
Citation: Itu, R.; Danescu, R.

Part-Based Obstacle Detection Using

a Multiple Output Neural Network.

Sensors 2022, 22, 4312. https://

doi.org/10.3390/s22124312

Academic Editor: Qing Guo

Received: 21 April 2022

Accepted: 4 June 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Part-Based Obstacle Detection Using a Multiple Output
Neural Network
Razvan Itu * and Radu Danescu

Computer Science Department, Technical University of Cluj-Napoca, St. Memorandumului 28,
400114 Cluj-Napoca, Romania; radu.danescu@cs.utcluj.ro
* Correspondence: razvan.itu@cs.utcluj.ro; Tel.: +40-264-401-457

Abstract: Detecting the objects surrounding a moving vehicle is essential for autonomous driving and
for any kind of advanced driving assistance system; such a system can also be used for analyzing the
surrounding traffic as the vehicle moves. The most popular techniques for object detection are based
on image processing; in recent years, they have become increasingly focused on artificial intelligence.
Systems using monocular vision are increasingly popular for driving assistance, as they do not require
complex calibration and setup. The lack of three-dimensional data is compensated for by the efficient
and accurate classification of the input image pixels. The detected objects are usually identified
as cuboids in the 3D space, or as rectangles in the image space. Recently, instance segmentation
techniques have been developed that are able to identify the freeform set of pixels that form an
individual object, using complex convolutional neural networks (CNNs). This paper presents an
alternative to these instance segmentation networks, combining much simpler semantic segmentation
networks with light, geometrical post-processing techniques, to achieve instance segmentation results.
The semantic segmentation network produces four semantic labels that identify the quarters of the
individual objects: top left, top right, bottom left, and bottom right. These pixels are grouped into
connected regions, based on their proximity and their position with respect to the whole object. Each
quarter is used to generate a complete object hypothesis, which is then scored according to object
pixel fitness. The individual homogeneous regions extracted from the labeled pixels are then assigned
to the best-fitted rectangles, leading to complete and freeform identification of the pixels of individual
objects. The accuracy is similar to instance segmentation-based methods but with reduced complexity
in terms of trainable parameters, which leads to a reduced demand for computational resources.

Keywords: driver assistance; CNNs; monocular vision; semantic segmentation; obstacle detection;
instance segmentation; vanishing point

1. Introduction

Artificial intelligence-based image processing has become popular in recent years and
has improved the development of solutions in multiple fields, most notably in those that rely
on computer-based vision. Deep learning systems feature in various real-life applications,
making use of large publicly available datasets and of the increased processing power now
available. Most notably, deep learning-based computer vision has been used to predict
relevant information, with potential uses in various fields, such as medical imaging, piloting
autonomous vehicles, robots or platforms, surveillance, and so on. For the prediction task,
much of the work has been focused on developing convolutional neural networks (CNNs)
that usually outperform the traditional image-processing algorithms.

Of all the possible uses for CNN-based computer vision, the field of automotive
applications, which not only includes autonomous vehicles but also other advanced driving
assistance systems, has benefited from special attention in recent years. This field is
significant from the computer vision point of view because the environment to be perceived
is dynamic, unpredictable, and complex, and the image perception must be performed in
real time using limited computer architectures.

Sensors 2022, 22, 4312. https://doi.org/10.3390/s22124312 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124312
https://doi.org/10.3390/s22124312
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8156-7313
https://orcid.org/0000-0002-4515-8114
https://doi.org/10.3390/s22124312
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124312?type=check_update&version=1

Sensors 2022, 22, 4312 2 of 21

While there is a vast range of sensor systems available for autonomous vehicles, includ-
ing laser scanners, radar, sonar, or stereo camera setups, a system that uses a single camera
is much easier to set up and calibrate, but it can still extract a vast amount of information.

By analyzing the image provided by a single camera, a computer system can extract
generic area information, such as the free-space areas in front of the vehicle that can be
traversed or the obstacle areas that must be avoided, or it can extract information about
individual objects. This generic area information can be used for basic collision avoidance
or even for limited autonomy, such as lane-keeping or platooning, and the identification of
individual objects helps in tracking them and predicting their intentions, or in classifying
them, to better estimate the risks and vulnerabilities.

Both area perception and individual object perception functions can be achieved by
CNNs. Identifying free space and obstacle areas can be achieved by using CNNs for
semantic segmentation, which labels each pixel of the image with a class-based label;
identifying individual objects can be achieved using instance segmentation CNNs.

In the past few years, much research has been proposed to improve semantic segmen-
tation network architectures and to achieve accurate instance segmentation. The instance
segmentation methods are a step ahead of the semantic methods. Semantic segmentation
neural networks are faster but less complex. Semantic segmentation produces a label image
with pixel-level information regarding the object’s class, whereas instance segmentation
takes the semantic segmentation one step further to provide identifiers for individual object
instances. To produce individual object instances, instance segmentation methods usu-
ally predict the object’s bounding box and then perform segmentation for each predicted
bounding box. This introduces dependency in the network regarding the quality of the
bounding box prediction. In addition, instance segmentation methods have proven to be
time-consuming, and most solutions based on CNNs focus on performance, rather than
prediction speed. Real-time capability is usually limited to object detection neural networks,
which are mostly limited to predicting two-dimensional (2D) bounding boxes.

The work presented in this paper addresses the need for real-time instance segmenta-
tion with a reduced demand for resources. The core of our solution is a multiple output
semantic segmentation network, which, while not able to identify individual objects, will
produce object part information that is easily exploited by a low-complexity geometry-based
algorithm. This combination of semantic segmentation and the geometric post-analysis of
the semantic segmentation results is able to achieve the real-time identification of individ-
ual objects at the pixel level, with a significant reduction in the required resources when
compared with instance segmentation networks.

In this paper, we propose a convolutional neural network that is trained to perform
multiple prediction tasks, along with a geometry-based post-processing step to extract
additional relevant data. The multi-output CNN prediction is achieved using a single
encoder module and multiple decoders. The encoder part will extract the relevant features
from the input images that are fed into the CNN and is usually referred to as the “backbone”
network. The decoders will make use of these features to generate the predictions (outputs)
of the network and are usually called network “heads”.

The presented CNN architecture is able to produce three different output heads related
to the road traffic scene: the obstacle parts for instance segmentation (the top-left, top-
right, bottom-left, and bottom-right quarters, which will be used later by the clustering
algorithm), the semantic segmentation of the scene for detecting the drivable road area, and
the vanishing point of the image. The backbone network (the encoder) features convolution
layers that are used by the semantic segmentation head in order to construct images of
the scene using the extracted features by using various upsampling layers and direct
connections with the encoder.

The first head outputs the semantic segmentation of the object parts, which will be clustered
using the algorithm presented in Section 3.4 to produce the instance segmentation results.

The second head produces the obstacle vs. free area semantic segmentation of the
scene; this result is used as a mask to refine the object regions after they are clustered. The

Sensors 2022, 22, 4312 3 of 21

free space segmentation result can also be used as a standalone result for simpler driving
assistance applications, such as collision avoidance.

The third head produces the gradient voting maps for vanishing point computation,
a result that can be used for automatic camera orientation calibration and, therefore, for
estimating the three-dimensional (3D) position of the objects detected by the previous
two heads. This step is beyond the scope of this paper.

Thus, our proposed solution achieves obstacle reconstruction and individual instance
extraction. We were able to perform semantic segmentation of the road traffic scene,
detect obstacles and extract instances, and determine the vanishing point in an efficient
manner, with results that were comparable to the ones produced by instance segmentation
networks without the added memory requirements, high computational requirements, and
network complexity.

The multi-output neural network is trained using the existing publicly available
datasets. The training process is fully automated and does not require any annotation
work, as the object quarters are extracted from labeled instances by our training pre-
processing tool.

The main contributions of this work are the following:

1. A multiple-head network architecture that is able to produce the geometric parts of the
objects, which can be then grouped into individual instances, free and occupied pixel
classification for results refinement, and voting maps for vanishing point computation;

2. A lightweight object-clustering algorithm, based on the results of the multiple-head
semantic segmentation network;

3. An automated training solution for the multiple-head network, which uses publicly
available databases without the need for manual annotation of the object parts.

2. Related Work
2.1. Multi-Task Deep Learning

Deep learning-based solutions have been widely used for different tasks in recent
years, most notably in approaches based on convolutional neural networks that are used for
the classification of images [1], semantic image segmentation [2–4], object detection [5,6],
or even tracking [7,8]. Different methods using deep learning for autonomous vehicles
and driving have been presented elsewhere, in a survey [9]. In this paper, we focus on
camera-based image processing; work using active sensors and sensor fusion has been also
presented elsewhere and represents an active field of study [10,11].

