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Abstract: Accurately predict the efficiency of centrifugal pumps at different rotational speeds is
important but still intractable in practice. To enhance the prediction performance, this work proposes
a hybrid modeling method by combining both the process data and knowledge of centrifugal pumps.
First, according to the process knowledge of centrifugal pumps, the efficiency curve is divided into
two stages. Then, the affinity law of pumps and a Gaussian process regression (GPR) model are
explored and utilized to predict the efficiency at their suitable flow stages, respectively. Furthermore,
a probability index is established through the prediction variance of a GPR model and Bayesian
inference to select a suitable training set to improve the prediction accuracy. Experimental results
show the superiority of the hybrid modeling method, compared with only using mechanism or
data-driven models.

Keywords: centrifugal pump efficiency; hybrid model; affinity law; Gaussian process regression

1. Introduction

Centrifugal pumps are widely used in construction, municipal water supply and
drainage, petroleum and chemical industries, thermal power and other industries [1,2].
Most pumps are driven by motors and their electricity consumption is huge [3,4]. Due to
the high energy consumption of centrifugal pumps, the frequency conversion technology
has been widely adopted to adjust the speed of centrifugal pump by means of a frequency
converter, thus plays an important role in energy saving in the pump industry [5].

When the change rate of rotation speed does not exceed about 33% of the rated
centrifugal speed, the change in efficiency can be ignored [6]. This approximation only
means that the centrifugal pump curve points will maintain the same efficiency, while the
pump will not operate at the same efficiency once inserted into the system. In fact, the
operating point of a centrifugal pump is defined by the intersection of the centrifugal pump
curve and the system curve. Consequently, the overall efficiency depends not only on the
efficiency of the centrifugal pump itself, but also by the influence of the system [7]. If the
operating efficiency of centrifugal pumps at different speeds can be accurately predicted,
the energy-saving effect of centrifugal pumps under variable frequency conditions will be
noticeable. Meanwhile, the centrifugal pump can maintain a suitable operating condition
and extend its effective service life.

Traditionally, predicting the state of centrifugal pumps at different speeds mainly uses
the affinity law of pump and the computational fluid dynamics (CFD) software. However,
the affinity law of pump assumes that the efficiency of a pump is approximately constant
at different speeds. In fact, the volumetric efficiency, hydraulic efficiency, and mechanical
efficiency will also change when the rotational speed of a centrifugal pump changes [7,8].
Researchers have attempted to correlate the speed of centrifugal pump with the efficiency
to make the prediction more accurate [9–12]. However, some assumptions include approxi-
mate values, especially ignoring the friction loss of pipeline system [7,13–16]. Additionally,
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the flow rate change at the same speed is mainly adjusted by the outlet throttle valve of
system, and the friction loss of pipeline system changes constantly [12]. Therefore, it is still
difficult to accurately describe the operating efficiency of a centrifugal pump only using the
mechanism model. The accuracy of CFD method is dependent on the expertise of engineers,
as it is sensitive to the mesh quality, the turbulence model, and the numerical schemes.
Consequently, it is necessary to conduct the validation and verification for each simulation
case [17]. Additionally, numerical simulation requires huge computational resources and
computing time, which may not satisfy the requirement during the macro-control of the
electric power systems [1,18].

Recently, several neural networks and data-driven empirical models (also named
as soft sensors/analyzers) have been developed alternatively in the fluid machinery
field [1,2,4,19–27]. Compared with mechanism models, the process data can reflect the
characteristics without a sufficient understanding of the mechanism. As we know, the
modeling accuracy of data-driven empirical models depends on the amount and reliability
of modeling data. However, it is tricky to collect enough samples of different multiphase
conditions due to the time-consuming and costly experiment process [28–31]. Thus, develop
efficient strategies to enhance the prediction performance with limited data is necessary in
data-driven empirical modeling (soft sensing) methods for pump characteristics.

Since both of mechanism and data-driven empirical models have pros and cons, the
development of a hybrid model integrating both of their advantages is attractive in practice.
Using the mechanism model, the prediction error is often acceptable because of the small
friction loss of piping system in the large flow area of centrifugal pump operation [9].
However, the prediction is not accurate because of the large friction loss of piping system
and centrifugal pump in the small flow area [8]. If the efficiency curve of different rotating
speeds can be divided into two stages, i.e., the large flow one and the small flow one, only
a data-driven model needs to be constructed for the small flow region. In such a situation,
the requirement of large amount modeling data can be reduced, indicating that the hybrid
model can be developed using limited samples.

