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Abstract: It is common practice to model the input–output behavior of a single-loop feedback circuit
using the two parameters, A and β. Such an approach was first proposed by Black to explain
the advantages and disadvantages of negative feedback. Extensive theories of system behavior
(e.g., stability, impedance control) have since been developed by mathematicians and/or control
engineers centered around these two parameters. Circuit engineers rely on these insights to optimize
the dynamic behavior of their circuits. Unfortunately, no method exists for uniquely identifying A or
β in terms of the components of the circuit. Rather, indirect methods, such as the injection method of
Middlebrook or the break-the-loop approach proposed by Rosenstark, compute the return ratio RR
of the feedback loop and inferred the parameters A and β. While one often assumes that the zeros of
(1 + RR) are equal to the zeros of (1 + A × β), i.e., the closed-loop poles are equivalent, this is not
true in general. It is the objective of this paper to present an exact method to uniquely identify each
feedback parameter, A or β, in terms of the circuit components. Further, this paper will identify the
circuit conditions for which the product of A × β leads to the correct closed-loop poles.

Keywords: negative feedback circuits; single-loop feedback topologies; loop transmission function;
closed-loop operation; return ratio; intermediate transfer functions

1. Introduction

Circuit designers make use of single-loop negative feedback techniques to improve the
robustness of their circuits. By feeding back a portion of the output signal to subtract from
the input signal before applying it to the main circuit creates a circuit that is more robust
to changes in the main circuit behavior, noise on the power supply and other practical
concerns. As first described by Black [1], with the main circuit designated as an A(s) block,
and the feedback circuit designated with a β(s) block, the arrangement of the two circuits can
then be described as that shown in Figure 1. The critical observation made by Black at the
time was the idea of a subtraction operation that combined the input with the feedback signal.

Figure 1. The general form of a negative feedback structure, as first proposed by H. Black.

While using a block diagram to describe the operation of a circuit is a very popu-
lar method for describing the input–output behavior of circuits, there does not exist any
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method that can be used to uniquely identify A(s) and β(s) in terms of the circuit compo-
nents, e.g., resistors, capacitors, etc. There does exist, however, many methods [2–10] that
can be used to extract the return ratio RR(s), i.e., inverted gain around a feedback loop [11].

By assuming this is equivalent to the product of A(s) × β(s), known as the loop
transmission or loop gain, one can factor this into two separate terms, A(s) and β(s). Two
problems exist with this approach: (1) the return ratio RR(s) may not be equal to the
A(s) × β(s), and (2) factoring A(s) × β(s) into two separate terms, A(s) and β(s), may not
be so obvious.

In this paper, a general method for identifying the feedback parameters A(s) and
β(s) for any single-loop negative feedback circuit will be described. The method is based
on the concept of intermediate transfer functions (IFs) [12,13]. The proposed method
can be performed using any Spice-like program, as no additional tools are required, or
simply worked by hand or on a computer using traditional circuit analysis techniques. A
distinction is made between single-loop feedback circuits that conform to the structure
proposed by Black and those that do not. This is equivalent to identifying the conditions
when the return ratio RR(s) will predict the same closed-loop poles as those predicted by
the product of A(s)× β(s). In more mathematical terms, using the language of Nyquist [14],
this can be stated as:

zeros{1 + RR(s)} = zeros{1 + A(s)×β(s)} (1)

While it is common practice to infer from Equation (1) that the return ratio RR(s) is
equivalent to the product of A(s) × β(s), i.e., RR(s) = A(s)× β(s), this is not generally
true. Instead, Equation (1) suggests the following more general equivalency as developed
in Appendix A, as

num{RR(s)}+ den{RR(s)} = num{A(s)×β(s)}+ den{A(s)×β(s)} (2)

where num{+} and den{+} are the numerator and denominator polynomial terms of its
argument between the curly brackets. Consequently, any method used to extract the return
ratio RR(s) cannot be used to uniquely identify the single-loop feedback parameters A(s)
or β(s). Thus, highlighting the need for this work.

The paper will begin in Section 2 by describing the block diagram of a single-loop
negative feedback structure first proposed by Black [1]. Section 3 describes the four net-
work topologies of a single-loop feedback circuit and the circuit conditions required to
be compliant with the single-loop feedback structure proposed by Black. In other words,
when the return ratio and product A(s) × β(s) satisfy Equation (1). Section 4 describes
a general circuit analysis method for identifying the feedback parameters A(s) and β(s).
It is based on defining a set of intermediate transfer functions (IFs) from the input to the
feedback variables of a circuit and relating them to the feedback parameters. Section 5
will provide a method that applies to any circuit that implements a single-loop feedback
arrangement, but one that is noncompliant with the single-loop feedback structure described
by Black. In other words, when the return ratio RR(s) and A(s) × β(s) does not satisfy
Equation (1). An example will be provided to highlight these two distinctions in Section 6.
There are several ways in which to identify the error and feedback signals of the front-end
mixing process, as well as the variable that the loop is sensing. In other words, the feedback
parameters A(s) and β(s) are not unique. This is highlighted in Section 7, using a two-stage
BJT amplifier with a resistive feedback circuit example. Subsequently, in Section 8, the
invariance property of any feedback formulation drawn from the same circuit is described.
Finally, conclusions are drawn in Section 9.

