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Abstract: Sensor technology that captures information from a user’s neck region can enable a range of
new possibilities, including less intrusive mobile software interfaces. In this work, we investigate the
feasibility of using a single inexpensive flex sensor mounted at the neck to capture information about
head gestures, about mouth movements, and about the presence of audible speech. Different sensor
sizes and various sensor positions on the neck are experimentally evaluated. With data collected from
experiments performed on the finalized prototype, a classification accuracy of 91% in differentiating
common head gestures, a classification accuracy of 63% in differentiating mouth movements, and a
classification accuracy of 83% in speech detection are achieved.

Keywords: wearable computing; interaction design; neck-mounted interface; flex sensor; machine
learning (ML)

1. Introduction

The ever-increasing prevalence of mobile phones, wearable devices, and smart speak-
ers has spurred intense exploration into user interfaces. These new user interfaces need
to address the challenges posed by the ubiquitous interaction paradigm, while having
available the possibilities that these varied smart technologies provide.

Arenas for exploration of mobile user interfaces include improving gesture-based
interfaces to enable interaction in limit mobility settings or by decreasing the social disrup-
tion that is caused by repeated disruptive interactions. Interfaces have been developed that
use the movement of the hands, arms, eyes, and feet.

Touch gesture controls still dominate mobile system interfaces because of the ubiquity
of touch screens [1]. However, the dominant tap, scroll, and pinch gestures have been linked
to repetitive strain injuries on smart phones [2,3]. In addition, they have their limitations
on wearable devices because of the limited screen size and, in turn, the available interface
surface. The gestures on smartwatch screens need to be done with greater precision and
with more constriction of the hand muscles, since the smartwatch screens are significantly
smaller than the smartphone screens.

Voice user interfaces (VUIs) that are used for smart speakers have been another
arena for improvement, with voiceless speech being explored for situations where there is
background noise and for microinteractions.

In this work, we examine the benefits that sensoring the neck can provide within the
breadth of mobile user interfaces. We explore and develop a new user interface for mobile
systems, independent of limb motions. For example, in place of a scroll down, the head
can be tilted forward. In place of a tap, the head can be turned to one side, all with only an
inexpensive sensor affixed to the neck or shirt collar.
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We sensor the neck with an inexpensive and nonintrusive flex sensor and show
the range of interfaces that are possible with the incorporation of this simple wearable
technology into our lives. Our efforts provide a proof of concept that common actions,
such as head tilts, mouth movements, and even speech, can be classified through the
interpretation of the bend angle received from the neck. We explore the size of the flex
sensor and the positioning of the sensor on the neck and use our classification results to
tailor the prototype.

Applications for neck interfaces include use in assistive devices where limb motion is
limited, in gaming and augmented reality systems for more immersive experiences, and in
wearable and vehicular systems where hand and/or voice use is restricted or inconvenient.
Neck interactions expand a user’s bandwidth for information transference, in conjunction
with or in place of the typically saturated visual and the audial channels.

A neck-mounted prototype was designed and developed, as detailed in Section 3. The
system design considered comfort and the range of motion in the neck and upper body.
The form factor and the positioning of the system was finalized to enable the embedding
in clothing, such as in a shirt collar. A range of sensor types, sizes, and positions were
considered and evaluated.

The prototype’s head gesture and position classification accuracy was evaluated for
five different classes of common head tilt positions. These experimental evaluations are
detailed in Section 4. Head tilt classification is important because it enables user interface
input with simple and subtle head gestures.

The encouraging results from the head gesture classification motivated us to explore
more possibilities, including using the prototype for mouth movement and speech clas-
sification. The experimental evaluations of mouth movements and speech classification
are detailed in Section 5. By also incorporating speech and/or mouth movement detection,
head gestures for software interactions can be differentiated from head gestures that arise
during regular conversation.

The main contributions of this work are (1) the development of a neck-mounted
prototype, with an evaluation of sensor types, sizes, and positions; (2) the evaluation of
the prototype’s head-position classification accuracy; (3) mouth movement detection; and
(4) speech detection and classification.

2. Related Work

Interfaces that sense hand and arm gestures are widespread [4], including those that
rely on motion sensors [5–8], changes in Bluetooth received signal strength [9], and light
sensors [10,11]. Interfaces that leverage the movement of the legs and the feet have also
been explored [12,13]. Computer vision-based approaches using the camera to capture
head and body motions [14,15], facial expressions [16], and eye movement [17] also exist.

