
Citation: Ben Atitallah, S.; Driss, M.;

Almomani, I. A Novel Detection and

Multi-Classification Approach for

IoT-Malware Using Random Forest

Voting of Fine-Tuning Convolutional

Neural Networks. Sensors 2022, 22,

4302. https://doi.org/10.3390/

s22114302

Academic Editor: Francisco Falcone

Received: 4 May 2022

Accepted: 31 May 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Detection and Multi-Classification Approach for
IoT-Malware Using Random Forest Voting of Fine-Tuning
Convolutional Neural Networks
Safa Ben Atitallah 1 , Maha Driss 1,2,* and Iman Almomani 2,3

1 RIADI Laboratory, University of Manouba, Manouba 2010, Tunisia; safa.benatitallah@ensi-uma.tn
2 Security Engineering Lab, CCIS, Prince Sultan University, Riyadh 12435, Saudi Arabia; imomani@psu.edu.sa
3 Computer Science Department, King Abdullah II School for Information Technology, The University of Jordan,

Amman 11942, Jordan
* Correspondence: mdriss@psu.edu.sa

Abstract: The Internet of Things (IoT) is prone to malware assaults due to its simple installation and
autonomous operating qualities. IoT devices have become the most tempting targets of malware due
to well-known vulnerabilities such as weak, guessable, or hard-coded passwords, a lack of secure
update procedures, and unsecured network connections. Traditional static IoT malware detection
and analysis methods have been shown to be unsatisfactory solutions to understanding IoT malware
behavior for mitigation and prevention. Deep learning models have made huge strides in the realm
of cybersecurity in recent years, thanks to their tremendous data mining, learning, and expression
capabilities, thus easing the burden on malware analysts. In this context, a novel detection and
multi-classification vision-based approach for IoT-malware is proposed. This approach makes use
of the benefits of deep transfer learning methodology and incorporates the fine-tuning method and
various ensembling strategies to increase detection and classification performance without having to
develop the training models from scratch. It adopts the fusion of 3 CNNs, ResNet18, MobileNetV2,
and DenseNet161, by using the random forest voting strategy. Experiments are carried out using a
publicly available dataset, MaleVis, to assess and validate the suggested approach. MaleVis contains
14,226 RGB converted images representing 25 malware classes and one benign class. The obtained
findings show that our suggested approach outperforms the existing state-of-the-art solutions in
terms of detection and classification performance; it achieves a precision of 98.74%, recall of 98.67%,
a specificity of 98.79%, F1-score of 98.70%, MCC of 98.65%, an accuracy of 98.68%, and an average
processing time per malware classification of 672 ms.

Keywords: IoT-Malware; detection; multi-classification; transfer learning; ensembling strategies;
CNNs; random forest voting

1. Introduction

The Internet of Things (IoT) is a new paradigm that has gained a lot of traction in recent
years due to the adoption of a variety of cutting-edge technologies and communication
methods [1,2]. The fundamental concept of IoT is the ubiquitousness of a variety of things,
such as smart devices, sensors, actuators, and Radio-Frequency Identification (RFID) tags,
among others, that interact and communicate with one another to attain a specific purpose.
The IoT allows things to communicate with each other over the internet, and it is fast
gaining prominence due to its significant and positive impact on practically every aspect
of users’ lives and behavior. However, the rapid proliferation of IoT has brought several
issues, one of which is malware attacks. To satisfy the fast-growing demands for IoT
devices, some manufacturers are mass-producing and distributing IoT devices that are
vulnerable to security breaches. The expansion of these vulnerable devices makes them a
principal target for malware developers. Malware might not only leak user data acquired
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from IoT ecosystems, but it could also access critical networks, allowing it to spread quickly
to other networks and information systems. According to Kaspersky, the cybersecurity
product developer, 1.51 billion breaches of IoT devices occurred between January and
June 2021, up from 639 million in 2020 [3]. Kaspersky also reported that during 2021 more
than 872 million IoT assaults were recorded, with the goal of bitcoin mining, distributed
denial-of-service (DDoS) shutdowns, or data breaches [3].

Several research on the detection and classification of IoT-malware have recently been
conducted in order to reduce the harm caused by malware assaults whilst also protecting
IoT devices against new and variant malware attacks [4,5]. Due to the destructive nature of
IoT-malware and the difficulties in reversing a malware infection, in this work, we aim to
propose a novel and efficient approach of detecting and classifying a malware attack before
it infects an IoT ecosystem. It should be noted that malware changes frequently and newer
versions of malware families behave differently from their predecessors. This fact makes it
difficult for traditional detection methods to detect them. This is supported by the work of
Baig et al. [6], which provides an overview of techniques used by malware developers to
avoid traditional static detection methods. Machine Learning (ML) and Deep Learning (DL)
techniques have been found to be more efficient than static code analysis techniques, as
demonstrated in [7,8]. Signature-based techniques are prone to be tricked, especially with
regard to newer malware variants. According to [9], just 6% of the ransomware infections
that were carried out (e.g., about 62% of the infections of the Angler exploit kit to deliver
ransomware) were discovered in VirusTotal out of the 3000 exploit kits analyzed. DL-based
ransomware detection follows a very precise learning workflow. First, the data must be
organized by features, which can be performed using custom feature selection methods or
predetermined algorithms. After this is completed and the best feature set is selected, the
data is fed into the DL algorithm. This algorithm will be trained before being subjected to
the testing phase. It will require a training set, in the case of ransomware data samples of
both benign and ransomware, so that the algorithm can learn to differentiate between these
two classes.

Recently, Transfer Learning (TL) methodology has received a lot of traction in a variety
of sectors and applications [10–12]. Its goal is to reuse previously trained models as the
basis for new tasks. This enhances performance on related issues while also speeding
up training [13]. One of the most prominent and well-studied applications of DL and TL
is image classification. TL for image classification is based on the idea that if a model
is trained on a large and general enough dataset, it may successfully serve as a generic
model of the visual world. You may then use the learned feature maps to train a large
model on a large dataset without having to start from scratch. To customize a pre-trained
model, the fine-tuning method is extensively used. It entails unfreezing a few of the top
layers of a frozen model base and simultaneously training the newly added classifier layers
and the base model’s final layers at the same time [14]. This allows us to “fine-tune” the
base model’s higher-order feature representations to make them more relevant for the task.
By incrementally adapting the pre-trained features to the new data, this method has the
potential to achieve considerable improvements.