When the valve opening is larger, the outlet flow of centrifugal pump is larger, and
the friction loss of pipeline system is smaller, and vice versa [32,33]. Therefore, the valve
opening can be utilized to divide the flow stages to the large flow one and small flow one.
As a probabilistic data-driven modeling method, the Gaussian process regression (GPR) has
been applied to evaluate the prediction uncertainty of a soft sensor model [34–42]. Using
this feature of GPR model combined with Bayesian inference to form posterior probability,
the difference in operating conditions of centrifugal pumps at different speeds can be
measured by posterior probability, and a training set more similar with the test set can be
found, thereby improving the predictive performance of a data-driven model.

In summary, the proposed hybrid model for the efficiency prediction of centrifugal
pumps is so constructed. First, multiple GPR models are built according to different
speeds to obtain the prediction variance, and the similarity between sample subsets at
different rotational speeds is calculated. Then, according to the impact of valve opening on
system friction loss and mechanism model prediction performance, the efficiency curve is
processed in several sections. Finally, the efficiency of large flow stage is predicted using
a mechanism model with the affinity law of pump, and a local GPR (LGPR) model is
constructed to predict the efficiency of small flow stage.

The remainder of this work is so structured. In Section 2, efficiency curves and
probabilistic modeling analysis at several typical speeds are discussed. In Section 3, the
hybrid model is proposed to predict the efficiency of centrifugal pumps at variable speeds.
In Section 4, prediction results of the hybrid model are compared with the experimental
data to verify its effect. In Section 5, the work is summarized.
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2. Experimental System and Process Analysis
2.1. Experimental System

The diagram of this experimental system is shown in Figure 1. In order to obtain
the efficiency curves at different speeds, the ZW1150-20-20 self-priming centrifugal pump
shown in Figure 2 is used in the experiment. The instruments of this experimental system
are listed in Table 1.
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Table 1. Information of measuring sensor.

Instrument Measurement Range Accuracy

Magnetic flow sensor 0~150 m3/h 0.2%
Outlet pressure sensor 0~4 MPa 0.05%
Inlet pressure sensor −0.4~0.4 MPa 0.05%

Power meter Current, Voltage and Power 0.5%
Rotation speed sensor 0~20,000 r/min ±1 r/min
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The centrifugal pump is driven by a variable frequency motor, and water flows into
the system through the centrifugal pump. The operating speed of the centrifugal pump
is changed through a variable frequency drive. At the same speed, adjust the outlet flow
of the centrifugal pump through the opening of the outlet valve in the pipeline system.
Under different valve openings V, according to the flowmeter, the pressure sensor, and
rotation speed sensor record the outlet flow Q, the inlet pressure Ps, the outlet pressure Pd,
and the rotational speed n, respectively. Additionally, the shaft power N can be obtained
according to the power meter. The efficiency of different flow points is calculated according
to Equation (1) [12].

η =
ρgQH

N
, (1)

where ρ is the density of transfer liquid; H = Pd−Ps
ρg + Hst is the head of the centrifugal

pump, and Hst is the static head of the system of the centrifugal pump.
Collect the experimental data by adjusting the frequency of variable frequency drive

and the opening of outlet valve, then obtain the efficiency curves at different speeds ac-
cording to Equation (1). A total of ten efficiency curves at different speeds (i.e., 1200 r/min,
1320 r/min, 1560 r/min, 1680 r/min, 1920 r/min, 2040 r/min, 2280 r/min, 2400 r/min,
2640 r/min, 2900 r/min for the datasets of S1, S2, S3, S4, S5, S6, S7, S8, S9, S10) are collected
from the experimental system including the efficiency curves at rated speeds, as shown in
Figure 3.
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2.2. Process Mechanism Analysis

The efficiency curves at different speeds have a common feature. As flow increases,
the efficiency first increases rapidly and then decreases gradually, as shown in Figure 3. The
main reason is that when the outlet valve opening is small, flow into the system is small,
and the system loss is large. Deviating from the design flow of centrifugal pump results in a
large impact loss inside the centrifugal pump. When the valve opening gradually increases,
the efficiency of centrifugal pump will also increase. When the best efficiency point of
centrifugal pump is reached, the efficiency of centrifugal pump gradually decreases as the
flow rate increases. This is because the excessive flow also causes the centrifugal pump to
deviate from the design flow, resulting in excessive shock loss inside the centrifugal pump,
which in turn leads to a decrease in the efficiency of centrifugal pump [8,12].

Based on the common points of efficiency curves at different speeds, using the affinity
law of pump, the problem of the change of efficiency with rotational speed is transformed
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into an empirical formula for the ratio of efficiency to rotational speed [6], as shown in
Equation (2).