2. The Single-Loop Negative Feedback Structure

The basic structure of a system, including some forms of negative feedback as proposed
by Black, is shown in the block diagram form in Figure 1. The input signal is defined by the
variable xs(s) and the output signal as xo(s). Here, the block depicted by A(s) represents the
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feedforward gain stage of the closed-loop system, and the block denoted by β(s) represents
the feedback block. It is assumed that the signal propagates in the direction of the arrows
through these building blocks, i.e., they are unilateral. There is no signal that propagates
back through the block. The summing node is used to subtract the feedback signal (xFdbk(s))
that is fed back from the output signal from the input signal xs(s) to create what is known
as the error signal xErr(s) being

xErr(s) = xs(s)− xFdbk(s) (3)

Equation (3) is the central equation that all single-loop negative feedback circuits must
implement. A circuit which does not implement this equation cannot be classified as a
single-loop negative feedback circuit, as first proposed by Black.

Both A(s) and β(s) can be expressed in terms of these intermediate signals, xErr(s) and
xFdbk(s), together with the output variable xo(s). For instance, the feedforward block A(s)
can be defined as:

A(s) =
xo(s)

xErr(s)
(4)

and the feedback block β(s) can be written as:

β(s) =
xFdbk(s)

xo(s)
. (5)

Consequently, Equation (3) can be re-written in terms of the feedback block β(s) as:

xErr(s) = xs(s)−β(s)xo(s). (6)

Substituting Equation (6) into (4) one can write the input–output transfer function
Af(s) of the overall closed-loop system as:

Af(s) =
xo(s)
xs(s)

=
A(s)

1 + A(s)β(s)
. (7)

3. The Four Basic Feedback Amplifier Topologies

Amplifiers incorporating a single-loop negative feedback loop can be divided into
four general classes depending on the nature of the sensing signal (i.e., voltage or current)
and how the feedback signal combines or mixes with the input signal, and on how the
feedback signal is sensed. The four general classes are described here as follows: (i) voltage-
mixing/voltage-sensing, (ii) voltage-mixing/current-sensing, (iii) current-mixing/voltage-
sensing, and (iv) current-mixing/current-sensing. Others have used descriptions, such as
series-series or shunt-series for the mixing and sensing operation [4]. As these terms are
less explicit, they will not be used here.

Figure 2 illustrates the four circuit topologies that are used to realize a single-loop
negative-feedback circuit. Figure 2a illustrates the voltage-mixing/voltage-sensing topol-
ogy where the input and output signals are vs and vo. As the input voltage signal is
connected in series with the input to the amplifier and the output signal from the feedback
network, the front-end portion of this topology is said to implement a voltage-mixing,
or series connection. At the output, the amplifier generates a voltage signal vo and this
signal is “sensed” by the feedback amplifier to generate the feedback signal. Thus, the
overall topology is referred to as a voltage-mixing/voltage-sensing arrangement. A sec-
ond topology is shown in Figure 2b. This topology has the same front-end arrangement
where the input signal is connected in series with the input to the amplifier and the output
of the feedback circuit. As the output is a current signal io, and it is this signal that is
“sensed” by the feedback network, this topology is referred to as a voltage-mixing/current-
sensing arrangement. In contrast, the two topologies of Figure 2c,d use a current source
as excitation and have the amplifier input placed in parallel with the output of the feed-
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back network. One refers to this arrangement as a current-mixing one. In the case of the
topology shown in Figure 2c, the output signal is a current signal. Thus, the feedback
network “senses” the output current. Therefore, the topology of Figure 2c is said to be a
current-mixing/current-sensing arrangement. Finally, the topology of Figure 2d generates
a voltage as its output signal and the feedback network senses this quantity. Consequently,
the topology of Figure 2d is called a current-mixing/voltage-sensing arrangement.

Figure 2. The four noncompliant single-loop feedback topologies incorporated with circuits:
(a) voltage-mixing/voltage-sensing, (b) voltage-mixing/current-sensing, (c) current-mixing/current-
sensing, and (d) current-mixing/voltage-sensing.

3.1. Input Signal Mixing Compliance

The four topologies of Figure 2 have an important limitation when it comes to realizing
the single-loop negative feedback structure of Figure 1. To understand this, consider the
voltage-mixing arrangement shown in Figure 3a. If one assumes the signal fed back by
the feedback network is the signal vFdbk and the signal driving the amplifier is vErr, then
according to KVL around the loop formed at the input, one can write:

vErr = vs − vRs − vFdbk. (8)

Figure 3. Highlighting problem with voltage and current mixing when a source resistance is present.
(a) voltage mixing, and (b) current mixing.
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If one assumes a one-to-one correspondence between the signals of the topology of
Figure 3a and that of the feedback structure proposed by Black, as shown in Figure 1, one
can write:

vs
vErr

vFdbk

↔
↔
↔

xs
xErr
xFdbk

(9)

The voltage variable vRs is clearly not accounted for by Black’s theory. Thus, the error
signals defined by Equations (3) and (8) are different. The topology of Figure 3a is not
compliant with the mixing arrangement proposed by Black.

Likewise, a similar result occurs with the current-mixing topology highlighted in
Figure 3b. Here, one can use KCL and relate the current signals at the input port of the
amplifier as:

iErr = is − iRs − iFdbk (10)

Assuming the following one-to-one correspondence between Figures 1 and 3b, one
can claim:

is
iErr

iFdbk

↔
↔
↔

xs
xErr
xFdbk

(11)

and conclude that the current variable iRs is not accounted for by Black’s theory. Thus, the
error signals defined by Equations (3) and (10) are different. The topology of Figure 3b is
not compliant with the structure proposed by Black.