Recent developments have been proposed in order to provide artificial neural networks
that are able to perform multiple prediction tasks. The advantage of these solutions is that
they improve computational efficiency and have a reduced memory footprint; however,
the main drawback is that they are harder to train as they rely heavily on accurate and
robust training datasets, which are laborious to produce. The multiple predictions of
a single network are harder to inspect and debug. Still, multi-output neural networks
have been developed; they proved to be scalable and easily expandable, meaning that
an existing multi-task network can be expanded to predict new information as needed,
including optical flow or tracking, scene depth, and so on. This is accomplished by reusing
the network’s shared extracted features. Training multi-output networks can sometimes
be challenging, due to the fact that the various outputs require different loss functions
that need to be weighted. This process can be time-consuming and requires fine-tuning.
Multi-task artificial networks improve learning by sharing the specific features of each task.

MultiNet [12,13] is a network that performs multiple predictions, whereas the work
presented in [14] refers to a network that uses the YUV color space for the input images
and can also produce multiple predictions. Elsewhere, a network that predicts semantic,
instance, and depth information from a traffic scene has been presented in [15].

Sensors 2022, 22, 4312 4 of 21

2.2. Object Detection

In the context of autonomous vehicles and driving, detecting objects can be performed
with images acquired using a single camera [16] or a stereo-vision setup [17]. The detection
task can also be achieved by using multiple input sources and sensorial data, such as
lidar [10,18] or radar [19]. An overview of the multiple sensors used in autonomous
vehicles is presented in [20]. The accuracy and robustness of a self-driving vehicle can be
increased by using multiple sensors and fusing the data, but the main drawback is that
these sensors require specific calibration and synchronization. The calibration and fusion
of data add complexity to such a system, as well as additional costs.

One of the most convenient and affordable sources of information is the single camera,
which is able to produce grayscale or color image streams. Single-camera systems are
easy to set up and calibrate, and the lack of 3D information can be compensated for by
increasingly complex and accurate algorithms.

Traditional object detectors have used image-processing-based algorithms, such as
Viola-Jones [21] or a histogram of oriented gradients [22], whereas the modern object
detection approaches are based on artificial learning, more specifically, convolutional
neural networks. Some approaches fuse traditional and deep-learning methods for object
detection [23]. Detecting objects is an extension of object classification, with the main aim
of estimating the localization of all instances of certain objects from an input image. Recent
detection methods that are based on artificial neural networks feature two main modules:
a pre-trained backbone network and a head that outputs the object’s class, along with its
bounding box coordinates. The backbone networks are used to extract the relevant features
from the input images. Detection neural networks are trained using large amounts of
labeled data; the detection process is implemented either in a single-stage (one-stage) or a
two-stage approach.

Single-stage, also called one-stage, detectors localize objects and classify them in a
single shot, by performing a regression of the bounding boxes, using predefined boxes and
keypoints with multiple aspect ratios and scales.

Yolo [5], with its variations and improvements, and Single-Shot Detector (SSD) [6] are
examples of one-stage detectors using CNNs. The authors of Yolo treated the detection
problem as a regression problem, meaning that the CNN predicts the image pixels as the
object, along with its bounding box coordinates and its class. Drawbacks regarding the
localization of small objects from the original paper were fixed in the newer versions of
Yolo [24], as well as by using different backbone networks, such as DarkNet [25]. Single-
Shot Multibox Detector (SSD) used VGG-Net [26] as the backbone initially and matched
the accuracy of some two-stage detectors. Limitations regarding small objects were fixed
using ResNet [1] as the backbone. One-stage detectors usually achieve a very high frame
rate, performing the detection in real time.

Two-stage detectors feature a separate module for region proposals, meaning that they
are more complex in design and require more time for predictions. In the first step, the
two-stage detectors generate regions of interest from the input image and use them in the
second step to regress the results to object classes and bounding boxes. Usually, they offer
better accuracy but lack real-time performance.

R-CNN [27], and its further improvements (Faster R-CNN [28]), represent two-stage
detectors that use CNNs to classify and locate objects within images. The input image
is fed into a region proposal module that outputs object predictions (candidates), which
are then used in a second CNN module that extracts the object class and bounding box.
These networks are usually more complex than one-stage detectors and need greater
computational time for predictions. Mask R-CNN [29] extends the previous two-stage
detectors, also performing instance segmentation by adding a mask head parallel to the
bounding box and classification head. This network approach features good accuracy
but lacks real-time performance. However, Mask R-CNN has remained one of the fastest
networks for instance segmentation with challenging datasets. Other networks have been
proposed that are faster and make use of techniques from object detectors, applying them to

Sensors 2022, 22, 4312 5 of 21

instance segmentation: Mask-YOLO [30] and YOLACT [31]. The YOLACT network divides
the instance segmentation task into two parallel tasks to achieve real-time performance. A
comprehensive survey regarding 2D image segmentation techniques using deep learning
is presented in [32].

3. Solution Description

The core of the solution is the multiple-head artificial neural network, based on an
encoder–decoder structure that uses a color image as input, whereas the output consists
of multiple prediction modules: an obstacle detection module, a semantic segmentation
module, and a vanishing-point detection module. The input part, based on an encoder,
will extract the proper and significant features from the input image, whereas the decoder,
which is based on semantic segmentation solutions, will provide multiple predictions
(outputs). We have trained each module independently and we have used the same loss
function. The CNN architecture is presented in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 23

networks are usually more complex than one-stage detectors and need greater computa-
tional time for predictions. Mask R-CNN [29] extends the previous two-stage detectors,
also performing instance segmentation by adding a mask head parallel to the bounding
box and classification head. This network approach features good accuracy but lacks real-
time performance. However, Mask R-CNN has remained one of the fastest networks for
instance segmentation with challenging datasets. Other networks have been proposed
that are faster and make use of techniques from object detectors, applying them to instance
segmentation: Mask-YOLO [30] and YOLACT [31]. The YOLACT network divides the in-
stance segmentation task into two parallel tasks to achieve real-time performance. A com-
prehensive survey regarding 2D image segmentation techniques using deep learning is
presented in [32].

3. Solution Description
The core of the solution is the multiple-head artificial neural network, based on an

encoder–decoder structure that uses a color image as input, whereas the output consists
of multiple prediction modules: an obstacle detection module, a semantic segmentation
module, and a vanishing-point detection module. The input part, based on an encoder,
will extract the proper and significant features from the input image, whereas the decoder,
which is based on semantic segmentation solutions, will provide multiple predictions
(outputs). We have trained each module independently and we have used the same loss
function. The CNN architecture is presented in Figure 1.

Figure 1. The multiple-output neural network architecture.

The detection module will identify individual objects or obstacles from the road
scene, including vehicles, trucks, buses, cyclists, pedestrians, etc. This is based on semantic
segmentation approaches; more specifically, on a modified U-Net CNN decoder module.
The method of extracting the individual object instances is unique, meaning that we made
use of the semantic segmentation CNN to label the image pixels with the corresponding
object quarters (parts), instead of using it to label free space or specific obstacles. The la-
beled object parts were then grouped further into individual objects, using post-

Figure 1. The multiple-output neural network architecture.

The detection module will identify individual objects or obstacles from the road scene,
including vehicles, trucks, buses, cyclists, pedestrians, etc. This is based on semantic
segmentation approaches; more specifically, on a modified U-Net CNN decoder module.
The method of extracting the individual object instances is unique, meaning that we made
use of the semantic segmentation CNN to label the image pixels with the corresponding
object quarters (parts), instead of using it to label free space or specific obstacles. The labeled
object parts were then grouped further into individual objects, using post-processing that
took into account the proximity and position of the quarters as part of a full object. This
approach simplifies the overall artificial network architecture by making use of the direct
connections with the decoder’s layers. Another advantage of a multiple output network is
that the encoder part is shared between the modules and the model can easily be extended,
to predict other information. The detection module output features four layers (channels)
that encode the binary status of the image pixels as being part of an object quarter (top
left, top right, bottom left, bottom right). Using these parts, the algorithm described in
Section 3.4 is able to extract the object instances as bounding boxes and as the labeled
regions of pixels.

Sensors 2022, 22, 4312 6 of 21

3.1. Feature Extraction

The extraction of the relevant pixel-based features from the input images is achieved
by the first part of the artificial network; its structure is based on the ResNet neural
network architecture [1], which has proved to be very effective and is widely used. It
gained recognition after it won the ImageNet competition in the past; it also introduced the
concept of skip connections between the layers of the neural network. These connections
were the novel part of the system and helped to improve the performance of the CNN. In
this work, we make use of a modified version, which is called ResNet-50 (see Figure 2).

Sensors 2022, 22, x FOR PEER REVIEW 6 of 23

processing that took into account the proximity and position of the quarters as part of a
full object. This approach simplifies the overall artificial network architecture by making
use of the direct connections with the decoder’s layers. Another advantage of a multiple
output network is that the encoder part is shared between the modules and the model can
easily be extended, to predict other information. The detection module output features
four layers (channels) that encode the binary status of the image pixels as being part of an
object quarter (top left, top right, bottom left, bottom right). Using these parts, the algo-
rithm described in Section 3.4 is able to extract the object instances as bounding boxes and
as the labeled regions of pixels.