1− ηx

1− ηe
=

(
ne

nx

)m
, (2)

where ηe represents the efficiency under the speed ne (rated speed of the centrifugal pump)
and ηx represents the efficiency under the speed of nx (required efficiency), and m = 0.1 is
an empirical coefficient which can be obtained by the relationship between the efficiency
ratio and the speed ratio [6].

However, Equation (2) contains approximate values, especially ignoring the friction
loss of pipeline system. The system friction loss in the large flow region is small, so the
efficiency prediction is relatively accurate [7,9]. However, the efficiency prediction is not
accurate for the small flow region. Under different speeds, the efficiency curves have
common characteristics mainly because of the affinity law of pump [11]. Generally, the
similarity of pump operating conditions is described through the operating speed of pump.
The closer the operating speed is to rated speed, the higher the similarity [11]. However,
there is not a criterion to clearly measure the similarity of pump operation at different
speeds. To this end, using the probability information of the GPR model, a criterion is
established to measure the similarity between various operating conditions at different
speeds, thus providing a reasonable training set for GPR.

2.3. Process Mechanism Analysis

One appealing property of the GPR model is that it can provide a confidence level with
its variance. Generally, the GPR model approximates a training set S = {X, y} = {xi, yi}N

i=1
with N training samples. The valve opening V, the outlet flow Q, the inlet pressure Ps,
and the outlet pressure Pd are selected as the input variables, i.e., xi = {Psi, Pdi, Vi, Qi}T .
The actual efficiency is the output variable, i.e., yi = ηi. For an output variable y, the GPR
model is the regression function with a Gaussian prior distribution and zero mean or in a
discrete form [34].

y = (yi, · · · , yN)
T ∼ G(0, C), (3)

where C is the N × N covariance matrix with the ijth element C
(
xi, xj

)
. Using the Bayesian

method to train the GPR model, the matrix C can be estimated. For a test sample set with
Nt input samples Xt = {xt,i}Nt

i=1, t = 1, · · · , T, the output variable ŷt,i and its variance σ2
ŷt,i

can be calculated as follows [34]:
ŷt,i = kT

t,iC
−1y, (4)

σ2
ŷt,i

= kt,i − kT
t,iC
−1kt,i, (5)

where kt,i = [C(xt,i, x1), C(xt,i, x2), · · · , C(xt,i, xN)]
T is the covariance vector between the

new input and the training data, and kt,i = C(xt,i, xt,i) is the covariance of the new in-
put [34].

Train multiple GPR soft sensor models separately through sample subsets at different
speeds, and evaluate the relationship between a single GPR model and the test sample set
Xt = {xt,i}Nt

i=1, t = 1, · · · , T. The mean of the posterior probability P(GPRl | xt) , which is
comprised by the prediction variance σ2

ŷt,i
and Bayesian theorem in the GPR model, is used

to measure similarity of datasets at different speeds. The index is defined as:

P(GPRl | xt) =
Nt

∑
i=1

P(xt,i | GPRl)

P(xt,i)
=

Nt

∑
i=1

Nt

vl,xti

L
∑

l=1

(
Nl/vl,xti

) , l = 1, · · · , L, (6)
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The mean ensemble posterior probability (MEPP) be defined as:

MEPPl,t =
P(GPRl | Xt)

Nt
=

Nt

∑
i=1

Nl

vl,xt,i
Nt

L
∑

l=1

(
Nl/vl,xt,t

)100, l = 1, · · · , L, (7)

where Nl represents the number of samples in the training sample subset; Nt represents the

number of samples in the test set; vl,xt,i
=

σ2
ŷt,i
|ŷl |
× 100%, l = 1, · · · , L; σ2

ŷt,i
represents GPRl

model’s prediction uncertainty for xt,i.
A larger value of MEPPl,t indicating a larger P(GPRl | xt), so the test set Xt is more

suitable to be predicted by the GPRl model. It means more similar between the training set
Xl for training the GPRl model for the test set Xt. When a test set with a new speed appears,
the MEPP index is used to find similar training sample subsets to form a training set for
GPR to predict the efficiency of the test set. Additionally, in order to reduce the excessive
dependence on the experimental data and reduce the experimental burden, the mechanism
model based on the affinity law of pump is combined. Consequently, a hybrid modeling
method is proposed to predict the efficiency of centrifugal pump at different flow stages.

3. Proposed Two-Stage Hybrid Model

A two-stage hybrid modeling method is used to construct an integrated soft sensor
model to predict the efficiency of centrifugal pump at different speeds. By analyzing the
impact of valve opening on efficiency, the efficiency curve is segmented. Sequentially, the
efficiency of different flow stages can be predicted using data-driven model and mechanism
model in an auto-switched manner.