Fortunately, there is a simple topological fix that can be used to ensure a single-loop
negative feedback circuit is compliant with the mixing arrangement proposed by Black. By
associating the source resistance Rs with either the basic amplifier or the feedback network,
the feedback circuit can be made compliant with the feedback structure proposed by Black
while maintaining circuit equivalence. These situations are depicted in Figures 4 and 5
for the voltage and current-mixing arrangements. As is evident from these two figures,
feedback compliance comes down to selecting the error and feedback signals appropriately.

Figure 4. Three equivalent voltage-mixing arrangements; two are compliant with Black’s single-loop
feedback structure: (a) noncompliant, (b) compliant, and (c) compliant.

3.2. Output Signal Sensing Compliance

Voltage or current sensing refers to the signal that is being sensed and fed back to the
mixing element through the feedback network. The circuit variable which the circuit senses
is either a node voltage or branch current, as the choice is somewhat arbitrary. However, it
is paramount that the sense variable is located directly on the circuit path of the feedback
loop as either a node voltage or branch current. Any circuit variable not on the path of
the feedback loop cannot be sensed and be used to provide corrective action. In many
circumstances, the sense variable is not equal to the designated output. For instance, in
Figure 6a the output of the circuit with a feedback loop is designated as the output voltage
vo. As the feedback network is connected in parallel with the amplifier output, the sense
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signal is the voltage developed across the load resistor RL; this is also designated as the
output voltage vo. The arrangement shown in Figure 6a would therefore be sense compliant
with what Black intended. In the situation depicted in Figure 6b, the output of the circuit
is again designated as the voltage across the load RL, however, the feedback network is
connected in series with the load resistor and will be sensing the load current iL instead.
Consequently, according to Black’s theory, the sense variable should be designated as the
load current. In other words, the arrangement of Figure 6b would not be sense compliant
with Black’s intention. To avoid any future confusion, we will designate the output variable
of the feedback topology proposed by Black as the sense variable and designate it as xsen(s).
As this signal may be different from the output designated signal variable, an additional
block denoted by γ(s) is included, as shown in Figure 7. Consequently, the input–output
transfer function Af(s) of the overall feedback structure of Black’s model with the γ-block
included would be defined as:

Af(s) =
xo(s)
xs(s)

=
A(s)γ(s)

1 + A(s)β(s)
(12)

Figure 5. Three equivalent current-mixing arrangements; two are compliant with Black’s single-loop
feedback structure: (a) noncompliant, (b) compliant option 1, and (c) compliant option 2.

Figure 6. Highlighting the physical difference between an output signal from a circuit with a feedback
loop and the signal being sensed by the feedback network. (a) The output voltage is the same signal
that is being sensed by the feedback network, and (b) the output voltage is different from the current
signal that is being sensed by the feedback network.
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Figure 7. Including a γ(s)-block that relates the sense variable xSen to the designated output signal xo.

The burden of assignment of the sense variable is left to the person undertaking the
feedback analysis. This is described more fully in Sections 7 and 8.

4. Feedback Parameter Isolation Method Using the IF Approach

In this section, a method of identifying the feedback parameters A(s) and β(s) will
be described based on the application of a set of transfer functions defined from the input
to the intermediate variables of the feedback circuit, such as xErr(s), xFdbk(s) and xsen(s).
Consequently, these transfer functions will be referred to as the intermediate transfer
functions, or IFs for short [12,13]. Through another set of IFs, performance issues, such as
component sensitivities and noise gain, can be quantified [13]. This is beyond the scope of
this paper so it will not be discussed any further. The reader should simply interpret the
IFs as transfer functions from the input to the variable of interest.

According to the block diagram of Figure 7, the A(s) and β(s) blocks can be defined as
the ratio of two signal variables as:

A(s) =
xsen(s)
xErr(s)

(13)

and

β(s) =
xFdbk(s)
xsen(s)

(14)

Finally, the γ-block of Figure 7 can be defined as:

γ(s) =
xo(s)

xsen(s)
. (15)

To understand the physical significance of the ratio of these feedback variables, con-
sider the transfer functions from the input forcing function (V or I) to the intermediate
variables associated with the single-loop feedback structure. Rather than tracking all
possible variables, we will use x with a subscript to represent the circuit variable of in-
terest to stay as general as possible. There are three circuit variables that we mention
in the description of the single-loop feedback structure. Specifically, xErr(s), xFdbk(s) and
xsen(s). However, xErr(s) is dependent on the difference between xs(s) and xFdbk(s), thus only
two transfer functions are necessary to complete this analysis. These are:

TFdbk(s) ,
xFdbk(s)

xs(s)
(16)

and

Tsen(s) ,
xsen(s)
xs(s)

. (17)

The transfer function from the input to the error signal can be defined as:

TErr(s) ,
xErr(s)
xs(s)

= 1− TFdbk(s). (18)
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Figure 8 depicts the IFs, TFdbk(s), TErr(s) and Tsen(s), as superimposed on the single-
loop feedback structure. Using the above IFs, the feedback components, A(s) and β(s), can
then be expressed as follows:

A(s) =
xsen(s)
xErr(s)

=
Tsen(s)
TErr(s)

(19)

and

β(s) =
xFdbk(s)
xsen(s)

=
TFdbk(s)
Tsen(s)

. (20)

Figure 8. Illustrating the intermediate transfer functions associated with a single-loop feedback
circuit.