The ensembling strategy is another method for improving the performance of DL
models. Ensembling is the process of merging various learning algorithms in order to
gain their combined performance, i.e., to increase the performance of current models by
combining numerous models into a single effective model [15,16]. Ensemble learning
implies combining numerous models in some way, such as averaging or voting, so that the
ensemble model outperforms any of the individual models. Combining decisions from
many models has been shown to be an effective method for improving model performance.

To take advantage of the significant capabilities offered by the TL methodology in
the image classification domain, we propose to use the visualization approach to ensure
malware detection and classification. Malware visualization is a technique for converting
malicious software into an image by extracting its binaries [17]. Each malicious family
has a unique texture pattern in the produced images of malware apps. The malware
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visualization analysis also has the benefit of requiring no static compilation or dynamic
execution of malware programs. After the malware visualization phase, the training
classifier is performed using the malware image’s textural features. As a result, even if the
attacker used obfuscation or modification tools and techniques, the malware image will
display the texture representing the malicious program [18].

In this paper, we propose a vision-based malware multi-classification approach to
address the inadequacies of current malware detection systems. The proposed approach
makes use of the benefits of deep TL methodology and incorporates the fine-tuning method
and various ensembling strategies to increase detection and classification performance
without having to develop the training models from scratch. It adopts the fusion of
3 Convolutional Neural Networks (CNNs), ResNet18, MobileNetV2, and DenseNet161,
by using the random forest voting strategy. The main contributions in this paper are
summarized in the following points:

• Apply TL using the fine-tuning method for different pre-trained CNN models and
combine the features extracted by the pre-trained models using different ensemble
strategies, namely voting, stacking, and decision fusion strategies, to provide more
accurate classification results;

• Validate the proposed approach by using a public dataset, MaleVis, which is made of
more than 14,000 RGB images representing 26 distinct families. It includes 25 classes
of five different malware types (i.e., Adware, Trojan, Virus, Worm, Backdoor) and one
benign class;

• Conduct rigorous performance analysis in terms of distinct performance evaluation
metrics to correctly assess the fine-tuned CNN models under consideration;

• Compare the experimental results of the applied ensemble strategies to decide about
the most appropriate strategy to be adopted for the considered dataset and the mal-
ware detection and multi-classification tasks;

• Conduct a comparative analysis of the suggested approach’s performance with other
approaches published in recent relevant works and using the same considered dataset.

The remainder of the paper is organised as follows. Section 2 highlights recent state-
of-the-art solutions for malware detection and classification utilizing DL, vision-based
techniques, and adopting the TL methodology. Section 3 presents the proposed vision-based
malware multi-classification approach. Section 4 covers implementation and experimental
analysis. Section 5 provides a summary of this study as well as future research directions.

2. Related Work

Many malware detection and classification research works have been conducted using
various analytical methodologies [19–21]. Extensive research on malware classification has
recently been conducted using DL and vision-based techniques. This section provides a
detailed overview of recent and relevant malware classification approaches using these
two techniques and adopting the TL methodology.

In [22], Lo et al. suggested a method for classifying malware families using a deep
CNN based on the Xception architecture. The TL technique was used in this work to deploy
the Xception model to ensure malware classification. Furthermore, the suggested method
employs a CNN model to automatically extract image features, which is significantly faster
than traditional approaches that rely on manual feature engineering. The proposed method
consists of three steps: (1) Malware visualization, (2) Xception model training using two
different types of files (i.e., .bytes and .asm), and (3) stacking and training the outputs
obtained from the two distinct types of files by employing an ensemble model to get
superior performance results.

An investigation about efficiency of three CNN-based models (i.e., AlexNet, ResNet,
and VGG16) as classification tools and feature extractors following malware visualization
is presented in [23]. The authors propose a novel CNN model that can be used as a
classifier and as a feature extractor. In this work, Davuluru et al. suggest combining the
pattern recognition technique that has proved its efficiency for malware classification with
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CNN, which has been producing cutting-edge results for image-based classification. They
proceeded by extracting features using the proposed CNN architectures and categorizing
the obtained results using classic ML methods like Support Vector Machine (SVM) and
k-Nearest Neighbors (kNN). Adopting a fusion-based method, which aggregates all the
probabilities offered by all CNN-based models, resulted in a performance improvement.

In [24], An upgraded Faster-RCNN (Region-Convolutional Neural Networks) devel-
oped by applying TL to the malware detection task using code texture analysis is presented.
In this work, the authors used code visualization to illustrate malicious behaviors in order to
detect malware programs. To efficiently counteract code obfuscation, the authors use CNN
to obtain particular elements of malware texture visual analysis and apply Region Proposal
Network (RPN) to locate these texture’s key features. Then, to speed up convergence, the
Faster RCNN model was applied as a malware classification model. Simultaneously, the
authors proposed a new objective function for resolving image distortion and overfitting
after TL. To validate the proposed approach, the authors collected code fragments from six
malware families and evaluated the experimental findings before and after applying TL.

Three distinct ways to classifying malware programs based on different file formats
are described and investigated in [25]: (a) A CNN-based approach, including AlexNet,
ResNet, and VGG-16 architectures, for categorizing malware generated files after rendering
them as images, (b) A Recurrent Neural Network (RNN)-based approach for classifying
malware assembly files, and (c) An ensemble approach for classifying malware assembly
files that combines the features extracted using (a) and (b) techniques and then classifying
them using Logistic Regression (LR) or Support Vector Machine (SVM). The main benefit of
using the LR or SVM ML models was to integrate both sequential and graphical techniques,
which helped in producing a high performance with minimal memory usage.