3.1. Process Mechanism Analysis

The flow adjustment at the same speed mainly depends on the outlet throttle valve
of the system [15]. The head curve of the system can be obtained from the knowledge of
pipes and static head through simple hydraulic laws. The head curve of a general water
supply system can be defined as [32]:

Hp = Hst + KQ2, (8)

where Hp represents the piping system head, and K represents the dynamic head coefficient
(friction loss).

As shown in Figure 4, the curve of K values with valve opening at different speeds
show two common characteristics. The first is, as the valve opening continues to increase,
the K value decreases sharply, and when the valve opening is about 50%, the K value is
close to zero. The second is, when the valve opening is between 30% and 50%, the K value
of the same valve opening is not the same at different speeds. Therefore, for simplicity, the
stage where the valve opening is larger than 50% is defined as a large flow stage, and the
stage where the valve opening is less than 50% is defined as a small flow stage.

The training sample set S = {X, y} = {xi, yi}N
i=1 and the test sample set Xt = {xt,i}Nt

i=1
are divided into two stages by the size of the valve opening. For convenience, redefine the
training sample set as S = (Sm, Sh) and the test sample set as Xt = (Xt,m, Xt,h). Among
them, Sm is the training sample set of the small flow stage, Sh is the training sample set of
the large flow stage, Xt,m is the test sample set of the small flow stage, and Xt,h is the test
sample set of the large flow stage.
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3.2. Stage Modeling Method

The two-stage hybrid modeling method can be implemented as follows. In the small
flow stage, due to the influence of the system friction loss, the prediction result of the
mechanism model is not accurate. Additionally, the opening of the outlet valve is small,
the pressure difference between the inside and outside of the valve is large, and the valve
opening is more sensitive to the change of flow, so more samples can be obtained. Therefore,
according to the MEPP index in Equation (7), the LGPR model is trained using suitable
sample sets of the small flow stage and it is used to predict the efficiency in this stage. This
is different from the GPR model that is constructed using samples from the whole flow
stage. In the large flow stage, the friction loss of system is small, and the mechanism model
is used to predict the efficiency. First judge whether the test sample belongs to the large
flow stage or the small flow stage according to the valve opening. As shown in Figure 5, if
it belongs to the small flow stage, use the LGPR model to predict according to Equation (4);
if it belongs to the large flow stage, adopt Equation (2) to predict.
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The proposed modeling method uses available process knowledge and model informa-
tion. In summary, the main implemented steps are illustrated in Figure 6. The step-by-step
procedures are described as follows.

Step 1: Collect data at different speeds of the centrifugal pump S = {X, y} =

{xi, yi}N
i=1.

Step 2: Train multiple GPR models according to the sample subsets at different speeds
using Equation (3).

Step 3: For a test sample set at a new speed, Xt is calculated by multiple GPR models
using Equations (4)–(7) to obtain MEPPl,t, and select several training sample subsets with
relatively larger GPR models of MEPPl,t to form a new training sample set S∗.
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Step 4: The test sample set Xt and the new training sample set S∗ are segmented
according to the valve opening to obtain a new test sample set Xt,m and Xt,h, and a new
training sample set S∗m and S∗h.

Step 5: For the test sample set Xt,h in the large flow stage, calculate the prediction
efficiency using Equation (2). For the test sample set Xt,m in the small flow stage, first train
the LGPR model according to the training sample set S∗m using Equation (3), and calculate
the prediction efficiency using Equation (4).

Step 6: Finally, the prediction efficiency of the two stages is integrated to obtain the
prediction efficiency of the test sample set Xt.
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In the above modeling steps, useful process knowledge and GPR-based probability
information are effectively integrated into the hybrid model to predict the efficiency of
centrifugal pumps at different speeds. Separate modeling at each stage can better handle
the process with different characteristics, reduce dependence on experimental data, and
improve the prediction accuracy. From engineering point of view, this two-stage hybrid
modeling method can be implemented straightforward.

4. Experimental Results and Discussion

Under the operation conditions described in Section 2.1, altogether 165 samples of ten
operation speeds denoted as S = (S1, · · · , S10) are collected from the experimental system
shown in Figure 1. Six sets (S1, S3, S5, S6, S9, S10) are used for training and the remaining
four sets (S2, S4, S7, S8) are for test. To compare the prediction performance of different
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models, two common performance indices, i.e., the root mean square error (RMSE) and the
maximum absolute relative error (MARE), are adopted as follows:

RMSEi =

√√√√ Nt

∑
i=1

(ŷt,i − yt,i)
2/Nt, i = 1, 2; t = 1, · · · , Nt (9)

