the
higher the computing time and storage usage. After tuning, the hyper-parameters of CIFB
were set as follows: m was 10, B was 20, and confidence k was 95%.
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Figure 16 shows the results using SPE-IR in case of multiple faults. When solving
multiple FIR, SPE-IR would reconstruct on all possible fault direction sets and select the
direction set with the smallest SPE statistic after reconstruction for data recovery. The
shortcomings of this method are: (1) The accuracy of multi-fault isolation is low, and it is
prone to fault direction judgment errors. As shown in Figure 16b, SPE-IR incorrectly judged
the faulty sensor when faced with multiple persistent faults; (2) the data recovery accuracy
is low. Other faulty data will be used when reconstructing sensor data in a certain direction,
which can result in errors; (3) each possible fault direction set requires iteration which
results in high computation latency. Therefore, in our Self-Detection and Self-Calibration
strategy, the combination of SPE-IR and CIFB is used for fault isolation and recovery. In
this way, single or multiple faults can be effectively solved.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 27 
 

 

  
(a) (b) 

Figure 15. Multi-faults isolation and recovery of CIFB: (a) Multiple transient faults; (b) Multiple 
persistent faults. 

Figure 16 shows the results using SPE-IR in case of multiple faults. When solving 
multiple FIR, SPE-IR would reconstruct on all possible fault direction sets and select the 
direction set with the smallest SPE statistic after reconstruction for data recovery. The 
shortcomings of this method are: (1) The accuracy of multi-fault isolation is low, and it is 
prone to fault direction judgment errors. As shown in Figure 16b, SPE-IR incorrectly 
judged the faulty sensor when faced with multiple persistent faults; (2) the data recovery 
accuracy is low. Other faulty data will be used when reconstructing sensor data in a cer-
tain direction, which can result in errors; (3) each possible fault direction set requires iter-
ation which results in high computation latency. Therefore, in our Self-Detection and Self-
Calibration strategy, the combination of SPE-IR and CIFB is used for fault isolation and 
recovery. In this way, single or multiple faults can be effectively solved. 

  
(a) (b) 

Figure 16. Multi-faults isolation and recovery of SPE-IR: (a) Multiple transient faults; (b) Multiple 
persistent faults. 

Furthermore, Table 11 compares the computation time and model size of CIFB with 
ANN, RVM, and SPE-IR. These two metrics are the key factors that determine whether 
the algorithm can run efficiently on the target platform. The computation time here refers 
to the isolation and recovery time for multiple transient faults. The model size of ANN or 
RVM also needs to be multiplied by the number of sensors in the array, since it builds a 
separate model for each sensor. It can be found from the comparisons that CIFB had a 
lower recovery error, and the computation speed and model size were also much lower 
than those of commonly used methods (ANN, RVM). 

  

Figure 16. Multi-faults isolation and recovery of SPE-IR: (a) Multiple transient faults; (b) Multiple
persistent faults.

Furthermore, Table 11 compares the computation time and model size of CIFB with
ANN, RVM, and SPE-IR. These two metrics are the key factors that determine whether
the algorithm can run efficiently on the target platform. The computation time here refers
to the isolation and recovery time for multiple transient faults. The model size of ANN
or RVM also needs to be multiplied by the number of sensors in the array, since it builds
a separate model for each sensor. It can be found from the comparisons that CIFB had a
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lower recovery error, and the computation speed and model size were also much lower
than those of commonly used methods (ANN, RVM).

Table 11. Comparison of multi-faults computation time and model size.

Methods CIFB ANN RVM SPE-IR

Computation Time (ms) 0.65 319.75 32.35 0.68
Model Size (Bytes) 1.79 K 28.8 KB 17.1 KB 80 B

3.3.3. Drift Compensation

Although the true baseline values and responses are unknown, sensor response curves
before and after drift compensation show the performance of the method used. Figure 17
shows the results of conventional baseline processing of different sensor responses using
Equation (26) (the baseline values were the average response values in pure air). The
raw data of sensor units 1 and 2 were response data before and after adding target gas
at different concentrations. The baseline response was changing before the addition of
gas, which represented the sensor had baseline drift. After simple baseline differential
processing, although the response amplitude had decreased, the baseline drift still existed,
and the processed data still had negative values which was unrealistic.
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Figure 18 shows the results of processing the raw data with the proposed dynamic
drift compensation method. It can be found from Figures 17 and 18 that the data after
dynamic compensation could better suppress the baseline drift. Moreover, the response,
processed with dynamic drift compensation, was closer to the standard sensor response
curve, and there were no negative values in the compensated data. The experimental
results prove that the proposed method could effectively compensate for baseline drift.
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3.4. Board-Level Verification

IoT devices such as intelligent gas sensing systems usually choose low-cost and re-
source limited MCUs as control chips [1,48,49]. The computation speed and resource
occupation of the algorithm on MCU determine its application value. To verify the prac-
ticality of the proposed Self-Detection and Self-Calibration strategy on IoT devices, this
section deployed our algorithms on CC1350 MCU and compared it with other existing
algorithms (ANN, RVM).