The work presented in [26] proposed an Image-based Malware Classification ap-
proach based on an Ensemble of CNN architectures (IMCEC), which entails adapting
and fine-tuning information from several CNN models that have already been trained
with ImageNet data to ensure the classification of malware images. The obtained features
were used to train several multiclass classifiers that were trained utilizing the transferred
features and fused posterior probabilities to increase the classification accuracy of families
of unfamiliar malware samples. Even under obfuscation attacks, the proposed IMCEC
properly categorized the majority of malware families and outperformed other algorithms
using similar benchmarks.

In [27], the authors looked at how CNN and VGG16 models may be used to classify
malware into nine separate families. The original malware dataset, which consisted of hex-
adecimal byte representations of each malware file, was translated into decimal equivalents
first. To represent the RGB values of an image pixel, these decimal numbers were then
arranged into three classes. Following that, the pixels were converted into image files. The
CNN and VGG16 models both used these image files as inputs. Five series of experiments
were carried out and scored using a set of performance metrics. When compared to the
CNN neural network, the experiments revealed that using DL in the form of the fine-tuned
VGG16 model produced higher performance results.

In [28], Awan et al. present a DL system based on spatial attention and convolutional
neural networks, named SACNN, ensuring the categorization of 25 well-known malware
families with and without class balancing. The suggested model architecture was divided
into three blocks. The first block was a VGG19 TL model based on ImageNet. The CNN
model, which had been boosted by attention, was the next block of the model architecture.
Dynamic spatial convolution is a technique used to create attention. It’s a form of spatial
attention that’s particularly useful for image analysis. Because not all portions of an image
are equally important, dynamic spatial convolution uses a straightforward global average
pooling technique. Fully connected layers made up the last block of the model architecture.
The experiments were conducted using a well-known benchmark dataset and showed the
effectiveness of the proposed architecture in classifying malware programs. SACNN was
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also tested on non-malware classes, and it proved to be quite effective in detecting malware
from image files.

Kumar presented in [29] a novel convolution neural networks model, named MCFT-
CNN, for malware classification. Even when sophisticated evading tactics were used to
generate the malware, the MCFT-CNN model recognized it without feature engineering or
prior knowledge of binary code examination or reverse engineering. The suggested model
used deep TL to categorize malware images into their different malware families. The
suggested model improved on the ResNet50 model by replacing the last layer with a fully
connected dense layer. The softmax layer received the output of the fully connected dense
layer as well as the knowledge of the ImageNet model for malware classification. The
suggested model showed consistent efficiency on two benchmark datasets, demonstrating
the model’s comprehensiveness to perform on a wide range of datasets.

In [30], The authors addressed a consistency study against obfuscation performed on
four CNNs, namely ResNet50, InceptionV3, VGG16, and MobileNet, which are frequently
utilized for developing image-based malware classification systems. To that end, the
authors proposed to retrain the CNN models using TL to classify malware from 9 distinct
families using a well-known dataset benchmark. The experimental results showed that
the considered image-based techniques achieved excellent accuracy with a small loss
on obfuscated samples. MobileNet, specifically, had demonstrated great accuracy and
resilience, as well as a very rapid classification time.

To assure malware detection and classification, the authors in [31] presented a malware
classification framework based on a CNN architecture. They proposed also to integrate
the SMOTE algorithm (Synthetic Minority Oversampling Technique) to improve the frame-
work’s performance. The suggested solution entailed converting binary data to grayscale
images, balancing them using the SMOTE method, and then training the CNN architecture
to detect and recognize malware families. The authors employed the TL approach, which
is based on the VGG16 DL model. This model was previously trained on a huge dataset
benchmark. A thorough experiment was conducted utilizing a well-known Malware
dataset for assessments. The findings have shown that the proposed architecture provided
good results and could be utilized to fix the CNN models’ effectiveness decrease while
dealing with imbalanced malware families.

Work [32] presented a method for converting malware compiled codes into their visual
images and obtaining grayscale images of malicious codes using a visual malware classifi-
cation algorithm. After passing the grayscale images through deep convolutional neural
networks, the categorization of malicious codes into their corresponding malware types
was obtained. In this work, the authors compared the performance of many benchmarked
“ImageNet” models, including VGG16, VGG19, Xception, InceptionV3, DenseNet201, Incep-
tionResNetV2, ResNet50, NASNetLarge, MobileNetV2 and AlexNet. TL methodology was
adopted by using these pre-trained models. For the experimentation, the authors utilized a
malware dataset with 25 samples that have been benchmarked. The proposed technique for
image-based malware classification was shown to be effective throughout the experiments.

To categorize distinct imbalanced families of malware images, the work presented
in [33] introduced a DL-based visualized malware multiclassification architecture. This
architecture was created using well-developed malware imaging, fine-tuning, and CNN-
based TL techniques to accurately identify various malware families. VGG16, AlexNet,
DarkNet-53, DenseNet-201, Inception-V3, Places365-GoogleNet, ResNet-50, and MobileNet-
V2 are eight fine-tuned CNN models that were previously tested on the ImageNet database
and used in this work. The proposed approach’s key contribution is its cost-effectiveness in
dealing with unbalanced malware types while attaining good detection accuracy without
the requirement for data augmentation or sophisticated feature engineering. By using a
well-known unbalanced benchmark dataset, extensive experiments based on several perfor-
mance measures were carried out, demonstrating the proposed architecture’s remarkable
classification capabilities and competency.
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In [34], a suggested approach called DTMIC, which stood for Deep TL for Malware
Image Classification, was used to classify malware using the capabilities offered by the
deep CNN architecture previously trained using the ImageNet dataset. In this work, the
Portable Executable files (PEs) in Windows were transformed to grayscale images, based
on the assumption that comparable malware families have similar features when they are
displayed. Grayscale images are then passed to an improved CNN model. The retrieved
characteristics were flattened and placed in a dense layer that was entirely connected. To
prevent the overfitting problem that many CNN models have, a normalization technique
called Early Stopping was employed to monitor the validation loss with appropriate
constraints. Using two benchmark datasets, the model’s efficacy and robustness were
assessed. The experimental results have shown that the suggested DTMIC approach
outperformed the baseline models and was robust to both packed and encrypted malware.

