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Abstract: Performing the machining of complex surfaces can be a challenging task for a robot, espe-
cially in terms of collaborative robotics, where the available motion capabilities are greatly reduced
in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities
prior to task execution, for which we need efficient algorithms, especially in the case of flexible
robot applications. To provide accurate and physically consistent information about the maximum
kinematic capabilities while considering the requirements of the task, an approach called the Decom-
posed Twist Feasibility (DTF) method is proposed in this study. The evaluation of the maximum
feasible end-effector velocity is based on the idea of decomposition into the linear and angular motion
capabilities, considering a typical robot machining task with synchronous linear and angular motion.
The proposed DTF method is presented by the well-known manipulability polytope concept. Unlike
the existing methods that estimate the kinematic performance capabilities in arbitrarily weighted
twist space, or separately in the translation and the rotation subspace, our approach offers an accurate
and simple solution for the determination of the total kinematic performance capabilities, which is
often highly required, especially in the case of robot machining tasks. The numerical results obtained
in this study show the effectiveness of the proposed approach. Moreover, the proposed DTF method
could represent suitable kinematic performance criteria for the optimal placement of predefined tasks
within the robot workspace.

Keywords: robot surface machining; task feasibility; task-dependent kinematic capability; kinematic
performance evaluation; manipulability index; manipulability polytope; motion decomposition;
Decomposed Twist Feasibility (DTF) method

1. Introduction

Collaborative robotic technologies enable humans and robots to work close together
in a shared manufacturing environment. Contrary to classical industrial robots, which
are primarily programmed to perform deterministic repetitive tasks, a new paradigm of
collaborative robots encourages the development of flexible and intelligent robotic systems,
especially for the needs of small and medium enterprises with low-volume, high-mix
production [1,2]. In order to help these companies to gain a competitive advantage, a
rapid integration into the manufacturing process is needed in order for them to achieve
improved flexibility, higher autonomy, and safety of a robotic system for the industrial floor.
In this context, recent studies on intuitive motion planning algorithms [3,4] and strategies
toward safe and efficient human–robot collaboration [5,6] have attracted growing attention.
However, in order to further improve flexibility and the easy deployment of collaborative
robots, efficient trajectory planning algorithms for complex robot machining tasks are also
necessary [7]. To provide autonomous and singularity-free motion planning, a detailed
understanding of available motion capabilities within a robot’s workspace is key for the
successful execution of complex robot machining tasks [8].
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A robot’s workspace is usually defined as the maximum reachable volume whereby
the end-effector is capable of reaching each point in at least one orientation. The reachable
workspace characteristics can be computed offline and visualized as a discretized map,
which is called a reachability or a capability map [9,10]. The manipulability of the robotic
mechanism near the singular position can be largely reduced, although the robot can
reach each point within a dexterous workspace—which is the subset of the reachable
workspace—with any orientation. Consequently, there is still no guarantee for a successful
and singularity-free Cartesian movement between two reachable poses in an operational
task space. Therefore, kinematic and dynamic constraints such as positional joint limits,
joint velocity, acceleration, and torque limits should also be considered when planning a
feasible robotic task, for which the required kinematic and dynamic capabilities should be
lower than the maximum allowable values of the robot.

A detailed understanding of robot movement capability within its workspace is crucial
for the successful planning and execution of more complex surface machining tasks that
require the simultaneous tracking of the desired workpiece surface all the time along
the path (robotic milling, welding, composite layup, hammer peening, etc.) [11–14]. The
execution of the complex robot task is not necessarily feasible anywhere in the robot
workspace, especially in the case of collaborative robots, where the margin between their
joint capabilities and task requirements is greatly reduced compared to conventional
industrial robots [15]. To determine the optimal placement of a robot task within the robot
workspace, it is necessary to propose a suitable objective function for optimization. In
order to optimize a robotic machining trajectory, some existing kinematic performance
indices are often taken into consideration [16–18]. A detailed analysis of these methods has
shown that the most of them suffer from physical inconsistency (inhomogeneous Jacobian
matrix [19], metric properties of twist [20]), do not take exact task requirements into account
(such as task direction, synchronous linear and angular motion), do not include maximum
kinematic constraints into consideration, or they are computationally intensive.