Table 12 shows the time periods and running time (clock frequency is 48 MHz) of
Self-Detection and Self-Calibration for different types of test samples (normal, single-fault,
multi-fault). To obtain a more accurate measurement, the algorithm was run 10 times in a
loop and the average running time was recorded. The computation time of the multi-fault
testing samples in Table 12 is higher than other samples because it includes the time of
updating data matrixes. Assuming that the probability of single fault and multiple faults is
5% (the real probability of faults should be much lower than this), the average running time
of our method is about 0.28 ms, while the running time of ANN and RVM are 75.03 ms and
9.25 ms, respectively, which indicates that our strategy has lower computational complexity
and better real-time computing performance.

Table 12. Computation speed of Self-Detection and Self-Calibration on CC1350.

Testing Samples Time Periods
Running Time

Ours (µs) ANN (ms) RVM (ms)

Normal 7010 146.04 38.56 4.75
Single-Fault 23,512 489.83 129.36 15.93
Multi-Faults 123,059 2563.73 677.17 83.41

Average 13,637 284.11 75.03 9.25

Table 13 summarizes the storage resource utilization of the proposed Self-Detection
and Self-Calibration strategy and other methods (ANN, RVM). The ANN and RVM methods
occupied a large amount of on-chip storage resources (80.85%, 48.93%) due to complex
model parameters, which would limit the deployment of other algorithms such as pattern
recognition on the target platform. Meanwhile, our method only occupied very few
storage resources (7.89%), which could improve the flexibility for deployment of other
application algorithms.

Table 13. Storage resource utilization of Self-Detection and Self-Calibration on CC1350.

Storage Resources
FLASH SRAM

Ours ANN RVM Ours ANN RVM

Occupied Resources (Bytes) 10.22 K 103.49 K 62.64 K 232 2.39 K 1.41 K
Total (Bytes) 128 K 128 K 128 K 28 K 28 K 28 K

Utilization Rate 7.98% 80.85% 48.93% 0.83% 8.54% 5.04%

Meanwhile, the standby power consumption of CC1350 and the running power and
energy consumption of our strategy and other methods (ANN, RVM) are shown in Table 14
(Supply Voltage is 3.3 V). When testing power consumption, to measure the current of
chip more accurately, we excluded the interference of peripherals and leakage current. The
standby mode in Table 14 measured the current when CC1350 starts in low-power mode
(RTC running, RAM and CPU retention), and the operation mode measured the average
current when the algorithms were running. The running power and energy consumption of
our method were 9.884 mW and 2.808 µJ. Additionally, the comparison results in Table 14
proved that our method had less energy consumption than other methods. The board-
level verifications in Tables 13 and 14 demonstrate that our method is low in resource



Sensors 2022, 22, 4315 24 of 26

consumption and running power, indicating that it can be efficiently deployed and run on
most IoT devices.

Table 14. Power and energy consumption of Self-Detection and Self-Calibration on CC1350.

Mode Standby
Operation

Ours ANN RVM

Current (mA) 0.356 µA 2.995 3.115 3.026
Power (mW) 1.173 µW 9.884 10.280 9.986
Energy (µJ) / 2.808 771.308 92.371

4. Conclusions

To address the reliability issues of operation and measurement of MEMS gas sensor
arrays, a lightweight Self-Detection and Self-Calibration strategy is proposed in this pa-
per. Firstly, a Self-Detection model is built by employing data preprocessing and PCA
techniques, which can effectively monitor the working status of the sensor array in real
time. Then, when an abnormal status is detected, the Self-Calibration method combined
with data reconstruction and confidence interval prediction can identify faulty sensors
and accomplish failure recovery in real-time. Finally, dynamic drift compensation is used
to recover the true sensor response. Experimental results indicated that our approach
outperformed other typical algorithms and had better fault detection, isolation, and data
recovery performance. Furthermore, since the proposed strategy can achieve Self-Detection
and Self-Calibration of sensor arrays with only few computation and storage resources, it
can be deployed on low-cost, low-power IoT sensing systems. It is of great significance
for the proper operation of gas sensing system. In future work, we will focus on applying
adaptive correction methods to enhance the performance of drift compensation.
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