In summary, DL approaches for detecting and classifying malware intrusions from
features transformed to images are becoming much more popular, and a wide range of
neural network models and architectures are being explored, improved, and implemented.
Nonetheless, with so many different DL architectures and hyperparameters to choose from,
more investigation is necessary to uncover the optimal solutions for the cybersecurity
area. We may conclude the following weaknesses from our investigation of the previously
presented relevant works:

• Because of the similarity of features in some malware families, the presented re-
sults of some related works that used the same datasets to assess their suggested
approaches suffer from a high rate of misclassification of particular malware families
and classes [25,28].

• Previously presented studies are time-consuming and provide a high level of complex-
ity to assure the detection and classification tasks, and this is due mainly to the rising
varieties and volume of IoT malware data [18,35]. Indeed, the translation of raw data
into feature vectors for use by new or conventional CNN architectures necessitates
a high level of engineering and technological expertise. Furthermore, these architec-
tures may take longer to extract features from images. In fact, to achieve excellent
performance results, the detection/classification model should be trained across a
large number of epochs, which takes a much longer time and several loops to obtain
the optimum hyperparameters’ weights.

• Numerous related works used a single CNN architecture to achieve detectio and clas-
sification tasks [29,31], disregarding the benefits of combining several DL algorithms,
which may significantly increase performance outcomes compared to those produced
by a single algorithm.

• Several related works used different and sometimes multiple data augmentation tech-
niques to improve the generalizability of their overfitted data model [27,32]. These
techniques offer various benefits in terms of performance enhancement; nevertheless,
they also bring several challenges that increase the complexity and the necessary
resources. Some of these challenges are listed here: (1) some techniques are quite
complex to apply and need reengineering efforts to fit them to the used data character-
istics, (2) another challenge is determining the best data augmentation strategy, and
(3) augmented data may include the same biases presented by the real dataset.

In comparison to the aforementioned malware detection and classification systems
and methodologies and in order to address the weaknesses identified in these studies, our
suggested approach has the following major advantages:

• Pre-trained and well-known CNN models were employed for vision-based malware
classification to detect and recognize IoT-malware types, which do not necessitate
pretreatment of malware’s structural properties such as binary disassembly or in-
formation extraction. The TL approach has this representational learning capacity,
allowing for faster learning process based on the gained valuable knowledge.
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• Because malware programmers just tamper with a small piece of the viral code to
generate a new mutant, the proposed approach relied on visualizing malware as a
colored image, which had the benefit of discriminating separate components/patterns
of the malware binary.

• The fine-tuning of the CNN layers and hyperparameters values aided in recognizing
distinct malware families and improving the classification performance of pre-trained
models without the need for data augmentation methods.

• In order to improve the classification task, a variety of ensemble learning techniques
was used to combine outcomes from different CNN classifiers to correctly learn the
features of each malware class.

• To appropriately analyze the investigated fine-tuned CNN models, a comprehensive
performance analysis is carried out by considering the seven significant assessment
measures: precision, recall, specificity, F1-score, Matthews Correlation Coefficient
(MCC), accuracy, and the average processing time per malware classification.

• A thorough comparison with other similar studies that used the same dataset is
performed to evaluate their suggested IoT-malware detection and classification ap-
proaches and results compared to ours.

3. Proposed Approach

This work aims to create a vision-based malware multi-classification strategy to solve
the shortcomings of existing malware detection systems and provide more accurate detec-
tion and classification. The suggested approach makes use of the advantages of the deep
TL methodology. It integrates the fine-tuning method as well as other ensemble techniques
to improve the detection and classification performance without the need to create training
models from scratch. The proposed method is divided into three main phases: data prepro-
cessing, malware detection using TL, and fusion using ensemble learning strategies. In the
preprocessing phase, the dataset is transformed from Portable Execution (PE) files to RGB
images and divided into three sets for training, validation, and testing. In the second phase,
three distinct pre-trained CNN architectures are loaded with their pre-learned weights,
fine-tuned, and trained using the malware dataset. In our approach, we employ the models
MobileNetV2, ResNet18, and DenseNet161 to apply TL. The outputs of the three models
are combined in the third phase. Different ensemble methods are used to get more accurate
classification results, including hard voting, soft voting, and Random Forest-based voting.
The architecture of the suggested approach is depicted in Figure 1. More details about the
proposed approach phases are presented in the following subsections.

3.1. Data Pre-Processing Phase

Employing CNNs in different applications has successfully brought intelligence to
various IoT services. In this phase, the PE files obtained from malfunctioning software
collected from 2017 to 2018 are converted into RGB images using the bin2png algorithm [36]
to be used as input for the pre-trained CNN models.

Every three bytes of the binary file are converted into a single pixel to represent the
output image. The first byte is encrypted and presented in a red channel, the second
byte in a green channel, and the third byte in a blue channel. This conversion process is
summarized in Algorithm 1.
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Algorithm 1 Conversion of PE files to RGB images

1: Input: Binary file, Image dimensions.
2: Output: RGB images.
3: Begin
4: img = new RGB Image with the specified dimensions
5: pixels = load img, row = 0, column = −1
6: while read binary file is True: do
7: bytes = read 3 bytes from the binary file
8: column += 1, row += 1
9: color = [bytes[0], bytes[1], bytes[2]]

10: pixels[column, row] = tuple(color)
11: end while
12: save img in PNG format
13: Return RGB images

Figure 1. Proposed approach for malware detection and multi-classification.

3.2. Malware Detection Using Transfer Learning

Using the TL approach, this phase attempts to leverage previously acquired informa-
tion to handle the challenge of detecting and classifying various types of malware. When
compared to models developed and trained from scratch, the adoption of pre-trained CNN
architectures would speed up and improve the learning process, take less time, and use less
computer resources and data [13]. We employed three distinct pre-trained CNN models in
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this study: ResNet18, MobileNetV2, and DenseNet161. The architecture of each of these
models is detailed in the subsections that follow.

3.2.1. ResNet18

ResNet18 is a CNN model proposed by He et al. in [37] and consists of 18 layers.
A pre-trained ResNet18 version is available for TL, which is trained over the ImageNet
dataset and able to categorize 1000 different classes. This model includes a residual learning
framework that enables a more accessible network training. As a consequence, ResNet18 is
widely used for TL. It provides a more straightforward training process than other CNN
architectures; thus it is able to achieve good performance.