Finally, the γ-block can be identified as:

γ(s) =
xo(s)

xsen(s)
=

To(s)
Tsen(s)

(21)

where To(s) is the input–output transfer function being:

To(s) ,
xo(s)
xs(s)

. (22)

It is important to point out here that the method of IFs is exact. There are no approxi-
mations made to identify A(s), β(s) or γ(s).

Example 1. Consider the unity-gain amplifier configuration involving an op-amp shown in
Figure 9a. The small-signal model of the op-amp is provided in Figure 9b. Regardless of the
complexity of the circuit selected, the IF analysis principles apply to any linear, time-invariant,
lumped-element circuit.
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Figure 9. Voltage-mixing/voltage-sensing topology: (a) Unity-gain amplifier using an op-amp, and
(b) op-amp circuit model with general gain function µ(s). The voltage-mixing signal are highlighted
in blue.

Assuming the sense signal is the output voltage of the amplifier, i.e., vsen = vo, and
further, with the feedback signal vFdbk set equal to the output voltage vo, as there is a direct
connection between the negative input terminal of the op-amp and its output, the error
signal can be easily identified. For our formulation to be compliant with Black’s topology,
the error signal vErr must be equal to the difference between the input signal vs and the
feedback signal vFdbk, as displayed on the circuit in Figure 9a. Consequently, the feedback
parameters A(s) and β(s) can be computed using the following voltage ratios:

A(s) =
Tsen(s)
TErr(s)

∣∣∣∣
γ=1

=
To(s)

TErr(s)
=

To(s)
1− To(s)

. (23)

and

β(s) =
TFdbk(s)
Tsen(s)

= 1 (24)

as TFdbk(s) = Tsen(s) = To(s) and TErr(s) = 1− TFdbk(s). Further, γ(s) = 1, as vsen = vo.
Through a hand analysis, the input–output transfer function was found to be

To(s) =
Cin,dRin,dRos + Rin,dµ(s) + Ro

(Cin,dRin,dRs + Cin,dRin,dRo)s + Rin,dµ(s) + +Rs + Ro + Rin,d
(25)

allowing one to find from Equation (23),

A(s) =
Cin,dRin,dRos + Ro + Rin,dµ(s)

Cin,dRin,dRss + Rs + Rin,d
. (26)

Now, if we assume a single-pole model for the op-amp, i.e., µ(s) = ADC/
(

1 + s
ωb

)
and substituting this into Equation (26), one finds

A(s) =
Cin,dRin,dRos2 + (Cin,dRin,dRoωb + Ro)s + ADCRin,dωb + Roωb

ωb(Cin,dRin,dRss + Rs + Rin,d)
(

1 + s
ωb

) . (27)

Here, it is evident that the A-block has a transfer function that consists of two zeros
and two poles. As the zeros were not a part of the op-amp transfer function µ(s), these
zeros are caused by the external op-amp impedances. Thus, highlighting the fact that A(s)
is not necessarily equal to the commonly assumed term of µ(s).

5. Noncompliant Single-Loop Negative Feedback Circuits

Circuits that are noncompliant with one of the four single-loop feedback topologies
of Figure 2 can still be described with a set of feedback parameters by including a feed-in
branch at the front-end with an α-block, as shown in Figure 10. Here, a new signal called
the reference signal, xRef(s), is included to represent the output signal from the α-block. In
much the same way as described in Section 4, the IF approach can be used to identify each
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component of this block diagram [15]. The α-block would be identified using the following
intermediate transfer function:

α(s) =
xRef(s)
xs(s)

= TRef(s) (28)

where TRef(s) represents the transfer function from input to the reference signal. The
remaining component A(s), β(s) and γ(s) would be found using the formulas provided in
Equations (19)–(21).

Figure 10. Inclusion of a feed-in branch α(s) to expand the circuit range of applicability of a single-
loop negative feedback system description.

The closed-loop input–output signal gain Af(s) of the modified single-loop feedback
structure expressed in terms of α(s), A(s), β(s) and γ(s) is written as:

Af(s) =
xo(s)
xs(s)

=
α(s)A(s)γ(s)
1 + A(s)β(s)

. (29)

Now it may appear at first glance as though closed-loop poles would be the roots of
the expression 1 + A(s)β(s) = 0. However, the α(s) term generally has zeros that cancel
with the zeros of the 1 + A(s)β(s) term. Thus, the characteristic equation of the modified
closed-loop system of Figure 10 must account for this fact, and be written as:

1 + A(s)β(s)
α(s)γ(s)

= 0. (30)

An effective loop transmission function can then be defined as:

Aβeff(s) ,
1−α(s)γ(s) + A(s)β(s)

α(s)γ(s)
(31)

where the characteristic equation can be written in the usual form as 1 + Aβeff(s) = 0.
On doing so, the return ratio of this circuit would be equal to Aβeff(s) and not the usual
quantity A(s) × β(s). As the dimensions of A(s) × β(s) are unitless, the units of Aβeff(s)
take on the dimensions of the inverse of α(s)× γ(s).

It is important to note that if α(s) = γ(s) = 1, then the above expressions for the
noncompliant feedback structure reduces to the same ones specified for a compliant one.