MAREi = max|ŷt,i − yt,i|/yt,i × 100%, i = 1, 2; t = 1, · · · , Nt, (10)

where ŷt,i represents the predicted value of yt,i.
First, the effect of the MEPP index is verified. A larger value of MEPP means that the

test sample set is more similar with the training sample subset of the training GPR model,
thus the RMSE value is smaller. According to the four test sample sets of S2, S4, S7 and S8,
the MEPP and RMSE values of the GPR models trained by the corresponding six sample
subsets are shown in Figure 7. The results indicate that the similarity between the test
sample set and the training sample subset can be measured by the MEPP index, and a new
training set can be formed by selecting more similar subset S∗ to construct a suitable LGPR
model at the small flow stage. For this case, the new training set of S2 is (S1, S3, S5), the
new training set of S4 is (S3, S5, S6), the new training set of S7 is (S5, S6, S9), and the new
training set of S8 is (S6, S9, S10), respectively.

Since the valve opening in the large flow stage is large, the friction loss of system is
small. The efficiency of the large flow stage is predicted by the mechanism model based
on the pump affinity law of pump. The prediction result of the small flow stage for the
four test sample sets S2, S4, S7, and S8 are shown in Figure 8. Compared with the GPR
model and the mechanism model, the training set S∗ is divided into two stages by the valve
opening, and the training set S∗m in the small flow interval is used. Notice that the GPR and
LGPR models are trained with different samples. The LGPR model has good prediction
performance for the small flow stage. As also shown in Table 2, the MARE values of three
models validate that the LGPR model can be used in the small flow stage.
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Figure 7. (a) GPR models trained by different sample subsets predict the test set S2 to obtain the
corresponding MEPP and RMSE values (b) GPR models trained by different sample subsets predict
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different sample subsets predict the test set S7 to obtain the corresponding MEPP and RMSE values
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Table 2. The MARE (%) values of the LGPR, GPR, and mechanism models of test sets.

LGPR Model GPR Model Mechanism Model

S2 2.79 20.02 43.26
S4 5.27 14.65 29.91
S7 3.12 15.06 23.82
S8 4.72 17.12 18.62

The results of the two stages are integrated into the hybrid model to predict the
efficiency of centrifugal pump at different speeds. For four different speeds, namely the
test sample sets S2, S4, S7, and S8, the prediction results shown in Figure 9 indicate that the
hybrid model can achieve a good prediction of the centrifugal pump efficiency.

The hybrid model, the GPR model, and the mechanism model based on the affinity
law of pump are compared. Table 3 lists the performance comparison results of three
models. Among them, the hybrid model has the best prediction effect, while the GPR and
the mechanism models are inferior. As shown in Table 4, the mechanism model requires
the least experimental data (for the efficiency prediction of S2, S4, S7, and S8 datasets using
Equation (2)). The main reason is that the mechanism model requires only the efficiency
points at rated speed with the same valve opening as the test datasets (i.e., S2, S4, S7, and
S8). While the GPR model is purely data-driven and thus requires the most experimental
data decided by the selected training samples (e.g., for S2 the training set is (S1, S3, S5)).
The hybrid model combines LGPR for the small flow stage and the mechanism model for
the large flow stage. Consequently, the required samples can be separately determined for
each stage.
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Figure 9. (a) The hybrid model, the GPR model and the mechanism model prediction results and
relative error of the test set S2 (b) The hybrid model, the GPR model and the mechanism model
prediction results and relative error of the test set S4 (c) The hybrid model, the GPR model and the
mechanism model prediction results and relative error of the test set S7 (d) The hybrid model, the
GPR model and the mechanism model prediction results and relative error of the test set S8.

Table 3. The RMSE values of the hybrid, GPR, and mechanism models of test sets S2, S4, S7, S8.

Hybrid Model GPR Model Mechanism Model

S2 0.88 1.06 3.21
S4 0.76 1.28 3.28
S7 0.48 0.76 1.86
S8 0.60 0.78 1.60

Table 4. The number of samples required for test sets of the hybrid, GPR, and mechanism models.

Hybrid Model GPR Model Mechanism Model

S2 32 48 16
S4 32 48 16
S7 35 51 17
S8 35 51 17

In summary, the hybrid model makes full use of the process knowledge of centrifugal
pump, while avoiding the empirical error of the mechanism model, so it has better pre-
dictive performance. Compared with the GPR model, the hybrid model requires fewer
samples, which reduces the experimental burden. Consequently, the hybrid model can be
simply applied to practical centrifugal pumps.