3.2.2. MobileNetV2

MobileNetV2 [38] is an updated version of the MobileNet CNN architecture. This
new architecture is built on an inverted residual structure in bottleneck layers, including
convolutional blocks. A skip connection technique links each convolutional block’s begin-
ning and ending points. The MobileNetV2 could access older activations that have not
been updated in each convolutional block using the skip connection approach. Besides,
MobileNetV2 outperforms most of the previous models in terms of performance, and it is
also computationally affordable.

3.2.3. DenseNet161

DenseNet161 [39] is a very deep CNN model in which the connection between layers
is with a feed-forward design. Each layer in this model catches its input from the preceding
layers’ feature maps, and its output feature maps are utilized as input for the subsequent
layers. This procedure came up with a considerable reduction in parameters number, the
performance efficiency with the reused feature maps, and the alleviating of vanishing-
gradient problems. However, this model has a considerable number of layers which makes
the time of the training process much longer compared to the other architectures.

3.3. Fusion Using Ensemble Learning Strategies

Ensemble learning is a powerful approach for merging the outputs of DL models to
improve the accuracy [15,16,40]. This is often associated with the established concept that
incorporating several DL models leads to higher outcomes as compared to the performance
of a single DL model. Following this concept, we employ the hard voting, soft voting, and
random forests-based classifier to combine the three CNNs models’ outputs.

3.3.1. Hard Voting

Hard voting is defined as the majority voting that outputs the class with the most n
votes [40]. This method’s core concept is to choose the final output class based on the most
commonly anticipated one. Each model makes a classification prediction, and the results
are recorded in a vector: [R1(x),R2(x), . . . ,Rn(x)], where n is the number of classifiers.
The voting concept is then applied to determine the output class y of a test image based on
the most often predicted class in the vector by applying Equation (1).

Y = mode[R1(x),R2(x), . . . ,Rn(x)] (1)

3.3.2. Soft Voting

Soft voting classifies test data based on the projected probability P produced by all
classifiers [40]. The average probability is calculated for each class.

Let us suppose we have the following models: M = m1, m2, . . . , mj utilized for multi-
classification, the average probability of each class is obtained using Equation (2).

Pmean(ij|x) =
1
n

n

∑
z=1

Pmz(ij|x) (2)
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After that, the output class of the tested x is then determined using Equation (3), taking
into consideration the greatest probability.

Y = argmax[Pmean(i0|x), . . . , Pmean(ij|x)] (3)

3.3.3. Stacking Strategy

Another ensemble technique proposed to integrate the learning patterns of several
models using a high-level meta learner to get more appropriate classification accuracy is
the stacking strategy [41]. The primary idea underlying stacking is to combine knowledge
from a collection of learned models. This study presents a novel neural network that uses
the models’ prediction outputs as input, contains a hidden dense layer, and concludes with
an output layer. This neural network with a multi-head input layer embeds single learned
models. This network is then trained to learn how to optimally combine the sub-model
predictions, resulting in a single stacking ensemble model. The models are initially loaded
as a list to be used as inputs to the stacking ensemble model. Furthermore, the layers of
these models are frozen so that they cannot be learned, and their weights remain fixed
during the stacking ensemble model’s training. We’ll next create a hidden layer to interpret
this “input” to the meta-learner, as well as an output layer to generate its own probabilistic
prediction. Stacking ensemble models often outperform single trained models stacked in
the first layer and decrease generalization error.

3.3.4. Random Forests-Based Voting

We used the Random Forests (RF) classifier [42] to combine the three DL CNNs (Mj).
Let’s have x as a given input network data that consists of n columns x = x1, x2, . . . , xn,
each model mj forecasts the probability values P = p1, p2, . . . , pn of each class y. Using the
RF classifier, the Mj probability values are combined to generate an ensemble prediction
function f (x), which uses predictions as voting on each model’s labels, as it is illustrated in
Equation (5). Each probability is considered as a vote from each model. The label with the
high confidence is provided as an output.

f (x) = argmaxy∈Y

J

∑
j=1

I(y = pi(x)) (4)

4. Experiments

This section provides and analyses the outcomes of TL and ensemble learning strate-
gies applied to a visual-based IoT-malware dataset.

4.1. Experimental Setup

The implementation of the proposed algorithm is investigated using a machine with
the following specifications: an Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz 1.99 GHz
processor, and a 16 GB RAM running Windows 11 with an NVIDIA GeForce MX graphics
card. The Jupyter Notebook [43] provided by Anaconda distribution [44] was utilized for
encoding all of the tested DL models using Python 3.8 [45]. The PyTorch library [46], which
is an open-source, extensible, and modular DL framework was employed to implement the
TL and fine-tune the CNN models.

The primary purpose of the suggested approach is to identify and characterize the
type of malware appropriately. Three distinct CNN architectures based on TL were used
for this goal. The CNNs were trained over a period of 35 epochs. We used the Adam
optimizer [47] with a learning rate of 1e-3 and the cross-entropy loss function to configure
the models. The size of the input images was (224 × 224) pixels, while the batch size was
64. Table 1 shows the hyperparameters used for models training.

To guarantee that the proposed approach yields the best results, extensive experiments
on the MaleVis dataset with a wide variety of hyperparameters are carried out to determine
the appropriate hyperparameters. Using the hit and try strategy, we identified precise
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values of these hyperparameters. This strategy is rigorous, and it has been widely used in a
variety of recent studies offering ML and DL-based solutions [48–50], since optimization
methods and techniques incur additional computing costs.

Table 1. The used hyperparameters for the models’ configuration.

Models’ Training Hyperparameters Values

Batch size 64
Epochs 35

Images size 224 ×224
Learning rate 1e-3

Optimizer Adam
Loss function Cross-entropy

4.2. Dataset

We utilized the “Malware Evaluation with Vision” MaleVis dataset for the experi-
ments [51,52]. This dataset contains 14,226 RGB converted images resized in 2 different
square-sized resolutions (i.e., 224 × 224 and 300 × 300 pixels) representing 26 distinct
families. It includes 25 classes of five common malware types, namely Adware, Trojan,
Virus, Worm, Backdoor, and one benign class. In the following, we provide a brief definition
of each of these malware types [53]:

• Adware is unwanted program that displays advertising on your screen, usually
through a web browser.