Example: To illustrate the significance of circuit compliance, consider describing the
unity-gain amplifier in Figure 9 with the modified feedback structure in Figure 11. This
is done by simply redefining the error signal, as shown in Figure 11, and defining the top
terminal of the error signal as the reference signal vRef. Assuming a single-pole model for
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the op-amp, i.e., µ(s) = ADC/
(

1 + s
ωb

)
one can compute the four feedback parameters

α(s), A(s), β(s) and γ(s) as follows:

α(s) =

Cin,dRin,dRos2+
(Cin,dRin,dRoωb + Rin,d + Ro)s
+(ADC + 1)Rin,dωb + Roωb

Cin,dRin,d(Ro + Rs)s2

+[Cin,dRin,d(Ro + Rs)ωb + Rin,d + Ro + Rs]s
+(ADC + 1)Rin,dωb + (Ro + Rs)ωb

(32)

A(s) =
Cin,dRin,dRos2 + (Cin,dRin,dRoωb + Ro)s + ADCRin,dωb + Roωb

Rin,ds + Rin,dωb
(33)

β(s) = 1 (34)

and
γ(s) = 1 (35)

Figure 11. A unity-gain amplifier circuit that is to be mapped to the modified single-loop feedback
structure of Figure 10. The circuit is the same, but the voltage-mixing variables have been changed.

Further, the input–output transfer function Vo
Vs
(s) is found to be:

Vo

Vs
(s) =

Cin,dRin,dRos2 + (Cin,dRin,dRoωb + Ro)s + ADCRin,dωb + Roωb

Cin,dRin,d(Ro + Rs)s2 + [Cin,dRin,d(Ro + Rs)ωb + Rin,d + Ro + Rs]s
+(ADC + 1)Rin,dωb + (Ro + Rs)ωb

(36)

It is easy to show that the characteristic equation of Vo(s)
Vs(s)

is indeed equal to 1+A(s)β(s)
α(s) = 0.

The results are straightforward to confirm but lengthy; so these details are not shown here.
Another example is provided in Section 6 with many more mathematical details

This section demonstrates the importance of a circuit being topologically compliant,
otherwise, the feedback description requires additional terms and a more complicated loop
transmission function definition. The simplicity of the feedback theory proposed by Black,
combined with the Nyquist stability criterion, would be lost.

6. Comparing IF Analysis Isolation Method with the Return Ratio Approach

To demonstrate the interplay between compliant and noncompliant single-loop feed-
back circuits and the concept of a return ratio, consider the 2nd order lowpass filter circuit
of Figure 12a. This circuit uses an internal voltage amplifier with voltage gain K. This is
equivalent to a voltage-controlled voltage source with gain K. To extract the return ratio,
the injection method of Middlebrook [2] will be used. Specifically, the dependent voltage
source related to the VCVS is replaced by an independent voltage source vt, as shown in
Figure 12b, and the signal that returns to the input of the VCVS, identified as vr, is found,
allowing one to write the return ratio as:

RR(s) = −vr

vt
(37)
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Figure 12. Comparing noncompliant, compliant feedback topologies with the Middlebrook loop
injection method for extracting its return ratio: (a) voltage-input voltage-output active filter circuit,
(b) evaluating the return ratio of the active filter circuit using Middlebrook’s injection method by
replacing the dependent voltage source related to the VCVS with an independent voltage source,
(c) Norton equivalent circuit representation that is noncompliant with Black’s feedback topology, and
(d) Norton equivalent circuit representation that is compliant.

Using circuit analysis, one can find the return ratio as:

RR(s) = − KC1R1R3s

(C1C2R1R2R3)s2 +

(
C1R1R2 + C1R1R3+
C2R1R3 + C2R2R3

)
s + R1 + R2 + R3

(38)

Assuming the circuit of Figure 12a exhibits a current-mixing/voltage-sampling topology
where the feedback current mixes with the input current signal, the input voltage source must
first be converted to a current source using the Norton transformation. The resulting circuit is
shown in Figure 12c. As this topology is noncompliant with that of Black, the source resistance
R1 is moved to the right-hand side of the current summing node, as shown in Figure 12d, so
that the resulting circuit is compliant. Using Equations (13) and (14), the feedback parameters
are found to be:

A(s) =
vsen(s)
iErr(s)

=
KR1R3

(C2R1R3 + C2R2R3)s + R1 + R2 + R3
(39)

and

β(s) =
iFdbk(s)
vsen(s)

=
(C1C2R2R3)s2 + (C1R2 + C1R3 −KC1R3)s

KR3
(40)

Consequently, the product of A(s) × β(s), can be written as:

A(s)×β(s) =
(C1C2R1R2R3)s2 + (C1R1R2 + C1R1R3 −KC1R1R3)s

(C2R1R3 + C2R2R3)s + R1 + R2 + R3
(41)

On comparing RR(s) with A(s) × β(s), clearly, they are different. Nonetheless, the
sum of their numerator and denominator terms are the same, as is evident in the top two
data sets of Table 1. Consequently, the closed-loop poles derived from either RR(s) or
A(s) × β(s) would lead to the same result.
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Table 1. Numerator and Denominator Terms and their Combined Sums for the Circuits of Figure 12.
(Green shaded row indicates agreement; red shaded row indicates disagreement).