3.1. Feature Extraction
The extraction of the relevant pixel-based features from the input images is achieved

by the first part of the artificial network; its structure is based on the ResNet neural net-
work architecture [1], which has proved to be very effective and is widely used. It gained
recognition after it won the ImageNet competition in the past; it also introduced the con-
cept of skip connections between the layers of the neural network. These connections were
the novel part of the system and helped to improve the performance of the CNN. In this
work, we make use of a modified version, which is called ResNet-50 (see Figure 2).

Figure 2. The layers of the ResNet-50 encoder.

Each “conv block” is characterized by the following three operations: a 2D convolu-
tion, a batch normalization operation, and ReLU activation. These are performed three
times, with a different number of filters and kernel sizes. This block is then combined with
the result of running another 2D convolution. The “identity block” is similar, meaning
that it has the same three operations that are also performed three times, but the skip
connection is performed with the input tensor, rather than having the extra convolution
at the end.

3.2. Decoder Structure
The part responsible for decoding the extracted relevant features is the decoder. This

is based on the well-known U-Net architecture [4], which is able to perform well, even
with small training datasets. The structure of the decoder is illustrated in Figure 3. The
concatenation operations are paired with the corresponding layers from the encoder part,
whereas the output of the network is given by the final convolution operation.

Figure 2. The layers of the ResNet-50 encoder.

Each “conv block” is characterized by the following three operations: a 2D convolution,
a batch normalization operation, and ReLU activation. These are performed three times,
with a different number of filters and kernel sizes. This block is then combined with the
result of running another 2D convolution. The “identity block” is similar, meaning that it
has the same three operations that are also performed three times, but the skip connection
is performed with the input tensor, rather than having the extra convolution at the end.

3.2. Decoder Structure

The part responsible for decoding the extracted relevant features is the decoder. This
is based on the well-known U-Net architecture [4], which is able to perform well, even
with small training datasets. The structure of the decoder is illustrated in Figure 3. The
concatenation operations are paired with the corresponding layers from the encoder part,
whereas the output of the network is given by the final convolution operation.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 23

Figure 3. The layers of the proposed U-Net-based decoder.

The decoder makes use of multiple operations that are performed in order to obtain
the desired output.

Our module features a central convolutional layer, followed by three upsampling
layers. The central layer contains a 2D convolution operation and a batch normalization,
followed by ReLU activation. The three upsampling layers have the following structure:
2D upsampling, concatenation (with the corresponding encoder layer), zero padding, 2D
convolution, and a batch normalization operation. The final part from the semantic seg-
mentation module has an additional convolution that represents the final segmentation
output (the segmentation map), with the same number of layers as the desired number of
predicted object classes.

The encoder-decoder structure of the artificial neural network is presented in Figure
4, where the concatenate connections are more clearly illustrated.

Figure 4. The CNN layers and the direct connections from the encoder (left side) to the decoder
(right side), as illustrated.

Figure 3. The layers of the proposed U-Net-based decoder.

The decoder makes use of multiple operations that are performed in order to obtain
the desired output.

Our module features a central convolutional layer, followed by three upsampling
layers. The central layer contains a 2D convolution operation and a batch normalization,
followed by ReLU activation. The three upsampling layers have the following structure:
2D upsampling, concatenation (with the corresponding encoder layer), zero padding,
2D convolution, and a batch normalization operation. The final part from the semantic
segmentation module has an additional convolution that represents the final segmentation
output (the segmentation map), with the same number of layers as the desired number of
predicted object classes.

Sensors 2022, 22, 4312 7 of 21

The encoder-decoder structure of the artificial neural network is presented in Figure 4,
where the concatenate connections are more clearly illustrated.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 23

Figure 3. The layers of the proposed U-Net-based decoder.

The decoder makes use of multiple operations that are performed in order to obtain
the desired output.

Our module features a central convolutional layer, followed by three upsampling
layers. The central layer contains a 2D convolution operation and a batch normalization,
followed by ReLU activation. The three upsampling layers have the following structure:
2D upsampling, concatenation (with the corresponding encoder layer), zero padding, 2D
convolution, and a batch normalization operation. The final part from the semantic seg-
mentation module has an additional convolution that represents the final segmentation
output (the segmentation map), with the same number of layers as the desired number of
predicted object classes.

The encoder-decoder structure of the artificial neural network is presented in Figure
4, where the concatenate connections are more clearly illustrated.

Figure 4. The CNN layers and the direct connections from the encoder (left side) to the decoder
(right side), as illustrated.

Figure 4. The CNN layers and the direct connections from the encoder (left side) to the decoder
(right side), as illustrated.

3.3. Global Semantic Segmentation

The neural network output (or heads) represents the decoder part that reconstructs
the semantic segmentation and is based on the U-Net CNN. The network proposed by us
features a center layer and three upsampling layers that are further concatenated with their
correlated layers from the ResNet-based encoder, as described in the previous section.

The relevant features, extracted using the ResNet encoder, are used in the reconstruc-
tion layers of the U-Net decoder to produce an image with three channels, each channel
representing the desired segmentation classes. In this proposed work, we predict three
different classes: the road (free space), dynamic objects, and static objects. Therefore, the
first output channel of the final convolutional layer will depict the drivable road area, while
the second channel will represent the dynamic (moving) objects from the road, including
pedestrians, cyclists, vehicles, buses, and trucks. The final channel of the output will be the
static objects; more specifically, we chose sidewalks and the lane delimiters (road barriers
or fences). An example is presented in Figure 5.

Sensors 2022, 22, 4312 8 of 21

Sensors 2022, 22, x FOR PEER REVIEW 8 of 23

3.3. Global Semantic Segmentation
The neural network output (or heads) represents the decoder part that reconstructs

the semantic segmentation and is based on the U-Net CNN. The network proposed by us
features a center layer and three upsampling layers that are further concatenated with
their correlated layers from the ResNet-based encoder, as described in the previous sec-
tion.

The relevant features, extracted using the ResNet encoder, are used in the reconstruc-
tion layers of the U-Net decoder to produce an image with three channels, each channel
representing the desired segmentation classes. In this proposed work, we predict three
different classes: the road (free space), dynamic objects, and static objects. Therefore, the
first output channel of the final convolutional layer will depict the drivable road area,
while the second channel will represent the dynamic (moving) objects from the road, in-
cluding pedestrians, cyclists, vehicles, buses, and trucks. The final channel of the output
will be the static objects; more specifically, we chose sidewalks and the lane delimiters
(road barriers or fences). An example is presented in Figure 5.

Figure 5. Examples of the global semantic segmentation output: the first image is the color input
image of the road scene, while the second image represents the drivable road area, the third repre-
sents the dynamic objects, and the fourth image is static objects (sidewalk or fence).

3.4. Obstacle Reconstruction Using Part-Based Semantic Segmentation
The detected obstacles from the decoder module will be reconstructed using the

methodology presented in this section. The CNN will provide an output wherein the ob-
stacles are split into four individual quarters (parts), each represented by a binary channel
of the output image (see Figure 6).

Figure 5. Examples of the global semantic segmentation output: the first image is the color input
image of the road scene, while the second image represents the drivable road area, the third represents
the dynamic objects, and the fourth image is static objects (sidewalk or fence).

3.4. Obstacle Reconstruction Using Part-Based Semantic Segmentation

The detected obstacles from the decoder module will be reconstructed using the
methodology presented in this section. The CNN will provide an output wherein the
obstacles are split into four individual quarters (parts), each represented by a binary
channel of the output image (see Figure 6).

Sensors 2022, 22, x FOR PEER REVIEW 9 of 23

Figure 6. The artificial neural network, inferring the obstacle quarters.

Based on the semantic segmentation results of the neural network, which labels each
obstacle pixel with a “quarter” label, we have designed an algorithm to extract the indi-
vidual objects. First, each pixel of the whole image space is labeled with a 4-bit code, each
bit corresponding to a quarter that overlaps the pixel. Some pixels can be overlapped by
more than one quarter, as the four semantic segmentation images produced by the CNN
are not mutually exclusive (see Figure 7). The meaning of the four bits is as follows:
 Bit 0—top-left quarter;
 Bit 1—top-right quarter;
 Bit 2—bottom-left quarter;
 Bit 3—bottom-right quarter.

Figure 7. Object pixel coding, based on segmented quarters. Some pixels can belong to more than
one quarter.

Figure 6. The artificial neural network, inferring the obstacle quarters.

Based on the semantic segmentation results of the neural network, which labels
each obstacle pixel with a “quarter” label, we have designed an algorithm to extract the
individual objects. First, each pixel of the whole image space is labeled with a 4-bit code,
each bit corresponding to a quarter that overlaps the pixel. Some pixels can be overlapped
by more than one quarter, as the four semantic segmentation images produced by the CNN
are not mutually exclusive (see Figure 7). The meaning of the four bits is as follows:

• Bit 0—top-left quarter;
• Bit 1—top-right quarter;
• Bit 2—bottom-left quarter;
• Bit 3—bottom-right quarter.