5. Conclusions

This work proposes a hybrid knowledge-and-data soft sensor model to predict the
efficiency of centrifugal pumps at different speeds. The GPR with its probabilistic in-
ferencing method is utilized to select the suitable datasets to construct an appropriate
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data-driven prediction model for the low flow region. The advantages of mechanism and
GPR models are combined, thus better prediction results can be obtained in different flow
stages. Consequently, the hybrid model maintains the prediction accuracy and shows the
simplicity because it reduces the number of modeling samples compared with a purely
data-driven model. The experimental results validate its feasibility and simplicity. Some
future research topics include how to improve the prediction accuracy in large flow stage
and how to collect more informative experimental data in an active and efficient manner.
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Abbreviations

The following abbreviations are used in this paper:
CFD computational fluid dynamics
GPR gaussian process regression
LGPR local gaussian process regression
MARE maximum absolute relative error
MEPP mean ensemble posterior probability
RMSE root-mean-square error
The following symbols are used in this paper:
H head, m
Hp piping system head, m
Hst static head, m
K dynamic head coefficient
N shaft power, kW
n rated speed, r/min
Pd inlet pressure, MPa
Ps outlet pressure, MPa
Q outlet flow, m3/h
V valve opening,%
ρ density, kg/m3

η efficiency, %

References
1. Huang, R.; Zhang, Z.; Zhang, W.; Mou, J.; Zhou, P.; Wang, Y. Energy performance prediction of the centrifugal pumps by using a

hybrid neural network. Energy 2020, 213, 119005. [CrossRef]
2. Wu, D.; Huang, H.; Qiu, S.; Liu, Y.; Wu, Y.; Ren, Y.; Mou, J. Application of Bayesian regularization back propagation neural

network in sensorless measurement of pump operational state. Energy Rep. 2022, 8, 3041–3050. [CrossRef]
3. Gong, E.; Wang, N.; You, S.; Wang, Y.; Zhang, H.; Wei, S. Optimal operation of novel hybrid district heating system driven by

central and distributed variable speed pumps. Energy Convers. Manag. 2019, 196, 211–226. [CrossRef]
4. Luo, Y.; Han, Y.; Yuan, S.; Yuan, J. Research on the single-value indicators for centrifugal pump based on vibration signals. Sensors

2020, 20, 3283. [CrossRef]
5. Ahmed, A.A.; Moharam, B.A.; Rashad, E.E. Improving energy efficiency and economics of motor-pump-system using electric

variable-speed drives for automatic transition of working points. Comput. Electr. Eng. 2022, 97, 107607. [CrossRef]
6. Sárbu, I.; Borza, I. Energetic optimization of water pumping in distribution systems. Period. Polytech.-Chem. 1998, 42, 141–152.
7. Marchi, A.; Simpson, A.R.; Ertugrul, N. Assessing variable speed pump efficiency in water distribution systems. Drink Water Eng.

Sci. 2012, 5, 15–21. [CrossRef]
8. Wang, Z.; Qian, Z.; Lu, J.; Wu, P. Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal

pump. Energy 2019, 170, 212–227. [CrossRef]
9. Coelho, B.; Andrade-Campos, A.G. A new approach for the prediction of speed-adjusted pump efficiency curves. J. Hydraul. Res.

2016, 54, 586–593. [CrossRef]

http://doi.org/10.1016/j.energy.2020.119005
http://doi.org/10.1016/j.egyr.2022.02.072
http://doi.org/10.1016/j.enconman.2019.06.004
http://doi.org/10.3390/s20113283
http://doi.org/10.1016/j.compeleceng.2021.107607
http://doi.org/10.5194/dwes-5-15-2012
http://doi.org/10.1016/j.energy.2018.12.112
http://doi.org/10.1080/00221686.2016.1175521


Sensors 2022, 22, 4300 17 of 18

10. Pérez-Sánchez, M.; López-Jiménez, P.A.; Ramos, H.M. Modified affinity laws in hydraulic machines towards the best efficiency
line. Water Resour. Manag. 2018, 32, 829–844. [CrossRef]

11. Georgescu, A.M.; Cosoiu, C.I.; Perju, S.; Georgescu, S.C.; Hasegan, L.; Anton, A. Estimation of the efficiency for variable speed
pumps in EPANET compared with experimental data. Procedia Eng. 2014, 89, 1404–1411. [CrossRef]

12. Capponi, C.; Ferrante, M.; Pedroni, M.; Brunone, B.; Meniconi, S.; Zaghini, M.; Leoni, F. Real data analysis and efficiency of the
TEA Mantova Casale (Italy) variable-speed pumping station. Procedia Eng. 2014, 70, 248–255. [CrossRef]

13. Simpson, A.R.; Marchi, A. Evaluating the approximation of the affinity laws and improving the efficiency estimate for variable
speed pumps. J. Hydraul. Eng.-ASCE 2013, 139, 1314–1317. [CrossRef]