Detection of throat activity has been explored using different enabling technologies.
Acoustic sensors have been used for muscle movement recognition [18], speech recogni-
tion, ref. [19] and actions related to eating [20–22]. Prior research has been done on e-textiles
used in the neck region for detecting posture [23] and swallowing [24], but those efforts
have relied on capacitive methods that have limitations in daily interactions. Researchers
have explored sensoring the neck with piezoelectric sensors for monitoring eating [25] and
medication adherence [26].

In addition to the neck-mounted sensors systems, there has been an exploration
of actuation at the neck region using vibrotactile stimulation for accomplishing haptic
perception [27–29].

The use of video image processing for speech recognition has been applied to lip
reading [30–32]. More recently, as part of the silent or unvoiced speech recognition research
efforts, mobile phone and wearable cameras have been used for speech classification from
mouth movements. Researchers have used bespoke wearable hardware for detecting
mouth and chin movements [33], or leveraged smart phone cameras [34].
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Electromyography (EMG) has also been used for speech and/or silent speech classifi-
cation. Researchers have used EMG sensors on the fingers placed on the face for mouth
movement classifications [35]. EMG sensoring of the face for speech detection has also
been carried out [36].

Tongue movement has been monitored for human–computer interfaces, including
using a magnetometer to track a magnet in the mouth [37], using capacitive touch sensors
mounted on a retainer in the mouth [38], using EMG from the face muscles around the
mouth [39], and using EMG coupled with electroencephalography (EEG) as sensed from
behind the ear [40]. Detecting tooth clicks has also been explored including a teeth-based
interface that senses tooth clicks using microphones placed behind the ears [41].

Head position classification has been carried out with motion sensors on the head [42],
pairing ultrasound transmitters and ultrasonic sensors mounted on the body [43] and
barometric pressure sensing inside the ear [44].

This work is an expansion on our previously published conference paper [45] that clas-
sified head gestures using on a single neck-mounted bend sensor. In this expanded work,
we look not only at head gesture classification using our neck-mounted sensor interface,
but also at mouth movement classification, speech detection, and speech classification.

3. Prototype

A neck-mounted wearable prototype was developed and used for classifying neck
movement, mouth movement, and speech. The prototype consists of a sensor affixed to
the neck which is connected to a microcontroller. The data collected from the sensor is
wirelessly transferred via Bluetooth by the microcontroller to the user’s paired smart phone.
On the smart phone, the time-series data is in real time filtered, classified, and then used as
input to a software application. Figure 1 provides an overview of the wearable system and
its components interactions.
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Figure 1. Prototype system’s component overview, with sensor placed on neck and wearable hard-
ware placed on collar for communicating data to a smartphone for processing and for interfacing
with the application.

E-textile and flex sensors were investigated as potential candidates for the prototype.
E-textiles can be used as capacitive sensors or as resistive sensors. With the capacitive
method, the e-textile worked well as a proximity sensor to detect when the sensor was
near human skin. However, once the sensor was in contact with or in close proximity
of the skin, the sensor data became saturated and did not provide valuable features or
respond to movements. Using the e-textile sensor as a resistive sensor was more successful
in displaying features when actively bending or pulling the material.

The flex sensor proved to be the most appropriate for sensoring the neck. The flex sen-
sor acts as a flexible potentiometer, whose resistance increases as the bend angle increases.
Unlike the e-textile, which did not return to a static level after deformation and was prone
to noise, the flex sensor performed reliably under bending and returned to a stable level
when straight.
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A variety of positions for the sensor around the neck, chin, and side of face were
explored with the neck being the most practical in terms of data collection and ease of wear.

The hardware of the final prototype consists of an inexpensive (approximately
USD 10) flex sensor, whose change in resistance signaled change in the bend of the sen-
sor. The flex sensor was placed against the neck by weaving it under a small piece of paper
that was taped to the neck. An Arduino microcontroller collected and wirelessly transmitted
the data from the sensor to a smart phone for processing and display. Both an Arduino Nano
and an Arduino Mega 2560 were used in the experiments.