RR(s) For Ciruit of Figure 12b

num{RR(s)} −KC1R1R3s

den{RR(s)} (C1C2R1R2R3)s2 + (C1R1R2 + C1R1R3 + C2R1R3 + C2R2R3)s + R1 +
R2 + R3

num{RR(s)}+ den{RR(s)} (C1C2R1R2R3)s2 +
(C1R1R2 + C1R1R3 + C2R1R3 + C2R2R3 − KC1R1R3)s + R1 + R2 + R3

A(s)×β(s) For Compliant Circuit of Figure 12d

num{A(s)×β(s)} (C1C2R1R2R3)s2 + (C1R1R2 + C1R1R3 − KC1R1R3)s

den{A(s)×β(s)} (C2R1R3 + C2R2R3)s + R1 + R2 + R3

num{A(s)×β(s)}+ den{A(s)×β(s)} (C1C2R1R2R3)s2 +
(C1R1R2 + C1R1R3 + C2R1R3 + C2R2R3 − KC1R1R3)s + R1 + R2 + R3

A(s)×β(s) For Noncompliant Circuit of Figure 12c

num{A(s)×β(s)} (C1C2R2R3)s2 + (C1R2 + C1R3 − KC1R3)s

den{A(s)×β(s)} C2R3s + 1

num{A(s)×β(s)}+ den{A(s)×β(s)} (C1C2R2R3)s2 + (C1R2 + C1R3 + C2R3s− KC1R3)s + 1

Aβeff(s)For Noncompliant Circuit of Figure 12c

num
{

Aβeff(s)
} (C1C2R1R2R3)s2 + (C1R1R2 + C1R1R3 + C2R2R3 − KC1R1R3) + R2 +

R3

den
{

Aβeff(s)
}

C2R1R3s + R1

num
{

Aβeff(s)
}
+ den

{
Aβeff(s)

} (C1C2R1R2R3)s2 +
(C1R1R2 + C1R1R3 + C2R1R3 + C2R2R3 − KC1R1R3)s + R1 + R2 + R3

It is interesting to note that the feedback parameters extracted from the noncompliant
circuit of Figure 12c would lead one to a very different set of closed-loop poles. Specifically,
parameters A(s) and β(s) would be found as follows:

A(s) =
vsen(s)
iErr(s)

=
KR3

C2R3s + 1
(42)

and

β(s) =
iFdbk(s)
vsen(s)

=
(C1C2R2R3)s2 + (C1R2 + C1R3 −KC1R3)s

KR3
(43)

Further, the product of A(s) × β(s) would then be:

A(s)×β(s) =
(C1C2R2R3)s2 + (C1R2 + C1R3 −KC1R3)s

C2R3s + 1
(44)

As this product is quite different than the ones found from the compliant circuit, it
is not surprising that the sum of the numerator and denominator terms are also quite
different. These are shown in the third data set of Table 1. However, if the effective loop
transmission function Aβeff(s) is used instead for the noncompliant circuit, then one would
find the sum of the numerator and denominator terms the same.

To see this, α(s) and γ(s) were found from the noncompliant circuit of Figure 12c
according to Equations (21) and (28) as follows:

α(s) =
(C1C2R1R2R3)s2 + (C1R1R2 + C1R1R3 −KC1R1R3) + R1

(C1C2R1R2R3)s2 +

(
−KC1R1R3s + C1R1R2 + C1R1R3

+C2R1R3 + C2R2R3

)
s + R1 + R2 + R3

(45)
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and
γ(s) = 1 (46)

Evaluating Aβeff(s) according to Equation (32), one gets

Aβeff(s)

= (C1C2R1R2R3)s2+(C1R1R2+C1R1R3−KC1R1R3+C2R2R3)s+R2+R3
C2R1R3s+R1

(47)

Here, the sum of its numerator and denominator terms are indeed the same as those
given by the return ratio or the loop transmission function derived from its compliant
circuit configuration.

7. Selecting Mixing and Sensing Signals of Complex Single-Loop Circuits

To illustrate the process of selecting the mixing and sensing variables of a complex
circuit involving a single-loop feedback arrangement, consider the two-stage BJT amplifier
circuit shown in Figure 13a. Here, the amplifier is driven with a voltage source vs, and
the output of the amplifier is a node voltage designated as vo. A feedback path from the
emitter of Q2 to the base of Q1 involving Rf can easily be identified. In general, single-loop
feedback circuits have only a single feedback loop, so identifying it is rather self-evident.
The rest of the loop is made up of a cascade of two single-stage amplifiers involving Q1 and
Q2. The entire loop is highlighted with a red ellipse superimposed on the schematic shown
in Figure 13a. As the output signal vo does not lie on the circuit path involving the feedback
loop, this signal cannot be sensed by the feedback loop. Consequently, another signal must
be chosen as the sense signal, and it must lie on the circuit path of the feedback loop. It
can be another node voltage, say, for instance, the emitter voltage of Q2, the collector of Q1,
etc., or as a branch current, such as the emitter or base current of Q2. For the sake of our
discussion, the emitter current of Q2 is identified as the sense signal as shown in Figure 13b.

Our next step is to identify the front-end mixing signals. There are always two options
to consider, voltage or current mixing. If we assume voltage mixing, then the node that
terminates the feedback connection on the input side of the amplifier could be designated
as the feedback voltage signal vFdbk. Corresponding, to be compliant with Black’s mixing
arrangement, then the difference between the input voltage signal vs and the feedback
signal vFdbk must be designated as the error voltage signal, vErr, as shown in Figure 13c.

Conversely, one can assume that the node terminating the feedback on the input side
is the current mixing (or summing) node. As such, the branch current in the feedback
connection can be identified as the feedback current iFdbk. To be compliant with Black’s
current-mixing arrangement, the input voltage source must be converted to a current source
through a Norton transformation. The source resistance RS must also be moved to the right
side of the current summing node, as demonstrated in the schematic of Figure 13d. To
avoid disturbing the DC bias levels of the transistors, the DC blocking capacitor CC1 should
be placed in series with RS.