• A Trojan, is malicious code is designed to harm, disrupt, steal, or in general harm your
data or network.

• A virus is a sort of malware that repeats itself by embedding its code into other programs.
• A worm is a standalone malicious computer software that spreads by using a computer

network to propagate to other systems.
• A backdoor is a sort of malware that bypasses standard authentication mechanisms to

gain access to a system.

Table 2 depicts the distribution of the used dataset. As seen in Figure 2, the dataset
has balanced classes for the malware types with 500 images or a close number. The Normal
class, on the other hand, has more samples, with 1832 images. For experiments, the dataset
was divided into 70 %, 20%, and 10% for training, validation, and testing, respectively.
Figure 3 presents examples of RGB malware images of the MaleVis dataset for Normal,
MultiPlug, Agent, Sality, Autorun, and Stantinko cases.

Figure 2. The distribution of samples for each class in the Malevis dataset.
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Table 2. The distribution of the MaleVis dataset.

Category Type Class Samples Total

Benign - Normal 1832 1832

Malware

Adware

Adposhel 494

2983

Amonetize 497
BrowseFox 493
InstallCore 500
MultiPlug 499

Neoreklami 500

Trojan

Agent 470

4440

Dinwod 499
Elex 500

HackKMS 499
Injector 495
Regrun 485

Snarasite 500
VBKrypt 496

Vilsel 496

Virus

Neshta 497

1997Sality 499
Expiro 501
VBA 500

Worm

Allaple 478

1974Autorun 496
Fasong 500
Hlux 500

Backdoor Androm 500 1000Stantinko 500

Figure 3. Malware RGB images from different malware families and the benign class provided by the
Malevis dataset.

4.3. Performance Metrics

In our study, the model’s efficiency for malware detection and classification tasks is
measured using the accuracy metric. This metric shows the proportion of correct predictions
out of all predictions made. Accuracy is the most intuitive measure used for DL models’
assessment; that is why it is commonly employed. However, it is often important and
advantageous to dig deeper when evaluating DL models. Accuracy is a meaningful metric
to use when dealing with a balanced dataset, but it may produce good results for datasets
with unbalanced classes despite the model’s poor performance. Consequently, employing
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other metrics such as precision, recall, and F1-score gives additional information about the
model’s performance by taking into account the type of errors made by the model rather
than just the number of prediction errors made. These metrics are widely used in the field
of malware detection and classification that leverages DL models [26,28,34].

We calculate the precision, recall, specificity, F1-score, MCC, accuracy, loss, and av-
erage processing time per malware classification metrics to assess the performance of the
developed classifiers. Each statistical metric is presented with its corresponding mathemat-
ical representation in Equations (5)–(10), where:

• True Positive (TP): Malware (positive) is the expected case, and the prediction is correct;
• True Negative (TN): Normal (negative) is the expected case, and the prediction is correct;
• False Positive (FP): Malware (positive) is the expected case, and the prediction is incorrect;
• False Negative (FN): Normal (negative) is the expected case, and the prediction

is incorrect;

Precision (Pre): it is employed to measure the model accuracy in categorizing a
sample as positive.

Precision =
TP

TP + FP
(5)

Recall: it is employed to assess the model ability to identify the positive samples.

Recall =
TP

TP + FN
(6)

Specificity (Spec): it is used to assess the model capacity to identify negative samples.

Speci f icity =
TN

TP + FN
(7)

F1-score: it leverages both the precision and recall metrics to get a value-added metric
used for performance verification.

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(8)

MCC: it is obtained by calculating the correlation coefficient across the observed and
predicted classifications.

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

Accuracy (Acc): it is employed to generally assess the model performance across all
classes.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Loss: is used to compute the error value and assess how effectively the model handles
the data.

Average Processing Time (APT) per malware classification: denotes the average
processing time per malware to obtain the final classification result.

4.4. Results and Discussion

This subsection summarizes the findings of the experiments performed on the MaleVis
dataset and provides a comparative analysis with recent published works that have used
in their experiments the same dataset.

4.4.1. Experimental Results

The primary goal of the proposed approach is to detect and classify the malware cases
correctly. In this respect, three different pre-trained CNN architectures have been employed.
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During training, a 5-fold cross-validation is performed to improve models’ perfor-
mance. To validate the model generalization measures, the k-fold cross-validation tech-
nique [54] is used. The fundamental concept behind this technique is to divide the data
into k groups of similar size. The model is then fitted using a single data group for val-
idation, and the remaining data groups are kept for training. This cycle is repeated k
times, with a new distribution of data groups chosen for each iteration. Finally, the final
model’s results are obtained by computing the average of all metrics acquired across the k
iterations. Table 3 illustrates the accuracy achieved when training the three CNNs models
using a 5-fold cross-validation. The MobileNetV2 model produced the best results, with
an accuracy of 97.67%, whereas ResNet 18 provided the worst results. DenseNet161 had a
96.66% accuracy rate. The validation accuracy for all models is above 95%, according to the
results in Table 3.

Table 3. Accuracy results of the deployed TL-based CNN models through a 5-fold cross-validation.

Model 1: ResNet 18
Acc (%)

Model 2: MobileNetV2
Acc (%)

Model 3: DenseNet161
Acc (%)

Iteration 1 95.04 97.60 96.71
Iteration 2 95.05 97.65 96.61
Iteration 3 95.01 97.74 96.86
Iteration 4 95.03 97.70 96.65
Iteration 5 95.02 97.66 96.47

Final model 95.03 97.67 96.66

Table 4 shows the performance results of the CNN models after they have been fine-
tuned and trained on the MaleVis dataset. The MobileNetV2 model clearly outperformed
the others, with an accuracy of 97.67%, a precision of 97.8%, and a recall of 97.74%, followed
by the DenseNet161 then the ResNet18. In general, the performance of these models is
good with an accuracy that exceeded 95%.

Table 4. Performance results of the deployed TL-based models.