Sensors 2022, 22, 4312 9 of 21

Sensors 2022, 22, x FOR PEER REVIEW 9 of 23

Figure 6. The artificial neural network, inferring the obstacle quarters.

Based on the semantic segmentation results of the neural network, which labels each
obstacle pixel with a “quarter” label, we have designed an algorithm to extract the indi-
vidual objects. First, each pixel of the whole image space is labeled with a 4-bit code, each
bit corresponding to a quarter that overlaps the pixel. Some pixels can be overlapped by
more than one quarter, as the four semantic segmentation images produced by the CNN
are not mutually exclusive (see Figure 7). The meaning of the four bits is as follows:
 Bit 0—top-left quarter;
 Bit 1—top-right quarter;
 Bit 2—bottom-left quarter;
 Bit 3—bottom-right quarter.

Figure 7. Object pixel coding, based on segmented quarters. Some pixels can belong to more than
one quarter.

Figure 7. Object pixel coding, based on segmented quarters. Some pixels can belong to more than
one quarter.

The coded pixels will have a value of 0 if they belong to the free space (they are not
obstacle points), or have a value between 1 and 15 if they belong to an object. For each
of the 15-obstacle pixel values, a binary image will be generated, and the image will be
labeled using the connected component labeling algorithm. The labels for each of the
15 images will be unique (the labels for image 2 will start from the maximum value of the
labels of image 1, plus 1, and so on), meaning that at the end, they can be joined together
into a common label image, as shown in Figure 8. The resulting regions are similar to the
superpixels described in [11], but these have the added advantage that they are the result
of semantic segmentation and have a high probability that each region belongs to a single
object—they are grouped by meaning and not simply by color or texture properties, as in
the case of superpixels.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 23

The coded pixels will have a value of 0 if they belong to the free space (they are not
obstacle points), or have a value between 1 and 15 if they belong to an object. For each of
the 15-obstacle pixel values, a binary image will be generated, and the image will be la-
beled using the connected component labeling algorithm. The labels for each of the 15
images will be unique (the labels for image 2 will start from the maximum value of the
labels of image 1, plus 1, and so on), meaning that at the end, they can be joined together
into a common label image, as shown in Figure 8. The resulting regions are similar to the
superpixels described in [11], but these have the added advantage that they are the result
of semantic segmentation and have a high probability that each region belongs to a single
object—they are grouped by meaning and not simply by color or texture properties, as in
the case of superpixels.

Figure 8. Labeled regions, based on connected pixels of the same quarter code.

The problem is now re-stated as the problem of assigning a unique object identifier
to each region. Basically, the problem becomes a problem of region-grouping but, again,
we can use the advantage of semantics because we can restrict the position of the region
inside the whole object, based on the quarter codes.

The grouping of the regions will be based on generating multiple object hypotheses,
based on the individual quarters. Because we have four types of quarters, we can generate
a maximum of four hypotheses for each real-world object. Each quarter will generate a
complete object by extending its size to cover the other three missing quarters, assuming
that the quarters will be of a similar size. For example, a bottom-left quarter can be ex-
tended upwards and to the right to generate the possible complete object to which the
quarter belongs. If the object is completely visible (not covered by another object and not
at the edge of the image), four complete rectangular hypotheses will be generated, as seen
in Figure 9.

Figure 8. Labeled regions, based on connected pixels of the same quarter code.

The problem is now re-stated as the problem of assigning a unique object identifier to
each region. Basically, the problem becomes a problem of region-grouping but, again, we
can use the advantage of semantics because we can restrict the position of the region inside
the whole object, based on the quarter codes.

The grouping of the regions will be based on generating multiple object hypotheses,
based on the individual quarters. Because we have four types of quarters, we can generate
a maximum of four hypotheses for each real-world object. Each quarter will generate a

Sensors 2022, 22, 4312 10 of 21

complete object by extending its size to cover the other three missing quarters, assuming
that the quarters will be of a similar size. For example, a bottom-left quarter can be extended
upwards and to the right to generate the possible complete object to which the quarter
belongs. If the object is completely visible (not covered by another object and not at the
edge of the image), four complete rectangular hypotheses will be generated, as seen in
Figure 9.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 23

Figure 9. Generation of rectangle hypotheses, based on quarters.

Due to the fact that the hypotheses outnumber the objects by a factor of 4 to 1, the
algorithm will compute a pixel fitness score for all hypotheses, so that the best-fitting one
can be selected. The pixel score S(R) for each region R is computed by counting the pixels
overlapping the region that fit with their corresponding quarter: the quarter defined by
the region must correspond to the quarter label assigned to the pixel by the CNN-based
semantic segmentation. When considering a matched pixel, we will consider the best-
suited segmentation quarter label, so if a pixel has two labels (for example, a top-left label
and a bottom-left label) and belongs to a top-left quarter of the hypothesis region, it is
considered to be a match. This process is depicted in Figure 10.

The pixel score is then normalized with the region area, so all pixel scores S(R) will
belong within the interval (0…1).

Figure 10. Computing the rectangle score, based on quarter matching.

Figure 9. Generation of rectangle hypotheses, based on quarters.

Due to the fact that the hypotheses outnumber the objects by a factor of 4 to 1, the
algorithm will compute a pixel fitness score for all hypotheses, so that the best-fitting one
can be selected. The pixel score S(R) for each region R is computed by counting the pixels
overlapping the region that fit with their corresponding quarter: the quarter defined by
the region must correspond to the quarter label assigned to the pixel by the CNN-based
semantic segmentation. When considering a matched pixel, we will consider the best-suited
segmentation quarter label, so if a pixel has two labels (for example, a top-left label and a
bottom-left label) and belongs to a top-left quarter of the hypothesis region, it is considered
to be a match. This process is depicted in Figure 10.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 23

Figure 9. Generation of rectangle hypotheses, based on quarters.

Due to the fact that the hypotheses outnumber the objects by a factor of 4 to 1, the
algorithm will compute a pixel fitness score for all hypotheses, so that the best-fitting one
can be selected. The pixel score S(R) for each region R is computed by counting the pixels
overlapping the region that fit with their corresponding quarter: the quarter defined by
the region must correspond to the quarter label assigned to the pixel by the CNN-based
semantic segmentation. When considering a matched pixel, we will consider the best-
suited segmentation quarter label, so if a pixel has two labels (for example, a top-left label
and a bottom-left label) and belongs to a top-left quarter of the hypothesis region, it is
considered to be a match. This process is depicted in Figure 10.

The pixel score is then normalized with the region area, so all pixel scores S(R) will
belong within the interval (0…1).

Figure 10. Computing the rectangle score, based on quarter matching.

Figure 10. Computing the rectangle score, based on quarter matching.

Sensors 2022, 22, 4312 11 of 21

The pixel score is then normalized with the region area, so all pixel scores S(R) will
belong within the interval (0 . . . 1).

The next step of the algorithm is to establish the dependency relationships between
the hypotheses. An overlapping score is computed between any two rectangles Ri and Rj.
If the overlapping score exceeds a threshold of 0.5, and the pixel score of Rj is higher than
the pixel score of Ri, the rectangle Ri will be labeled as being dependent on Rj. Basically,
we assume that the region Ri depicts the same object as Rj but is a less adequate fit.

This process is depicted in Figure 11. The four rectangles are generated by the pixel-
derived quarters, but the best fit is the rectangle generated by the top-right quarter. There-
fore, all the other rectangles are labeled as being dependent on the rectangle hypothesis
generated by the top-right quarter.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 23

The next step of the algorithm is to establish the dependency relationships between
the hypotheses. An overlapping score is computed between any two rectangles Ri and Rj.
If the overlapping score exceeds a threshold of 0.5, and the pixel score of Rj is higher than
the pixel score of Ri, the rectangle Ri will be labeled as being dependent on Rj. Basically,
we assume that the region Ri depicts the same object as Rj but is a less adequate fit.

This process is depicted in Figure 11. The four rectangles are generated by the pixel-
derived quarters, but the best fit is the rectangle generated by the top-right quarter. There-
fore, all the other rectangles are labeled as being dependent on the rectangle hypothesis
generated by the top-right quarter.

Figure 11. Re-labeling the rectangle hypothesis by the best-scored overlap.

Based on the rectangle hypotheses and their dependency relations, the individual
regions presented in Figure 8 will receive the final label. This new label is the identity of
the individual object of which the region is a part.

For each region, the number of pixels overlapping every rectangle hypothesis is
counted. All rectangles are considered in this step, even those that are in a dependency
relationship. The process has two stages:
1. The rectangle that overlaps the most pixels of the individual region is selected.
2. If the rectangle is dependent on another rectangle (as seen in Figure 11), the label of

the main rectangle is transferred to the individual region.
The final step of the algorithm is to label the pixels themselves with the identity of

the object to which they belong. For this step, we simply transfer to the individual pixel
the label of the region to which the pixel belongs, as this region has already been labeled
with the identity of the object.