Both circuits of Figure 13c,d are compliant with Black’s topology. An IF analysis can
be performed and the feedback parameters A(s) and β(s) can be identified. In addition, as
the output signal is not the same as the sense variable, the gamma term γ(s) would also be
required to fully described the input–output operation of these two circuits.
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Figure 13. Preparing a current-mixing/current-sensing feedback circuit for feedback parameters
isolation: (a) Identifying the feedback loop. (b) As the output voltage is outside the feedback loop of
the amplifier, a sensing current has been identified that is inside the loop. (c) Identifying the system
variables that form a voltage-mixing loop that is compliant with Black’s topology. (d) A fully compliant
circuit arrangement that meets the definition of a current-mixing/current-sensing topology.

8. Alternative Forms of Black’s Feedback Representations

The feedback parameters A(s) and β(s) derived from a complaint single-loop feedback
circuit are not unique. The expressions of A(s) and β(s) will depend on several factors:

(1) The way the feedback signal is mixed with the input signal, i.e., voltage or
current mixing;

(2) The designation of which signal is the feedback signal, and which is the error
signal, and;

(3) The signal that is being sensed by the feedback loop, i.e., voltage at a node or a current
through some branch in the feedback loop.

This suggests that there are numerous possible combinations of the feedback variables.
As all formulations are derived from the same closed-loop circuit, they will all have the
same poles. Therefore, as noted earlier, this suggests that the sum of the numerator
and denominator polynomials of the product of A(s) × β(s) will be the same for each
formulation, i.e.,

num{A(s)×β(s)|1}+ den{A(s)×β(s)|1} =num{A(s)×β(s)|2}+ den{A(s)×β(s)|2} =
...num{A(s)×β(s)|N}+ den{A(s)×β(s)|N} (48)

assuming there are N different combinations of the feedback variables chosen from the
same compliant single-loop feedback circuit.

To demonstrate this invariance, together with the fact that the feedback parameters
A(s) and β(s) will vary with each feedback arrangement, consider the single-stage common-
emitter (CE) BJT amplifier with resistive feedback shown in Figure 14. Here, there are
four different assignments of the feedback variables for the same circuit. In part (a), the
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circuit variables are assigned based on being compliant with a voltage-mixing/voltage-
sensing topology. The sense variable is assigned as the collector voltage of Q1. In part
(b), a Norton transformation is performed on the input voltage source to provide an input
current excitation. The source resistance is moved towards to the base of Q1 so that the
feedback variable assignment would be compliant with a current-mixing/voltage-sensing
topology. In part (c), a voltage-mixing/voltage-sensing topology is used; however, in this
case, the roles of the feedback and error voltages are reversed from the situation depicted
in part (a). This example is to highlight the duality of the two variables in a single-loop
feedback circuit. In part (d), a voltage-mixing arrangement identical to part (a) is used,
however, the collector current is to act as the sense variable rather than the collector voltage.
Thus, a voltage-mixing/current-sensing topology has been selected.

Figure 14. Different feedback formulation for a CE BJT amplifier with resistive feedback:
(a) voltage-mixing/voltage-sensing compliant arrangement with feedback variable highlighted
in blue, (b) through a Norton transformation, the CE amplifier is rearranged into an equiva-
lent current-mixing/voltage-sensing compliant topology, (c) interchanging the feedback and er-
ror signal designations, and (d) selecting the sense signal as the collector current rather than the
collector voltage.

Assuming a hybrid-pi model for the BJT transistor with only Cµ included, the feedback
parameters for all four circuit arrangements are computed using the Maple symbolic
analysis tool. Only the Cµ capacitance of the hybrid-pi model is used here to keep the
length of the polynomials associated with the feedback parameters manageable. Including
Cµ in this analysis will not alter our observation, as this was verified independently. The
results of this analysis are summarized in Table 2 for all four topologies for the amplifier
circuit of Figure 14. While the feedback parameters are all different, as well as their units,
what is important to recognize here is that the sum of the numerator and denominator
polynomials for each formulation are all the same. Thus, confirming invariant properties of
the many possible formulations of the same single-loop feedback circuit.
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Table 2. Feedback parameters A(s) and β(s), and their combined sums for the circuits of Figure 14
(Green shaded row indicates agreement).

A(s) and β(s) For Circuit of Figure 14a

A(s)
[

V
V

]
rπ(Cµ RC R f ros−gmro RC R f +RCro)

Cµ

(
gmro RC RsR f rπ + ro RC RsR f + rπ RC RsR f + R f Rsrorπ

)
s

+gmro RC Rsrπ + RC R f Rs + RC Rsro + RC Rsrπ + R f Rsro + Rsrorπ

β(s)
[ V

V
] Cµ RC R f ros+RC R f +RCro+R f ro

Cµ RC R f ros−gmro RC R f +RCro

num{A(s)×β(s)}+den{A(s)×β(s)} Cµ

(
gmro RC RsR f rπ + ro RC RsR f + rπ RC RsR f + RC R f rorπ + R f Rsrorπ

)
s+gmro RC Rsrπ +

RC R f Rs + RC R f rπ + RC Rsro + RC Rsrπ + RCrorπ + R f Rsro + R f rorπ + Rsrorπ