A simple moving average (SMA) filter was used to smooth the measured resistance
signal. SMA filters replace the current data value with the unweighted mean of the
k previous points in the data stream, in effect smoothing the data by flattening the impact
of noise and artifact that is outside the bigger trend of the data. As the window size is
decreased, the smoothness of the data is decreased. In this application, a window size that
is too small can result in artifact and/or noise in the time-series data being improperly
classified as a neck movement event. As the window size is increased, the impact of noise
and artifact is also decreased, but the likelihood that relevant information is filtered out
is increased. In this application, with a window size that is too large, there is the risk of
delaying the recognition of neck movement events or even missing the events altogether. A
window size of k = 40 was selected, which roughly maps to one second of data.

4. Head Tilt Detection

In a series of experiments, two types of flex sensors in a variety of positions on the
neck are evaluated to determine the feasibility of differentiating and classifying head tilt
and positioning.

In the experiments conducted, both a short sensor in three different positions and a
long sensor were considered. Each sensor placement and sensor received 10 experiments
per head-tilt with a time duration of 30 s. The tilts were held static for the entire 30 s. For
each experiment, approximately 1100 data points were collected.

4.1. Flex Sensor Types and Placement

Two types of flex sensors are considered: a short sensor and a long sensor. With
the short sensor, three different placements are considered: a low placement, a center
placement, and a high placement. The low placement is at the bottom of the neck, closest
to the collar, as shown in Figure 2a. The center placement is directly over the larynx, at
the middle of the neck, as shown in Figure 2b. The high placement is the top of the throat,
closest to the chin, as shown in Figure 2c. The long sensor spans the three positions along
the neck, from the base of the neck to under the chin, as shown in Figure 3.
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4.2. Data Visualization

We visualize here some of the data collected across various placements of the sensors
and for different head tilts. Figures 4–6, respectively, display the collected resistance data
over a 30-s time frame across the first three classes of head tilts, namely down, forward/no
tilt, and up, for each placement of the short sensor, namely low, center, and high placement.
Figure 7 displays the collected resistance data over a 30-s time frame for the long sensor,
across the first three classes of head tilts, namely down, forward, and up. The data
represented has been filtered using a moving average filter.
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The short, low sensor placement and the long sensor (Figures 4 and 7, respectively)
show the clearest distinction between the three classes. Therefore, the short, low sensor
placement and the long sensor were further evaluated using all five classes of head tilts,
namely down, forward, up, right, left. The collected resistance data over a 30-s time frame
are shown in Figures 8 and 9, respectively.
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4.3. Head Tilt Detection Machine Learning Results

We evaluated the accuracy of classifying a three-class dictionary of head tilts. We then
went on to evaluate the accuracy of classifying an expanded five-class dictionary of head
tilts. The classification results are presented in this subsection.

Three different classical machine learning (ML) classifiers were considered, specifically
logistic regression, SVM, and random forest. The labeled dataset was partitioned into a train
and held-out test set with an 80:20 ratio. To ensure the consistency of the models, a k-fold
cross-validation was performed. A fivefold cross-validation of the train set was performed,
with a random fourth of the examples in the training fold being used for validation during
hyper-parameter tuning. For all the classical ML models, the Scikit-learn library in Python
was used.

All four configurations, i.e., the long sensor and the three (low, center, and high) place-
ments of the short sensor, were evaluated using the three head tilts (down, forward/not
tilt, and up).

Table 1 displays our fivefold accuracy based on the model and placements of the
sensors. In all cases, Logistic Regression was not sufficient in classifying the three-class
dictionary. The short and low sensor placement and the long sensor had the best results.
In both cases, random forest is the best performing model with test accuracies reaching
~83.4% and ~96% for the short, low placement and the long sensor, respectively.

Table 1. Fivefold training, cross-validation, and held-out test accuracy of classical ML models with
different feature sets. The bold font denotes the cases with the highest accuracy for that model. These
results are for the three-class dictionary.

Model Short Sensor Low
Placement

Short Sensor Center
Placement

Short Sensor High
Placement Long Sensor

Logistic
Regression

Train 0.744 0.379 0.629 0.603

Validate 0.74 0.379 0.622 0.602

Test 0.76 0.349 0.589 0.608

SVM

Train 0.825 0.594 0.648 0.891

Validate 0.809 0.547 0.612 0.881

Test 0.824 0.555 0.575 0.891

Random Forest

Train 0.955 0.918 0.854 0.989

Validate 0.821 0.665 0.694 0.945

Test 0.834 0.669 0.671 0.960
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To the best performing results, two additional classes were added. The two additional
classes are the user’s head facing right and the user’s head facing left.