The entire process is illustrated in Figure 12, where two partially overlapping objects
are presented, together with their final label. The complete processing steps are described
in Algorithm 1.

Figure 11. Re-labeling the rectangle hypothesis by the best-scored overlap.

Based on the rectangle hypotheses and their dependency relations, the individual
regions presented in Figure 8 will receive the final label. This new label is the identity of
the individual object of which the region is a part.

For each region, the number of pixels overlapping every rectangle hypothesis is
counted. All rectangles are considered in this step, even those that are in a dependency
relationship. The process has two stages:

1. The rectangle that overlaps the most pixels of the individual region is selected.
2. If the rectangle is dependent on another rectangle (as seen in Figure 11), the label of

the main rectangle is transferred to the individual region.

The final step of the algorithm is to label the pixels themselves with the identity of the
object to which they belong. For this step, we simply transfer to the individual pixel the
label of the region to which the pixel belongs, as this region has already been labeled with
the identity of the object.

The entire process is illustrated in Figure 12, where two partially overlapping objects
are presented, together with their final label. The complete processing steps are described
in Algorithm 1.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 23

Figure 12. The final result, obtained by labeling the regions with the rectangle labels, then transfer-
ring the region labels to the individual pixels.

Algorithm 1 Instance segmentation
Input: TL, TR, BL, BR—Top-left, top-right, bottom-left, and bottom-right binary images
Output: L—image labeled with the individual object identifiers
1. Identification of connected regions from each of the four binary images:
 TL_Regions = ConnectedLabeling (TL)
 TR_Regions = ConnectedLabeling (TR)
 BL_Regions = ConnectedLabeling (BL)
 BR_Regions = ConnectedLabeling (BR)
2. Creation of the composite type image:
 For each (x,y)
 Composite(x,y) = BR(x,y) <<3 | BL(x,y) <<2 | TR(x,y) <<1 | TL(x,y)
3. Labeling the composite image:
 Regions = []
 For type = 1 to 15
 Regions = Regions U ConnectedLabeling (Composite = type)
4. Generating the hypothetical rectangles:
 TL_Rectangles = ExpandRectangle (TL_Regions)
 TR_Rectangles = ExpandRectangle (TR_Regions)
 BL_Rectangles = ExpandRectangle (BL_Regions)
 BR_Rectangles = ExpandRectangle (BR_Regions)
 R = TL_Rectangles U TR_Rectangles U BL_Rectangles U BR_Rectangles
 S(R) = ComputeRectangleScores (R)
5. Labeling the rectangles
 For each rectangle Ri
 LR (i) = i
 Repeat
 For i
 For j
 If Overlap (Ri, Rj) > 0.5 and S (Ri) > S (Rj)
 LR(j) = LR (i)
 Until no change of LR
6. Labeling the regions
 For each Reg in Regions
 R = ArgMax R(Overlap (R, Reg))
 L(Reg) = LR(R)

Figure 12. The final result, obtained by labeling the regions with the rectangle labels, then transferring
the region labels to the individual pixels.

Sensors 2022, 22, 4312 12 of 21

Algorithm 1 Instance segmentation

Input: TL, TR, BL, BR—Top-left, top-right, bottom-left, and bottom-right binary images
Output: L—image labeled with the individual object identifiers
1. Identification of connected regions from each of the four binary images:

TL_Regions = ConnectedLabeling (TL)
TR_Regions = ConnectedLabeling (TR)
BL_Regions = ConnectedLabeling (BL)
BR_Regions = ConnectedLabeling (BR)

2. Creation of the composite type image:
For each (x,y)

Composite(x,y) = BR(x,y) <<3 | BL(x,y) <<2 | TR(x,y) <<1 | TL(x,y)
3. Labeling the composite image:

Regions = []
For type = 1 to 15

Regions = Regions U ConnectedLabeling (Composite = type)
4. Generating the hypothetical rectangles:

TL_Rectangles = ExpandRectangle (TL_Regions)
TR_Rectangles = ExpandRectangle (TR_Regions)
BL_Rectangles = ExpandRectangle (BL_Regions)
BR_Rectangles = ExpandRectangle (BR_Regions)
R = TL_Rectangles U TR_Rectangles U BL_Rectangles U BR_Rectangles
S(R) = ComputeRectangleScores (R)

5. Labeling the rectangles
For each rectangle Ri

LR (i) = i
Repeat
For i

For j
If Overlap (Ri, Rj) > 0.5 and S (Ri) > S (Rj)

LR(j) = LR (i)
Until no change of LR

6. Labeling the regions
For each Reg in Regions

R = ArgMax R(Overlap (R, Reg))
L(Reg) = LR(R)

3.5. Object Refinement

We provide an additional post-processing step in order to improve the quality of the
detected objects. The dynamic objects from the global segmentation head (described in
Section 3.3) are used to improve the four quarters from the object detection head. Therefore,
the semantic output is used to refine the edges of the detected quarters. The process is
depicted in Figure 13, where the global semantic segmentation dynamic objects (column 2)
are combined with the quarters output (column 3).

Sensors 2022, 22, x FOR PEER REVIEW 14 of 23

3.5. Object Refinement
We provide an additional post-processing step in order to improve the quality of the

detected objects. The dynamic objects from the global segmentation head (described in
Section 3.3) are used to improve the four quarters from the object detection head. There-
fore, the semantic output is used to refine the edges of the detected quarters. The process
is depicted in Figure 13, where the global semantic segmentation dynamic objects (column
2) are combined with the quarters output (column 3).

Figure 13. Fusing the semantic output with the quarters to improve object detection.

3.6. Vanishing-Point Computation
Vanishing-point computation methods have been presented in the literature. Most

methods are based either on line intersections or feature analysis or use artificial networks
to predict the 2D point coordinates of the vanishing point [33]. In this work, we make use
of the results of our previously published work [34] to produce the required training im-
ages for the neural network. Our previous paper presented an algorithm for detecting the
vanishing point by computing the orientation and magnitude of the gradient that is used
to generate three vote-map images. The first image contains the vote map of the features
from the left side of the input image, the second image has the vote-map features from the
right side of the input image, and the third image is actually the multiplication result of
the first two images (left and right vote maps). Figure 14 presents an example of the three
vote-map images. The voting maps can be computed using classic image processing tech-
niques (by computing the orientation of the gradients) or can be extracted directly from a
fully convolutional CNN, such as the one proposed in this paper.

Figure 14. The vote-map features of the vanishing point: the left side features (first image), the right
side features (center), and the multiplication result of the first two images (right).

Figure 13. Fusing the semantic output with the quarters to improve object detection.

Sensors 2022, 22, 4312 13 of 21

3.6. Vanishing-Point Computation

Vanishing-point computation methods have been presented in the literature. Most
methods are based either on line intersections or feature analysis or use artificial networks
to predict the 2D point coordinates of the vanishing point [33]. In this work, we make
use of the results of our previously published work [34] to produce the required training
images for the neural network. Our previous paper presented an algorithm for detecting
the vanishing point by computing the orientation and magnitude of the gradient that is
used to generate three vote-map images. The first image contains the vote map of the
features from the left side of the input image, the second image has the vote-map features
from the right side of the input image, and the third image is actually the multiplication
result of the first two images (left and right vote maps). Figure 14 presents an example
of the three vote-map images. The voting maps can be computed using classic image
processing techniques (by computing the orientation of the gradients) or can be extracted
directly from a fully convolutional CNN, such as the one proposed in this paper.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 23

3.5. Object Refinement
We provide an additional post-processing step in order to improve the quality of the

detected objects. The dynamic objects from the global segmentation head (described in
Section 3.3) are used to improve the four quarters from the object detection head. There-
fore, the semantic output is used to refine the edges of the detected quarters. The process
is depicted in Figure 13, where the global semantic segmentation dynamic objects (column
2) are combined with the quarters output (column 3).

Figure 13. Fusing the semantic output with the quarters to improve object detection.

3.6. Vanishing-Point Computation
Vanishing-point computation methods have been presented in the literature. Most

methods are based either on line intersections or feature analysis or use artificial networks
to predict the 2D point coordinates of the vanishing point [33]. In this work, we make use
of the results of our previously published work [34] to produce the required training im-
ages for the neural network. Our previous paper presented an algorithm for detecting the
vanishing point by computing the orientation and magnitude of the gradient that is used
to generate three vote-map images. The first image contains the vote map of the features
from the left side of the input image, the second image has the vote-map features from the
right side of the input image, and the third image is actually the multiplication result of
the first two images (left and right vote maps). Figure 14 presents an example of the three
vote-map images. The voting maps can be computed using classic image processing tech-
niques (by computing the orientation of the gradients) or can be extracted directly from a
fully convolutional CNN, such as the one proposed in this paper.