A(s) and β(s) For Circuit of Figure 14b

A(s)
[ V

A
] Rsrπ(Cµ RC R f ros−gmro RC R f +RCro)

Cµ

(
gmro RC RsR f rπ + ro RC RsR f + rπ RC RsR f + ro RC R f rπ + R f Rsrorπ

)
s

+RC R f Rs + RC R f rπ + RC Rsro + RCrorπ + R f Rsro + R f rorπ

β(s)
[

A
V

]
RC gmro+RC+ro

Cµ RC R f ros−gmro RC R f +RCro

num{A(s)×β(s)}+den{A(s)×β(s)} Cµ

(
gmro RC RsR f rπ + ro RC RsR f + rπ RC RsR f + RC R f rorπ + R f Rsrorπ

)
s+gmro RC Rsrπ +

RC R f Rs + RC R f rπ + RC Rsro + RC Rsrπ + RCrorπ + R f Rsro + R f rorπ + Rsrorπ

A(s) and β(s) For Circuit of Figure 14c

A(s)
[ V

V
] RC(Cµ R f ros−gmro R f +ro)

Cµ RC R f ros+RC R f +RCro+R f ro

β(s)
[ V

V
] Cµ

(
gmro RC RsR f rπ + ro RC RsR f + rπ RC RsR f + R f Rsrorπ

)
s

+gmro RC Rsrπ + RC R f Rs + RC Rsro + RC Rsrπ + R f Rsro + Rsrorπ

rπ(Cµ RC R f ros−gmro RC R f +RCro)

num{A(s)×β(s)}+den{A(s)×β(s)} Cµ

(
gmro RC RsR f rπ + ro RC RsR f + rπ RC RsR f + RC R f rorπ + R f Rsrorπ

)
s+gmro RC Rsrπ +

RC R f Rs + RC R f rπ + RC Rsro + RC Rsrπ + RCrorπ + R f Rsro + R f rorπ + Rsrorπ

A(s) and β(s) For Circuit of Figure 14d

A(s)
[

A
V

]
rπ(−Cµ R f ros+gmro RC+gmro R f +RC)

Cµ

(
gmro RC RsR f rπ + ro RC RsR f + rπ RC RsR f + R f Rsrorπ

)
s

+gmro RC Rsrπ + RC R f Rs + RC Rsro + RC Rsrπ + R f Rsro + Rsrorπ

β(s)
[ V

A
] Cµ RC R f ros+RC R f +RCro+R f ro

−Cµ R f ros+gmro RC+gmro R f +RC

num{A(s)×β(s)}+den{A(s)×β(s)} Cµ

(
gmro RC RsR f rπ + ro RC RsR f + rπ RC RsR f + RC R f rorπ + R f Rsrorπ

)
s+gmro RC Rsrπ +

RC R f Rs + RC R f rπ + RC Rsro + RC Rsrπ + RCrorπ + R f Rsro + R f rorπ + Rsrorπ

9. Conclusions

A method to identify the feedback parameters A(s) and β(s) of a single-loop feedback
topology as defined by Black has been proposed. The method makes use of the concept
of intermediate transfer functions (IFs) and provides the circuit conditions on which the
method applies. No special algorithms are required, only access to a computer-based circuit
analysis tool, such as Spice, or if simple enough, hand analysis. If certain circuit conditions
do not hold, an alternative feedback formulation was proposed that requires a different
loop transmission function than that proposed by Black. This is the first time a method has
been proposed that can identify the feedback parameters of a single-loop feedback circuit
in terms of its circuit components. The proposed approach does not involve the concept of
a return ratio to do so. While the examples used in this paper were relatively simple, as the
intent was to easily track the various IF transfer functions, the proposed method is general
and applicable to any single-loop feedback circuit.
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Appendix A

The following are the mathematical details for the equivalence of Equations (1) and (2).
Consider the following:

zeros{1 + RR(s)} = zeros{1 + A(s)×β(s)} (A1)

Define RR(s) and A(s) × β(s) as the ratio of a numerator and denominator
polynomial, i.e.,

RR(s) =
num{RR(s)}
den{RR(s)} (A2)

and

A(s)×β(s) =
num{A(s)×β(s)}
den{A(s)×β(s)} (A3)

Next, substitute (A2) and (A3) into (A1), to find

zeros
{

1 +
num{RR(s)}
den{RR(s)}

}
= zeros

{
1 +

num{A(s)×β(s)}
den{A(s)×β(s)}

}
(A4)

Rearranging, one writes:

zeros
{

den{RR(s)}+num{RR(s)}
den{RR(s)}

}
= zeros

{
den{A(s)×β(s)}+num{A(s)×β(s)}

den{A(s)×β(s)}

} (A5)

As the zeros of this equality include only the numerator terms, this leads one to write:

zeros{den{RR(s)}+ num{RR(s)}}
= zeros{den{A(s)×β(s)}+ num{A(s)×β(s)}} (A6)

Moving beyond the zeros mathematical operator, one can write:

K1{den{RR(s)}+ num{RR(s)}} = K2{den{A(s)×β(s)}+ num{A(s)×β(s)}} (A7)

where K1 and K2 are arbitrary real value constants. These constants account for the fact
that a scaled polynomial has the same zeros. In its simplest form, with K1 = K2 = 1, one
can write:

den{RR(s)}+ num{RR(s)} = den{A(s)×β(s)}+ num{A(s)×β(s)} (A8)

The above equation suggests a possible relationship between the return ratio function
RR(s) and the loop transmission A(s)×β(s).
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