14. Shankar, V.K.A.; Umashankar, S.; Paramasivam, S.; Hanigovszki, N. A comprehensive review on energy efficiency enhancement
initiatives in centrifugal pumping system. Appl. Energy 2016, 181, 495–513. [CrossRef]

15. Suh, S.H.; Kim, K.W.; Kim, H.H.; Yoon, I.S.; Cho, M.T. A study on energy saving rate for variable speed condition of multistage
centrifugal pump. J. Therm. Sci. 2015, 24, 566–573. [CrossRef]

16. Song, Y.; Zhao, J. Operating characteristics of the variable frequency speed-regulating system for a single pump in a closed system.
Build. Serv. Eng. Res. Technol. 2017, 38, 309–317. [CrossRef]

17. Agarwal, R.; Patil, A.; Morrison, G. Efficiency prediction of centrifugal pump using the modified affinity laws. J. Energ. Res.
Technol. 2020, 142, 032102. [CrossRef]

18. Cao, Z.; Deng, J.; Zhao, L.; Lu, L. Numerical research of pump-as-turbine performance with synergy analysis. Processes 2021,
9, 1031. [CrossRef]

19. Deng, H.; Liu, Y.; Li, P.; Zhang, S. Hybrid model for discharge flow rate prediction of reciprocating multiphase pumps. Adv. Eng.
Softw. 2018, 124, 53–65. [CrossRef]

20. Chen, L.; Wei, L.; Wang, Y.; Wang, J.; Li, W. Monitoring and predictive maintenance of centrifugal pumps based on smart sensors.
Sensors 2022, 22, 2106. [CrossRef]

21. Ahmad, Z.; Nguyen, T.K.; Ahmad, S.; Nguyen, C.D.; Kim, J.M. Multistage centrifugal pump fault diagnosis using informative
ratio principal component analysis. Sensors 2021, 22, 179. [CrossRef]

22. Jiang, Y.; Jia, J.; Li, Y.; Kou, Y.; Sun, S. Prediction of gas-liquid two-phase choke flow using Gaussian process regression. Flow
Meas. Instrum. 2021, 81, 102044. [CrossRef]

23. Kumar, P.S.; Kumaraswamidhas, L.A.; Laha, S.K. Selection of efficient degradation features for rolling element bearing prognosis
using Gaussian Process Regression method. ISA Trans. 2021, 112, 386–401. [CrossRef] [PubMed]

24. Ye, G.Y.; Xu, K.J.; Wu, W.K. Multivariable modeling of valve inner leakage acoustic emission signal based on Gaussian process.
Mech. Syst. Signal Process. 2020, 140, 106675. [CrossRef]

25. Lyu, L.; Chen, Z.; Yao, B. Advanced valves and pump coordinated hydraulic control design to simultaneously achieve high
accuracy and high efficiency. IEEE. Control Syst Technol. 2021, 29, 236–248. [CrossRef]

26. Zhong, Q.; Wang, X.; Zhou, H.; Xie, G.; Hong, H.; Li, Y.; Yang, H. Investigation into the adjustable dynamic characteristic of the
high-speed on/off valve with an advanced pulse width modulation control algorithm. IEEE/ASME Trans. Mechatron. 2021, 1–14.
[CrossRef]

27. Han, W.; Nan, L.; Su, M.; Chen, Y.; Li, R.; Zhang, X. Research on the prediction method of centrifugal pump performance based
on a double hidden layer BP neural network. Energies 2019, 12, 2709. [CrossRef]

28. Deng, H.; Liu, Y.; Li, P.; Zhang, S. Active learning for modeling and prediction of dynamical fluid processes. Chemom. Intell. Lab.
Syst. 2018, 183, 11–22. [CrossRef]

29. Zhou, L.; Wang, Y.; Ge, Z.; Song, Z. Multirate factor analysis models for fault detection in multirate processes. IEEE Trans. Ind.
Inform. 2019, 15, 4076–4085. [CrossRef]

30. Deng, H.; Yang, K.; Liu, Y.; Zhang, S.; Yao, Y. Actively exploring informative data for smart modeling of industrial multiphase
flow processes. IEEE Trans. Ind. Inform. 2021, 17, 8357–8366. [CrossRef]

31. Deng, H.; Liu, Y.; Li, P.; Ma, Y.; Zhang, S. Integrated probabilistic modeling method for transient opening height prediction of
check valves in oil-gas multiphase pumps. Adv. Eng. Softw. 2018, 118, 18–26. [CrossRef]