Figure 14. The vote-map features of the vanishing point: the left side features (first image), the right
side features (center), and the multiplication result of the first two images (right).
Figure 14. The vote-map features of the vanishing point: the left side features (first image), the right
side features (center), and the multiplication result of the first two images (right).

The coordinates of the vanishing point can be computed using a sliding window on
the third image, or by extracting the maximum from the third vote map image. Extracting
the maximum takes an additional 0.09 ms on average to compute; therefore, we used
this version. Extracting the VP coordinates can be achieved directly in an end-to-end
manner via a CNN with a different architecture; however, in our case, we preferred to
leverage the shared layers from the encoder, in order to produce the three vote-map images
using semantic segmentation and then extract the coordinates from the third output layer.
The other two predicted layers (the left and right vote maps) can be used as input for a
lane detection system on marked roads, or as an additional step to validate the extracted
vanishing-point coordinates.

Computing the vanishing point is relevant, due to the fact that it can be used to
compute the extrinsic camera parameters if we assume some geometric constraints (a flat
road assumption and a small lens distortion). The pitch and yaw angles of the camera with
respect to the world can be computed if the focal distance is also known (along with the
image size), as we presented in [33].

4. Training the Multi-Output CNN

Multi-task learning requires special datasets and databases for training. For the
proposed solution, we have used three well-known datasets: CityScapes [35], the Berkeley
Deep Drive (BDD) [36], and Mapillary [37]. All the images were processed in order to
have the same size and aspect ratio; we also filtered the images to select only those that
feature a large number of road pixels. After this selection, we processed the number of
images used for training, as follows: 2759 images were taken from BDD, 2975 images
from CityScapes, and 17,109 images from Mapillary. These databases contain relevant

Sensors 2022, 22, 4312 14 of 21

information for semantic segmentation and the bounding boxes of the obstacle objects. By
using this data, we could extract the four obstacle quarters. The input images were split into
four quarters, using the available bounding boxes of the objects. The next step consisted
of masking each quarter with the semantic segmentation maps in order to generate the
top-left, top-right, bottom-left, and bottom-right binary images of the individual object
instances. The process is presented in Figure 15.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23

The coordinates of the vanishing point can be computed using a sliding window on
the third image, or by extracting the maximum from the third vote map image. Extracting
the maximum takes an additional 0.09 ms on average to compute; therefore, we used this
version. Extracting the VP coordinates can be achieved directly in an end-to-end manner
via a CNN with a different architecture; however, in our case, we preferred to leverage
the shared layers from the encoder, in order to produce the three vote-map images using
semantic segmentation and then extract the coordinates from the third output layer. The
other two predicted layers (the left and right vote maps) can be used as input for a lane
detection system on marked roads, or as an additional step to validate the extracted van-
ishing-point coordinates.

Computing the vanishing point is relevant, due to the fact that it can be used to com-
pute the extrinsic camera parameters if we assume some geometric constraints (a flat road
assumption and a small lens distortion). The pitch and yaw angles of the camera with
respect to the world can be computed if the focal distance is also known (along with the
image size), as we presented in [33].

4. Training the Multi-Output CNN
Multi-task learning requires special datasets and databases for training. For the pro-

posed solution, we have used three well-known datasets: CityScapes [35], the Berkeley
Deep Drive (BDD) [36], and Mapillary [37]. All the images were processed in order to have
the same size and aspect ratio; we also filtered the images to select only those that feature
a large number of road pixels. After this selection, we processed the number of images
used for training, as follows: 2759 images were taken from BDD, 2975 images from City-
Scapes, and 17,109 images from Mapillary. These databases contain relevant information
for semantic segmentation and the bounding boxes of the obstacle objects. By using this
data, we could extract the four obstacle quarters. The input images were split into four
quarters, using the available bounding boxes of the objects. The next step consisted of
masking each quarter with the semantic segmentation maps in order to generate the top-
left, top-right, bottom-left, and bottom-right binary images of the individual object in-
stances. The process is presented in Figure 15.

Figure 15. Extracting the obstacle quarters from the original segmentation mask and 2D obstacle
bounding boxes. Image source [36].
Figure 15. Extracting the obstacle quarters from the original segmentation mask and 2D obstacle
bounding boxes. Image source [36].

The prepared images from the datasets were also augmented during training. We used
the techniques of random intensity and saturation adjustments in the HSV color space, as
well as random image scaling and translation.

The semantic segmentation module used binary cross-entropy and the Sorensen–
Dice [38] loss function, which is a modified version of the intersect over union loss. The loss
function for the obstacle detection was the same. The vanishing point module also used the
same loss function as the semantic segmentation; generating the training data is described
in Section 3.6 During the training process, each loss function can be configured with a
different weight. We used the same weight for all three loss functions, having experimented
with various settings.

Training the neural network was performed for a total of 500 epochs; it was executed
on a system equipped with two Nvidia 1080 Ti GPUs that featured a total of 22 GB of
memory. The patience parameter was set to 50 epochs; therefore, if the loss function did not
improve for 50 epochs, the training process was stopped early. With this hardware, training
one epoch took around 300 s, which means that a fully working multi-output CNN model
can be obtained in less than 10 h (with early stopping). For our system, the ResNet-50
encoder was initialized with the weights from ResNet-50 and trained on ImageNet, which
helped speed up the training process. We also tried freezing some layers during training,
but this did not improve the final results.

5. Results and Evaluation

The same hardware setup was used for evaluating as well as training the model.
The experimental setup is based on the Python programming language, the project being
implemented using open-source deep learning software. The proposed multiple output
network was evaluated, using not only existing popular datasets (as mentioned in Section 4)
but also our own datasets [17,33].

For the semantic segmentation output head, the evaluation was performed using the
CityScapes validation dataset; the results were published in our previous work [16], where

Sensors 2022, 22, 4312 15 of 21

we used the free road space in order to detect on-road obstacles and the segmented road
surface was integrated into our monocular perception system, which is able to track the
detected obstacles using a particle filter. For the road class, we obtained an IoU score
of 0.90.

The obstacle detection output head that predicts the obstacle quarters represents the
main information used for detecting the obstacles from the road traffic scene. Therefore, the
obstacle detection module was also evaluated using the dataset presented in [17], which
features road-traffic images captured with different camera systems from the ones used in
the training datasets. For this dataset, the ground truth is considered to be the information
obtained from a stereo-vision camera setup. We compared our results with our previously
proposed system and previously published results in [39,40]. On our own dataset, which
features over 1000 images of object-bounding boxes extracted from the stereo-vision data,
we obtained an IoU score of 0.74. On the CityScapes validation dataset, we obtained an
IoU score of 0.83 and, on the KITTI [41] dataset, a 0.70 IoU score. The results were also
compared with a Yolo V3 [5] detector featuring a DarkNet backbone, which was trained
on KITTI using the same loss as the initial Yolo paper. We also compared the results with
a Yolo V3 detector with the same ResNet-50 backbone, trained on the same datasets as
our proposed model. We have also compared our results with the bounding boxes from
the Mask R-CNN and Yolact; the results are similar to ours, with minor differences (1–2%
in favor of the Mask R-CNN or Yolact). The bounding box obstacle detection results are
presented in Table 1.

Table 1. Bounding box evaluation.

Solution Stereo Dataset (IoU) CityScapes Dataset (IoU) KITTI Dataset (IoU)

MONet V1 with YOLO head [39] 0.64 0.63 -
MONet V1 [39] 0.74 0.80 0.55

Proposed system 0.74 0.83 0.70
Mask R-CNN [29] 0.74 0.84 0.68

DarkNet with YOLO V3 [25] 0.56 0.57 0.88
Yolact [31] 0.73 0.84 0.68

The stereo-vision database from Table 1 used images acquired with a pair of cameras
from which we used only the left image from the setup. The ground truth data was
considered to be the result of a stereo-tracking algorithm [42]. The main advantage of a
stereo-vision setup is that in the case of overlapping objects, they can be easily detected
based on their depth information. Still, our proposed system, using a monocular camera
setup, obtained a high accuracy. The evaluation in terms of complex city scenarios was
proven to be highly accurate, especially using the CityScapes dataset. When testing on the
KITTI database, our results were poorer due to the different aspect ratios of the dataset
images. To address this issue, we had two possibilities: we either resized the KITTI image
to fit the 256 × 256 pixels input of the CNN, or we cropped the KITTI image and then
resized it. Both variants would affect our evaluation results; the first choice would produce
a severe deformation of the objects from the traffic scene, which would highly impact the
detection process, whereas the second choice (cropping the input image), would most likely
prevent various objects from the scene being considered for detection. For this evaluation,
we used the first option.

For the 2D bounding box (object detection) evaluation, we obtained a marginal im-
provement (1%) from previously published work [40], due to the image fusion of the output
heads (as described in Section 3.5).