Model Pre
(%)

Recall
(%)

Spec
(%)

F1-Score
(%)

MCC
(%)

Acc
(%) Loss APT per Malware

Classification (ms)

ResNet18 95.68 95.12 95.14 95.39 95.26 95.03 0.181 146
MobileNetV2 97.8 97.74 97.69 97.76 97.54 97.67 0.086 97
DenseNet161 96.64 96.71 96.97 96.67 96.64 96.66 0.156 480

Figures 4 and 5 show the plots of precision and F1-score metrics for each malware
class produced by the DenseNet161, MobileNetV2, and ResNet18 models.

The suggested approach’s next step is to leverage various ensemble learning strategies
to fuse the models’ outputs, significantly increasing malware detection and classification.
Four distinct strategies have been utilized in this context: hard voting, soft voting, staking
strategy, and random forests-based voting. Table 5 shows the performance results of the
obtained classifiers. The combined classifiers clearly outperformed the individual models
in terms of accuracy. Furthermore, the time required to obtain a prediction using the hard,
soft, and random forest strategies is quite close, and these strategies are faster than the
stacking ensemble strategy.

We conclude that the random forest-based voting classifier outperforms the hard
and soft voting strategies and the stacking ensemble strategy in terms of detection and
classification performance. It achieves a precision of 98.74%, a recall of 98.67%, a specificity
of 98.79%, an F1-score of 98.70%, a MCC of 98.65%, an accuracy of 98.68%, and an average
processing time per malware classification of 672 ms. As a result, we chose the random
forest-based voting classier as the recommended ensembling strategy.
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Figure 4. Precision of each malware class resulted from DenseNet161, MobileNetV2, and ResNet18.

Figure 5. F1-score of each malware class resulted from DenseNet161, MobileNetV2, and ResNet18.

Table 5. Performance results of the considered ensemble learning strategies.

Ensemble
Learning

Pre
(%)

Recall
(%)

Spec
(%)

F1-score
(%)

MCC
(%)

Acc
(%)

APT per Malware
Classification (ms)

Hard voting 97.90 97.75 97.87 97.82 97.71 97.75 712
Soft voting 98.11 97.91 97.97 98.00 97.88 97.90 681

Stacking ensemble
model

98.41 98.34 98.47 98.44 98.23 98.34 1845

Random forest-based voting
(Proposed approach)

98.74 98.67 98.79 98.70 98.65 98.68 672

The confusion matrix of the proposed approach is presented in Figures 6–8 illustrate
the plots of precision and F1-score of each malware class obtained using the proposed
approach, where it is obvious that the random forest-based voting classifier significantly
improves the outcomes of these performance measures.

In conclusion, the various ensemble learning strategies used give good performance
that surpasses the performance of sub-models. As a result, we conclude that combining
several DL models produces more valuable results than using a single DL model.

Another essential evaluation metric for validating the performance of the proposed
classifier is the Receiver Operating Characteristic (ROC) curve. The ROC curve is developed
by plotting the True Positive Rate (TPR), which is the recall, on the y-axis versus the False
Positive Rate (FPR), which is the specificity, on the x-axis. Figure 9 depicts the ROC curve of
the proposed approach, where 26 (number of classes) ROC curves are presented. Figure 10
is a zoomed-in version of Figure 9. Most of the malware classes (19 classes) obtained an



Sensors 2022, 22, 4302 16 of 22

AUC of 100%. A large area under the curve is observed for the other classes, where the
AUC value ranges between 98% and 99%. Consequently, we conclude that the proposed
approach performs well in detecting and classifying the different malware classes.

Figure 6. The normalized confusion matrix of the proposed approach.

Figure 7. Precision of each malware class using the proposed approach.

Figure 8. F1-score of each malware class using the proposed approach.
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Figure 9. Plots of TP rate versus FP rate of the proposed approach.

Figure 10. Zoomed-in version of Figure 9.

4.4.2. Comparison with Similar Works

MaleVis is a new dataset that was released in 2019. With this dataset, many ML,
DL, and TL algorithms have been presented to develop smart classifiers for effective
malware detection. In this study, we used both TL and ensemble learning to create a
multi-classification approach that effectively detected and classified the 25 malware types
in the MaleVis dataset. The proposed approach was compared with current methods in
the literature.

Table 6 summarizes the comparison of performance results in terms of precision, recall,
F1-score, accuracy, and average processing time per malware classification. According
to Table 6, our proposed approach outperforms the state-of-the-art approaches, with the
best recall (98.67%), F1-score (98.70%), and accuracy (98.68%). Although [35] had the best
precision rate, our approach outperformed it in terms of recall, F1-score, and accuracy.
These significant improvements are attributed to the usage of TL and ensembling strategies,
which aid in producing excellent outcomes, with 0.47% accuracy improvement, 0.55% F1-
score improvement, and 0.93% recall improvement by reusing and fusing the knowledge
collected from previously trained models. Furthermore, the notion of merging several
CNNs assists in achieving optimal outcomes that outperform single models.
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Table 6. Performance comparison between the proposed detection and multi-classification approach
for IoT-malware using random forest voting of fine-tuning CNNs and related approaches tested on
the MaleVis dataset.

Ref Method Precision
(%)

Recall
(%)

F1-score
(%)

Accuracy
(%)

APT
(ms)

[52] TL (DenseNet201) not stated not stated not stated 97.48 not stated

[55] Deep random forest
approach 97.43 97.32 97.42 97.43 not stated

[56]
Hybrid CNN approach

using AlexNet and
ResNet152

97.1 94.9 94.5 96.6 not stated

[35] TL (Shuf-
fleNet/DenseNet201) 99.80 95.61 95.37 95.01

high APT
(in-loop fitnes-
sevaluation)

[18]

Pretrained DenseNet
model with a reweighted
categorical cross-entropy

loss criterion

98.56 97.74 98.15 98.21 5090

Proposed
approach

Random forest-based
voting classifier 98.744 98.67 98.70 98.98 672

The suggested classifier has a response time of less than one second (672 ms) and a
98.7% accuracy in predicting the outcome of a malware attack. Work [18] produced an
output after 5090 ms. In [35], it was stated that the suggested classifier required a long
computation time to produce an output; however, in the other comparison research, the
processing time was not mentioned. The results demonstrate that the proposed approach
takes less time to obtain an output from the attack samples when compared to other
malware attack detection systems.