32. Ahonen, T.; Tamminen, J.; Ahola, J.; Kestila, J. Frequency-converter-based hybrid estimation method for the centrifugal pump
operational state. IEEE Trans. Ind. Electron. 2011, 59, 4803–4809. [CrossRef]

33. Lin, Z.; Yu, H.; Yu, T.; Zhu, Z. Numerical study of solid–liquid two-phase flow and erosion in ball valves with different openings.
Adv. Powder Technol. 2022, 33, 103542. [CrossRef]

34. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006.
35. Das, S.; Roy, S.; Sambasivan, R. Fast gaussian process regression for big data. Big Data Res. 2018, 14, 12–26. [CrossRef]
36. Wan, X.; Li, X.; Wang, X.; Yi, X.; Zhao, Y.; He, X.; Huang, M. Water quality prediction model using Gaussian process regression

based on deep learning for carbon neutrality in papermaking wastewater treatment system. Environ. Res. 2022, 211, 112942.
[CrossRef]

37. Liu, Y.; Chen, T.; Chen, J. Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade
processes with transitions. Ind. Eng. Chem. Res. 2015, 54, 5037–5047. [CrossRef]

38. Chen, T.; Ren, J.H. Bagging for Gaussian process regression. Neurocomputing 2009, 72, 1605–1610. [CrossRef]
39. Zhou, L.; Chen, J.; Song, Z.; Li, G. Recursive Gaussian process regression model for adaptive quality monitoring in batch processes.

Math. Prob. Eng. 2015, 2015, 761280. [CrossRef]

http://doi.org/10.1007/s11269-017-1841-0
http://doi.org/10.1016/j.proeng.2014.11.466
http://doi.org/10.1016/j.proeng.2014.02.028
http://doi.org/10.1061/(ASCE)HY.1943-7900.0000776
http://doi.org/10.1016/j.apenergy.2016.08.070
http://doi.org/10.1007/s11630-015-0824-9
http://doi.org/10.1177/0143624416680690
http://doi.org/10.1115/1.4044940
http://doi.org/10.3390/pr9061031
http://doi.org/10.1016/j.advengsoft.2018.08.006
http://doi.org/10.3390/s22062106
http://doi.org/10.3390/s22010179
http://doi.org/10.1016/j.flowmeasinst.2021.102044
http://doi.org/10.1016/j.isatra.2020.12.020
http://www.ncbi.nlm.nih.gov/pubmed/33341238
http://doi.org/10.1016/j.ymssp.2020.106675
http://doi.org/10.1109/TCST.2020.2974180
http://doi.org/10.1109/TMECH.2021.3131095
http://doi.org/10.3390/en12142709
http://doi.org/10.1016/j.chemolab.2018.10.005
http://doi.org/10.1109/TII.2018.2889750
http://doi.org/10.1109/TII.2020.3046013
http://doi.org/10.1016/j.advengsoft.2018.01.003
http://doi.org/10.1109/TIE.2011.2176692
http://doi.org/10.1016/j.apt.2022.103542
http://doi.org/10.1016/j.bdr.2018.06.002
http://doi.org/10.1016/j.envres.2022.112942
http://doi.org/10.1021/ie504185j
http://doi.org/10.1016/j.neucom.2008.09.002
http://doi.org/10.1155/2015/761280


Sensors 2022, 22, 4300 18 of 18

40. Yang, K.; Jin, H.P.; Chen, X.G.; Dai, J.Y.; Wang, L.; Zhang, D.X. Soft sensor development for online quality prediction of industrial
batch rubber mixing process using ensemble just-in-time Gaussian process regression models. Chemom. Intell. Lab. Syst. 2016, 155,
170–182. [CrossRef]

41. Abrantes, R.J.; Mao, Y.W.; Ren, D.D. Rate coefficient function estimation using Gaussian process regression. J. Quant. Spectrosc.
Radiat. 2022, 283, 108134. [CrossRef]

42. Ma, Y.; He, Y.; Wang, L.; Zhang, J. Probabilistic reconstruction for spatiotemporal sensor data integrated with Gaussian process
regression. Probabilistic Eng. Mech. 2022, 69, 103264. [CrossRef]

http://doi.org/10.1016/j.chemolab.2016.04.009
http://doi.org/10.1016/j.jqsrt.2022.108134
http://doi.org/10.1016/j.probengmech.2022.103264

	Introduction 
	Experimental System and Process Analysis 
	Experimental System 
	Process Mechanism Analysis 
	Process Mechanism Analysis 

	Proposed Two-Stage Hybrid Model 
	Process Mechanism Analysis 
	Stage Modeling Method 

	Experimental Results and Discussion 
	Conclusions 
	References