The pixel-wise evaluation of the detection was also performed. We evaluated the
instance segmentation on the CityScapes dataset and compared the results with an R-CNN
and Yolact, tested on the same test data from the dataset. The results are presented in
Table 2.

Sensors 2022, 22, 4312 16 of 21

Table 2. Instance segmentation evaluation.

Solution Accuracy Precision Recall F1 Score

Mask R-CNN [29] 0.91 0.93 0.24 0.34
Yolact [31] 0.87 0.67 0.17 0.24

Proposed system 0.93 0.94 0.44 0.57

We also present some of the qualitative results of our proposed network, versus Yolact
and R-CNN, in Figure 16. The Mask R-CNN would extract well-defined obstacle edges that
were more refined, but, in some cases, this method might miss objects (as can be seen in
the second row of Figure 16). Yolact predictions are sometimes missing some objects from
the scene, as seen in the second or third row of Figure 16; the Yolact solution also seems to
predict false positives (fourth row of Figure 16).

Sensors 2022, 22, x FOR PEER REVIEW 18 of 23

Figure 16. Comparison between Mask R-CNN, Yolact, and our method: the first column represents
the input image, the second column shows the ground truth instances, the third column shows the
Mask R-CNN results, the fourth column shows the Yolact results, and the fifth column represents
our results.

The popular Mask R-CNN network has a total of 64 million parameters, while Yolact
has 50 million parameters; Yolo V3, with a Darknet backbone, features 41 million param-
eters, while our U-Net- and ResNet-based model features 32 million parameters in total
for the three output heads (semantic segmentation, vanishing point, and obstacle quar-
ters). The total prediction time for all three outputs was 0.043 s on average, whereas for
the Mask R-CNN, the prediction time was 0.23 s and, for Yolo V3, it was 0.052 s. The Yolact
network predicted the output in 0.041 s. If we removed the vanishing point output head,
the network was reduced to 24 million parameters and the prediction time was then 0.034
s. If we further removed the semantic segmentation output head, we ended up with a 16-
million-parameter network with a prediction time of 0.026 s.

All the results are presented in Table 3 and the tests were performed on a desktop
system, equipped with an Intel i7 CPU and two Nvidia 1080 Ti GPU graphic boards that
were used for both training and prediction (evaluation).

Figure 16. Comparison between Mask R-CNN, Yolact, and our method: the first column represents
the input image, the second column shows the ground truth instances, the third column shows the
Mask R-CNN results, the fourth column shows the Yolact results, and the fifth column represents
our results.

The popular Mask R-CNN network has a total of 64 million parameters, while Yolact
has 50 million parameters; Yolo V3, with a Darknet backbone, features 41 million pa-
rameters, while our U-Net- and ResNet-based model features 32 million parameters in
total for the three output heads (semantic segmentation, vanishing point, and obstacle

Sensors 2022, 22, 4312 17 of 21

quarters). The total prediction time for all three outputs was 0.043 s on average, whereas
for the Mask R-CNN, the prediction time was 0.23 s and, for Yolo V3, it was 0.052 s. The
Yolact network predicted the output in 0.041 s. If we removed the vanishing point output
head, the network was reduced to 24 million parameters and the prediction time was then
0.034 s. If we further removed the semantic segmentation output head, we ended up with
a 16-million-parameter network with a prediction time of 0.026 s.

All the results are presented in Table 3 and the tests were performed on a desktop
system, equipped with an Intel i7 CPU and two Nvidia 1080 Ti GPU graphic boards that
were used for both training and prediction (evaluation).

Table 3. CNN comparisons.

Solution Total Number of Parameters
(All Output Heads)

CNN Prediction Time
(Seconds)

Total Computation Time
(Predict + Extract Bounding Boxes)

in Seconds

MONet V1, with YOLO obstacle
detection head 42 million 0.062 0.063

MONet V1 [39] 32 million 0.043 0.093
MONet V2 [40] 32 million 0.043 0.061

Proposed system 32 million 0.043 0.057
Proposed system, without

vanishing point head 24 million 0.034 0.048

Proposed system, without vanishing
point head and without semantic head 16 million 0.026 0.040

DarkNet, with YOLO V3 [25] 41 million 0.052 0.052
Mask R-CNN [29] 64 million 0.23 0.23

Yolact [31] 50 million 0.041 0.044

The prediction time for all three output heads was similar to the one from Yolo V3,
which only features obstacle detection (0.057 vs. 0.052 s, on average, on the same input
test images). The total computational time for our system was higher, due to the extra
post-processing required for the obstacle quarter grouping, labeling, and, finally, bounding
box extraction (0.014 s); however, these steps were executed on a single CPU core and were
not optimized. Nevertheless, the processing times were comparable.

The prediction and post-processing results of the proposed system, in various scenar-
ios, are illustrated in Figure 17. A video with the results on the stereo-vision dataset is
available at: https://vimeo.com/694007992 (accessed on 20 April 2022).

Sensors 2022, 22, x FOR PEER REVIEW 19 of 23

Table 3. CNN comparisons.

Solution
Total Number of Parameters

(All Output Heads)
CNN Prediction
Time (Seconds)

Total Computa-
tion Time (Predict
+ Extract Bound-

ing Boxes) in Sec-
onds

MONet V1, with YOLO obstacle detection
head

42 million 0.062 0.063

MONet V1 [39] 32 million 0.043 0.093
MONet V2 [40] 32 million 0.043 0.061

Proposed system 32 million 0.043 0.057
Proposed system, without

vanishing point head
24 million 0.034 0.048

Proposed system, without vanishing point
head and without semantic head

16 million 0.026 0.040

DarkNet, with YOLO V3 [25] 41 million 0.052 0.052
Mask R-CNN [29] 64 million 0.23 0.23

Yolact [31] 50 million 0.041 0.044

The prediction time for all three output heads was similar to the one from Yolo V3,
which only features obstacle detection (0.057 vs. 0.052 s, on average, on the same input
test images). The total computational time for our system was higher, due to the extra
post-processing required for the obstacle quarter grouping, labeling, and, finally, bound-
ing box extraction (0.014 s); however, these steps were executed on a single CPU core and
were not optimized. Nevertheless, the processing times were comparable.

The prediction and post-processing results of the proposed system, in various sce-
narios, are illustrated in Figure 17. A video with the results on the stereo-vision dataset is
available at: https://vimeo.com/694007992 (accessed on 6 June 2022).

Figure 17. Cont.

https://vimeo.com/694007992

Sensors 2022, 22, 4312 18 of 21Sensors 2022, 22, x FOR PEER REVIEW 20 of 23

Figure 17. The first column represents the input image, while the second column is the quarter pre-
diction (with the CNN output merged), the third column represents the labeling output, and the
fourth column is the resulting bounding boxes of the individual obstacles.

The third output head represents the vanishing-point prediction. The vanishing-
point coordinates are extracted from the CNN-predicted mask, which takes an additional
0.09 ms on average. The results are presented in Table 4, as already published in our pre-
vious work [39].

Figure 17. The first column represents the input image, while the second column is the quarter
prediction (with the CNN output merged), the third column represents the labeling output, and the
fourth column is the resulting bounding boxes of the individual obstacles.

Sensors 2022, 22, 4312 19 of 21

The third output head represents the vanishing-point prediction. The vanishing-point
coordinates are extracted from the CNN-predicted mask, which takes an additional 0.09 ms
on average. The results are presented in Table 4, as already published in our previous
work [39].

Table 4. Vanishing point evaluation.

Solution CityScapes
(NormDist)

VP Highway
(NormDist) VP City (NormDist)

MONet V1 [39] - 0.050 0.026
Proposed system 0.016 0.013 0.018

The evaluation presented in Table 4 was performed using the CityScapes test set and
the dataset from [33]. The metric used was NormDist, which represents the RMSE pixel
error, divided by the image diagonal.

6. Conclusions

In this paper, we propose a solution that is capable of accurately detecting on-road
obstacles and their actual instances in various road-traffic scenarios. We achieved this by
leveraging encoder–decoder-based artificial networks and geometry-based computer vision
algorithms. The information about object parts was extracted using semantic segmentation
networks and then used in a low-complexity clustering algorithm. Therefore, our proposed
solution is capable of detecting individual objects, even if they are partly occluded or are in
close contact. The multi-output CNN model, together with the post-processing algorithm,
represents a different approach to the traditional object segmentation and detection problem.
The system is also lighter in terms of computational demand and is easier to train, while
also having an accuracy comparable with much more complex artificial neural networks.
We have presented a unique approach to detecting object instances, along with the semantic
segmentation of the scene. In this approach, we fuse the two prediction outputs to obtain
better object instances; we also predict information regarding the vanishing point that can
be used later to compute the extrinsic camera parameters. In conclusion, the proposed
approach features a lower number of parameters than in similar published work, has
similar or better performance than previous approaches when evaluating instances and the
2D bounding boxes, and is easy to train and deploy. The proposed solution can be used
in real-time systems with a single camera to predict individual obstacle instances in road-
traffic scenarios, while also predicting the vanishing point, which can be used for the self-
calibration of the camera. Our proposed solution has been evaluated using well-established
performance indicators on publicly available datasets and our own acquired database.