Table 2 shows the performance of the short sensor with low placement and the long
sensor when classifying against this five-class dictionary. As with previous results, random
forest had the best performance with a test accuracy of ~83% for the short sensor and ~91%
for the long sensor.

Table 2. Fivefold training, cross-validation, and held-out test accuracy of classical ML models with
different feature sets. The bold font denotes the cases with the highest accuracy for that model. These
results are for the five-class dictionary that includes facing right and facing left.

Model Short Sensor Low Placement Long Sensor

Logistic
Regression

Train 0.734 0.337

Validate 0.733 0.338

Test 0.755 0.363

SVM

Train 0.756 0.869

Validate 0.741 0.812

Test 0.76 0.818

Random Forest

Train 0.956 0.977

Validate 0.824 0.915

Test 0.828 0.91

Table 3 shows the confusion matrix for the short sensor with low placement with the
random forest classifier. The largest source of misclassifications are from the up data points,
with only 65 out of 157 labels predicted correctly.

Table 3. Five-class confusion matrix for the short sensor with low placement. Rows represent actual
class and columns represent predicted class.

Random Forest
Predicated

Down Forward Up Right Left

A
ct

ua
l

Down 259 0 10 0 0

Forward 1 285 40 1 3

Up 25 47 65 15 5

Right 0 0 8 185 18

Left 0 0 3 29 194

Table 4 shows the confusion matrix for the long sensor using the random forest
classifier. With the long sensor, only 17 out of 182 up data points are mislabeled. The largest
confusion is between left and right tilts.

From the confusion matrix the neck gesture language can be created. The most
frequent or the most important gestures can be assigned to the head tilts that achieve the
highest classification accuracy, both in terms of sensitivity and specificity. For example,
the following mapping of neck gestures would be appropriate for the social media app
Instagram. While on their feeds, users would tilt their heads forward to signal scrolling
and would turn their heads to the side, either right or left, to ‘like’ an image.
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Table 4. Five-class confusion matrix for the long sensor. Rows represent actual class and columns
represent predicted class.

Random Forest
Predicated

Down Forward Up Right Left

A
ct

ua
l

Down 202 3 11 0 0

Forward 0 494 2 0 0

Up 17 0 182 0 0

Right 0 0 0 204 49

Left 0 0 0 36 166

5. Speech and Mouth Movement Detection

In this section, we explore a larger range of opportunities that the neck-mounted sensor
can provide in addition to the head gesture detection detailed in Section 4. Section 5.1
addresses speech detection using the prototype, by differentiating speech from static
breathing. Section 5.2 address mouth movement classification, namely the determination of
how many times the mouth has been opened and closed. Section 5.3 tackles the challenging
task of speech classification using only the detection of movement in the neck.

Speech and mouth movement detection provide contextual information that can be
used to trigger or to mute the head tilt interface. For instance, if the system detects that the
user is talking, then the user’s head tilts are not relayed to application software.

5.1. Speech Detection

Figure 10 shows an example sensor reading from static breathing and from talking,
specifically saying ‘hello’, on the same graph. The visualization demonstrates that the
presence of speech can potentially be differentiated from static breathing using only the
data collected from the flex sensor on the neck-mounted prototype.
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Using the neck-mounted prototype, an experiment was conducted to see if static
breathing can indeed be differentiated from speech. Three-second-long samples with the
prototype’s flex sensor were collected of both static breathing and of saying ‘hello’. A total
of 60 samples, 30 of each class, were collected. The samples were classified using K-nearest
neighbors (k-NN) with dynamic time warping (DTW), with k set to 3.

Dynamic time warping measures the similarity between two time-series signals, which
may vary in speed and in length. It calculates the minimal distance between the signals
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allowing for warping of the time axis, with similar signals having lower cost than dissimi-
lar signals.

Each test signal is compared against all the training signals, and the DTW cost between
the test signal and each training signals is calculated. The DTW cost of the k nearest
neighbors, i.e., most similar training signals, is then used to classify the signal.

Table 5 shows the confusion matrix for the classification results. The overall accuracy
of the classification was 83.3% with 3 of the 30 talking samples misclassified as breathing.

Table 5. Two-class confusion matrix for static breathing and talking. Rows represent actual class and
columns represent predicted class.

Predicated

Static Breathing Talking

A
ct

ua
l

Static Breathing 23 7

Talking 3 27

5.2. Mouth Movement Classification

In another experiment, the classification of mouth movements without the generation
of any sound was examined. The mouth was opened and closed without sound being
generated. It was a four-class dictionary, with static breathing (no mouth movement),
opening and closing of the mouth once, opening and closing of the mouth twice, and
opening and closing of the mouth three times.