4.4.3. Discussion

This paper aims to investigate the use of TL to detect and classify IoT-Malware. Three
TL techniques have been used, namely, ResNet18, MobileNetV2, and DenseNet161. In
addition, several ensemble learning approaches have been employed (i.e., hard voting, soft
voting, stacking strategy, and random forests) to combine the results of the three CNNs
models’ outputs. A public dataset, MaleVis, made of 14,226 RGB images representing
25 malware classes and one benign class, is considered to validate the proposed approach.
The obtained results show that the proposed approach has improved malware detection.

As shown in Table 5, the random forest-based voting achieved 98.74%, 98.67%, 98.79%,
98.70%, and 98.65%, 98.68%, 672 ms, for the seven performance metrics: precision, recall,
specificity, F1-score, MCC, accuracy, and average processing time per malware classification,
respectively. Random forest-based voting outperformed hard voting, soft voting, and the
stacking ensemble model. Extensive experiments have been conducted to evaluate the
performance of the proposed method in analyzing the different classes of malware types.
In addition, the proposed approach was compared with five current related works in
the literature that used the same Malevis dataset. Results showed that the proposed
approach achieved the best results for recall, F1-score, and accuracy metrics compared to
related works.

The effectiveness of ML and DL algorithms in modeling and evaluating spatial and
temporal fluctuations of data environments has been proved in different domains [57,58].
In fact, feature representation learning enables these algorithms to properly capture spatial
and temporal correlations. These findings are also transposed to the malware detection and
classification field. Due to the rapid learning of distinct features through malware classes,
the model can distinguish between them and accurately recognize different types of attacks.
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Consequently, the proposed approach is able to take into account the environment’s spatial
and temporal variety and can identify and categorize efficiently distinct learned attack
types even when the time or the surroundings change.

This study highlighted the effectiveness of combining several pre-trained CNN models
using different ensemble strategies, such as voting, stacking, and random forest, to improve
the detection and classification of malware. This choice is justified by the benefits afforded
by the ensembling strategy [15,16]. In fact, when compared to a single contributing model,
an ensemble can produce greater predictions and yield better performance results. Fur-
thermore, an ensemble is able to reduce the spread or dispersion of the prediction errors
generated by the contributing models. The experimental results that are obtained in the
present study illustrate that combining the features of several TL models predicts better
malware classes than applying a single TL method on the same dataset. A performance
comparison was carried out in order to select the most effective ensemble learning strategy.
In this comparison, random forest voting surpassed other strategies such as hard and soft
voting as well as the stacking approach. Indeed, there are several issues related to hard
and soft voting, mainly disregarding the correct decision of the minority, and selecting the
number of candidate classifiers. For the stacking strategy, training may be time-intensive,
and it does not bring performance improvements in the case of small-size training datasets.
The previous arguments make the random forests-based approach the suitable solution that
overcomes the limitations of the voting and stacking strategies. Moreover, random forests
classifier presents numerous advantages, mainly [59]: (1) it helps to increase accuracy by
reducing overfitting in decision trees, (2) it is capable of dealing with both classification
and regression tasks, (3) it is able to manage both categorical and continuous data, (4) it
substitutes missing values in the learned data automatically, and (5) it does not necessitate
data normalization because it employs a rule-based approach. All of these benefits make
the random forests-based approach an excellent choice for complex tasks like IoT-malware
detection and multi-classification. This explains and consolidates the experimental findings
of this study.

5. Conclusions and Future Research Directions

The IoT is a cutting-edge networking concept that connects a wide range of devices.
To operate correctly, each of those devices needs many pieces of software or programs to
be installed. Even though these programs have unrivaled analytical and decision-making
capabilities, their vulnerabilities can be exploited, resulting in a wide range of security
threats and repercussions. Consequently, understanding IoT-based applications is critical
for addressing security flaws through detection and classification. Recently, a promising
direction has been explored that depends on artificial intelligence algorithms, notably DL
models, which have demonstrated their efficacy by offering remarkable performance in de-
tecting malware. Therefore, this study introduced a novel detection and multi-classification
approach for IoT-malware that uses the advantages of deep TL methodology and integrates
the fine-tuning method and a set of ensembling strategies to improve detection and clas-
sification performance without having to create training models from scratch. ResNet18,
MobileNetV2, and DenseNet161 were the three deep CNN models employed. To merge the
outputs of these models, multiple ensemble learning algorithms, namely hard voting, soft
voting, and random forests, were used. MaleVis, a publicly available dataset, is used in the
experiments to test and validate the suggested approach. MaleVis is a collection of more
than 14,000 RGB-converted images that represent 25 malware classes and one benign class.
The obtained results reveal that our proposed approach exceeds current state-of-the-art
methods in terms of detection and classification performance; it achieves a precision of
98.74%, recall of 98.67%, f1-score of 98.70%, MCC of 98.65%, an accuracy of 98.68%, and an
average processing time per malware classification of 672 ms.

Promising extensions of the present study are divided into two major parts: practical
and theoretical. For the practical part, we intend to: (1) test our model by using other
balanced and unbalanced datasets that include spatial and temporal variations since our
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approach was only tested on a single dataset in the current study, and (2) incorporate
additional types of pre-trained CNN models to improve performance outcomes. For the
theoretical extensions, we are planning to: (1) propose a new DL architecture based on the
generative adversarial networks and transformers to improve IoT-malware detection and
multi-classification performance by expanding unbalanced malware datasets, (2) adopt the
federated learning approach, which, thanks to its low complexity and distributed nature,
ensures the deployment of ML and DL classifiers on IoT sensors instead of manipulating
IoT data at a centralized server; this approach will offer real-time IoT-malware detection
and classification solutions enhancing cyberattack mitigation and prevention, and finally,
(3) extend the proposed approach to ensure the detection and the multi-classification of
malicious software in the Industrial Internet of Things (IIoT) environments.
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