Future work will include using these results along with a tracker, in order to estimate
the trajectories of the road participants. The idea is to make use of multiple consecutive
frames, in order to better determine partly or fully occluded objects from the road scene.
This future work will also include exploring other prediction outputs for the CNN model,
such as depth or optical flow.

Author Contributions: Conceptualization, R.I. and R.D.; methodology, R.I. and R.D.; software, R.I.
and R.D.; validation, R.I. and R.D.; writing—original draft preparation, R.I. and R.D.; writing—
review and editing, R.I. and R.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partly supported by grants from the Ministry of Research and Innovation,
CNCS—UEFISCDI, project number PN-III-P4-ID-PCE2020-1700 and PN-III-P1-1.1-PD-2021-0247, and
partly supported by the project “Entrepreneurial competencies and excellence research in doctoral
and postdoctoral programs—ANTREDOC”, which project was co-funded by the European Social
Fund, financing agreement no. 56437/24.07.2019.

Institutional Review Board Statement: Not applicable.

Sensors 2022, 22, 4312 20 of 21

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
2. Zhong, Z.; Li, J.; Cui, W.; Jiang, H. Fully convolutional networks for building and road extraction: Preliminary results.

In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China,
10–15 July 2016; pp. 1591–1594.

3. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

4. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany,
5–9 October 2015; pp. 234–241.

5. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

6. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot MultiBox detector. arXiv 2016,
arXiv:1512.02325.

7. David, H.; Sebastian, T.; Silvio, S. Learning to Track at 100 FPS with Deep Regression Networks. arXiv 2016, arXiv:1604.01802.
8. Hu, H.-N.; Cai, Q.-Z.; Wang, D.; Lin, J.; Sun, M.; Krahenbuhl, P.; Darrell, T.; Yu, F. Joint Monocular 3D Vehicle Detection and

Tracking. arXiv 2018, arXiv:1811.10742.
9. Ni, J.; Chen, Y.; Chen, Y.; Zhu, J.; Ali, D.; Cao, W. A Survey on Theories and Applications for Self-Driving Cars Based on Deep

Learning Methods. Appl. Sci. 2020, 10, 2749. [CrossRef]
10. Muresan, M.P.; Giosan, I.; Nedevschi, S. Stabilization and Validation of 3D Object Position Using Multimodal Sensor Fusion and

Semantic Segmentation. Sensors 2020, 20, 1110. [CrossRef]
11. Shahian Jahromi, B.; Tulabandhula, T.; Cetin, S. Real-Time Hybrid Multi-Sensor Fusion Framework for Perception in Autonomous

Vehicles. Sensors 2019, 19, 4357. [CrossRef]
12. Boulay, T. YUVMultiNet: Real-time YUV multi-task CNN for autonomous driving. arXiv 2019, arXiv:1904.05673.
13. Teichmann, M. MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving. arXiv 2016, arXiv:1612.07695.
14. Sistu, G.; Leang, I.; Yogamani, S. Real-time Joint Object Detection and Semantic Segmentation Network for Automated Driving.

arXiv 2019, arXiv:1901.03912.
15. Kendall, A.; Gal, Y.; Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. arXiv

2018, arXiv:1705.07115.
16. Itu, R.; Danescu, R.G. A Self-Calibrating Probabilistic Framework for 3D Environment Perception Using Monocular Vision.

Sensors 2020, 20, 1280. [CrossRef]
17. Nedevschi, S.; Danescu, R.; Frentiu, D.; Marita, T.; Oniga, F.; Pocol, C.; Schmidt, R.; Graf, T. High accuracy stereo vision system

for far distance obstacle detection. In Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy, 14–17 June 2004;
pp. 292–297.

18. Kumar, G.A.; Lee, J.H.; Hwang, J.; Park, J.; Youn, S.H.; Kwon, S. LiDAR and Camera Fusion Approach for Object Distance
Estimation in Self-Driving Vehicles. Symmetry 2020, 12, 324. [CrossRef]

19. Song, W.; Yang, Y.; Fu, M.; Qiu, F.; Wang, M. Real-Time Obstacles Detection and Status Classification for Collision Warning in a
Vehicle Active Safety System. IEEE Trans. Intell. Transp. Syst. 2018, 19, 758–773. [CrossRef]

20. Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review.
Sensors 2021, 21, 2140. [CrossRef]

21. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1,
pp. 511–518.

22. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR 2005, San Diego, CA, USA, 20–26 June 2005; Volume 1,
pp. 886–893.

23. Gao, F.; Wang, C.; Li, C. A Combined Object Detection Method with Application to Pedestrian Detection. IEEE Access 2020,
8, 194457–194465. [CrossRef]

24. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. arXiv 2016, arXiv:1612.08242v1.
25. Redmon, J. Darknet: Open Source Neural Networks in c. Available online: http://pjreddie.com/darknet/ (accessed on

4 May 2022).
26. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.

http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://doi.org/10.3390/app10082749
http://doi.org/10.3390/s20041110
http://doi.org/10.3390/s19204357
http://doi.org/10.3390/s20051280
http://doi.org/10.3390/sym12020324
http://doi.org/10.1109/TITS.2017.2700628
http://doi.org/10.3390/s21062140
http://doi.org/10.1109/ACCESS.2020.3031005
http://pjreddie.com/darknet/

Sensors 2022, 22, 4312 21 of 21

27. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
arXiv 2014, arXiv:1311.2524.

28. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2016,
arXiv:1506.01497. [CrossRef]

29. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

30. Liu, H. Mask-YOLO: Efficient Instance-level Segmentation Network Based on YOLO-V2. Available online: https://ansleliu.
github.io/MaskYOLO.html (accessed on 4 May 2022).

31. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-time Instance Segmentation. arXiv 2019, arXiv:1904.02689.
32. Irem Ulku, I.; Akagunduz, E. A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D images. arXiv

2022, arXiv:1912.10230.
33. Itu, R.; Borza, D.; Danescu, R. Automatic extrinsic camera parameters calibration using Convolutional Neural Networks.

In Proceedings of the 2017 IEEE 13th International Conference on Intelligent Computer Communication and Processing (ICCP
2017), Cluj-Napoca, Romania, 7–9 September 2017; pp. 273–278.

34. Danescu, R.; Itu, R. Camera Calibration for CNN-based Generic Obstacle Detection. In Proceedings of the 19th EPIA Conference
on Artificial Intelligence, Vila Real, Portugal, 3–6 September 2019; pp. 623–636.

35. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset
for Semantic Urban Scene Understanding. In Proceedings of the Computer Vision and Pattern Recognition, Vegas, NV, USA,
27–30 June 2016; pp. 3213–3223.

36. Yu, F.; Xian, W.; Chen, Y.; Liu, F.; Liao, M.; Madhavan, V.; Darrell, T. BDD100K: A Diverse Driving Video Database with Scalable
Annotation Tooling. arXiv 2018, arXiv:1805.04687.

37. Neuhold, G.; Ollmann, T.; Bulò, S.R.; Kontschieder, P. The Mapillary Vistas Dataset for Semantic Understanding of Street
Scenes. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 5000–5009.

38. Sorensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its
application to analyses of the vegetation on Danish commons. K. Dan. Vidensk. Selsk. 1948, 5, 1–34.

39. Itu, R.; Danescu, R. MONet—Multiple Output Network for Driver Assistance Systems Based on a Monocular Camera.
In Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP
2020), Cluj-Napoca, Romania, 3–5 September 2020; pp. 325–330.

40. Itu, R.; Danescu, R. Object detection using part based semantic segmentation. In Proceedings of the 2021 IEEE 17th International
Conference on Intelligent Computer Communication and Processing (ICCP 2021), Cluj-Napoca, Romania, 28–30 October 2021;
pp. 227–231.

41. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of
the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

42. Danescu, R.; Pantilie, C.; Oniga, F.; Nedevschi, S. Particle Grid Tracking System for Stereovision Based Obstacle Perception in
Driving Environments. IEEE Intell. Transp. Syst. Mag. 2012, 4, 6–20. [CrossRef]

http://doi.org/10.1109/TPAMI.2016.2577031
https://ansleliu.github.io/MaskYOLO.html
https://ansleliu.github.io/MaskYOLO.html
http://doi.org/10.1109/MITS.2011.2178492

	Introduction
	Related Work
	Multi-Task Deep Learning
	Object Detection

	Solution Description
	Feature Extraction
	Decoder Structure
	Global Semantic Segmentation
	Obstacle Reconstruction Using Part-Based Semantic Segmentation
	Object Refinement
	Vanishing-Point Computation

	Training the Multi-Output CNN
	Results and Evaluation
	Conclusions
	References