Three-second-long samples with the prototype’s flex sensor were collected with a total
of 60 samples, 15 of each class. The samples were classified using K-nearest neighbors
(k-NN) with dynamic time warping, with k set to 3.

Table 6 shows the confusion matrix for the classification results. The overall accuracy
of the classification was 67.5%. The classification of static breathing resulted in most of the
misclassifications. By considering sample’s peak-to-valley amplitude, this misclassification
can be decreased.

Table 6. Four-class confusion matrix for mouth movements. Rows represent actual class and columns
represent predicted class.

Predicated

Breathing One Cycle Two Cycles Three Cycles

A
ct

ua
l

Breathing 2 3 3 12

One cycle 0 19 1 0

Two cycles 0 7 13 0

Three cycles 0 0 0 20

5.3. Speech Classification

The final experiments explored speech classification. Two different experiments of
speech classification were carried with each having a set of four different sentences or
phrases being spoken with the prototype affixed to the neck and the bend sensor capturing
the neck activity.

For each of the two experiments, three-second-long samples with the prototype’s flex
sensor were collected. For the first experiment with sentences, a total of 40 samples were
collected, 10 of each class. The sentences used in the experiments were “I am a user who is
talking right now”; “This is me talking with a sensor attached”; “Who am I talking to at this
very moment?”; and “Can you recognize what I am saying while attached to a sensor?” For
the second experiment with famous idioms, a total of 80 samples were collected, 20 of each
class. The idioms used in the experiment were “a blessing in disguise”; “cut somebody
some slack”; “better late than never”; and “a dime a dozen.” The samples were classified
using K-nearest neighbors (k-NN) with dynamic time warping, with k set to 3.
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Tables 7 and 8 show the confusion matrices for the classification results for the
two experiments, respectively. The overall accuracy of the classification was 62.5% and
32.5%, respectively.

Table 7. Four-class confusion matrix for spoken sentences. Rows represent actual class and columns
represent predicted class.

Predicated

“I Am . . . ” “This Is . . . ” “Who . . . ” “Can You . . . ”

A
ct

ua
l

“I am a user who is talking right now.” 0 9 1 0

“This is me talking with a sensor attached.” 0 10 0 0

“Who am I talking to at this very moment?” 0 4 6 0

“Can you recognize what I am saying while
attached to a sensor?” 0 0 1 9

Table 8. Four-class confusion matrix for spoken phrases. Rows represent actual class and columns
represent predicted class.

Predicated

“A Blessing in
Disguise”

“Cut Somebody
Some Slack”

“Better Late than
Never”

“A Dime a
Dozen”

A
ct

ua
l

“A blessing in disguise” 0 0 14 6

“Cut somebody some slack” 0 2 1 17

“Better late than never” 0 0 19 1

“A dime a dozen” 0 0 15 5

6. Discussion

The experiments with sensor data captured from the neck-mounted prototype show
that the short sensor with low placement on the neck and the long sensor had the best
results. For a three-class dictionary of head tilts, random forest is the best performing
model with test accuracy of ~83.4% for the short sensor with low placement and ~96% for
the long sensor. For a five-class dictionary of head tilts, random forest again had the best
performance with a test accuracy of ~83% for the short sensor with low placement and
~91% for the long sensor.

Movements farther from the neck were also successfully detected and classified. Sensor
data captured from the neck was able to differentiate speaking from static breathing, with
~83% accuracy. The presence and the number of mouth movements was classified with
~68% accuracy. Speech classification was more challenging, achieving up to 62.5% accuracy
in differentiating spoken sentences from a four-class dictionary.

7. Conclusions

In this work, we show that subtle neck tilts, mouth movements, and speech can be
detected and classified using an inexpensive flex sensor placed at the neck, and thus can
prove to be enabling technology for use in software interfaces.

A flex sensor incorporated into a shirt collar or as part of a necklace opens new
possibilities for software interaction. The accuracy of the classification of head tilts and
their socially undisruptive nature makes head tilting a good option for signally software
micro-interactions. For example, a tilt of the head can dismiss a smartwatch notification.

As head gestures can be made during the course of natural speech, the detection of
speech and mouth movements allows for the interface to be tailored to times when a person
is not speaking and thus improve the interface with greater context awareness.
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