If only the kinematic of the robot is considered, a qualitative measure of the ability to
move the end-effector toward an arbitrary direction is most often based on analyzing the
manipulability ellipsoid that was first defined by Yoshikawa [21]. Yoshikawa’s manipula-
bility index is proportional to the volume of the manipulability ellipsoid and should give
information about the proximity to a singular configuration, which can also be estimated
by the condition number or minimal singular value [22]. These indices can provide general
evaluations of the robot’s capabilities in order to optimize the design of the robot [23] or
any other global characteristic of a robot. However, such performance measures are often
of limited practical usefulness since they are not reliable enough if the directional kinematic
capabilities have to be improved along the predefined robotic task.

A suitable performance metric to determine the maximum directional kinematic
capabilities of the robot end-effector was proposed in [24], that being the vector length
from the center of the manipulability ellipsoid to the surface intersection point in the
desired direction. It is also frequently referred to as the manipulator velocity ratio, first
introduced in [25]. An alternative approach has been proposed based on the manipulability
polytope [26], which is derived from the exact joint velocity limits. The ellipsoid approach,
which involves the Euclidian norm, can provide an estimation of a robot’s capabilities in
a task space relative to the effort in a joint space. However, the manipulability polytope
appears to be more appropriate for the estimation of the robot’s feasible capabilities in the
task space constrained by the joint velocity limits.

Both methods may result in a combination of translational and angular motion capabil-
ities in a single scalar performance measure, which makes them physically inconsistent [27].
Several approaches have been suggested to overcome the drawback of physical inconsis-
tency. One of the most common weights the translation capacity against the rotational [25],
or handles them in a separate manner [28]. Different methods exist for the determination
of the weights. However, arbitrariness in the choice of the weights is unavoidable [29].
The choice is usually made based on the task specifications [30] or based on the minimal
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principal axes of the translational and rotational subspace [31]. Some authors attempt to
avoid this problem by introducing the new performance indices [32,33]; however, they
only include translational directional capacities in their consideration. A new approach
based on power manipulability and considered to be fully homogeneous and physically
consistent has also been proposed in [34], but a direct relation between available power
and specific task requirements could not be established clearly.

The more objective approach seems to be the partition on the translational and rota-
tional motion capabilities. Through the decomposition of the task space into a translational
and rotational subspace, the translational and rotational manipulability polytope in a weak
and strong sense was derived in [35], similarly to Yoshikawa’s approach [36] in the case of
the manipulability ellipsoids. When the translational (rotational) manipulability polytope
in a weak sense is taken into consideration, the maximum possible linear (angular) velocity
can be evaluated separately from the rotational (translational) subspace, whereby the angu-
lar (linear) velocity may not be zero and possibly uncontrolled. That means that the length
of the translational (rotational) manipulability polytope represents the maximal feasible
linear (angular) velocity in the specified direction, generating a simultaneous movement in
the rotational (translational) subspace, which cannot be arbitrarily selected in accordance
with the task requirements. Thus, this approach can be useful only for the applications
where the angular velocity is irrelevant to the task performance [28,35,37]. However, in the
case of robot machining applications, the desired synchronization between both subspaces
according to the task requirements must be taken into account. Only pure translational
(rotational) motion can be analyzed by the translational (rotational) manipulability poly-
tope in a strong sense [36,38,39], but such applications, especially in the case of the robot
surface machining, rarely exist in practical industrial cases. Some more recent approaches
have evaluated the maximum directional kinematic capability using optimization-based
methods in the case of redundant manipulators [40,41], which are mostly used in the case
of redundant robot manipulators. If suitable linear inequality constrains related to the
specific task requirements can be defined, the formulation of the optimization problem can
also be adopted for robot machining purposes. However, finding the solution in this way
is a time-consuming process. Generally, none of the above-mentioned methods seem to
be suitable nor optimal, nor do any of them involve an appropriate consideration of the
scenario when synchronized translational and rotational motion is required.

For this reason, we propose a method called Decomposed Twist Feasibility (DTF) in
order to determine a feasible linear and angular velocity for robot machining purposes.
In contrast to the existing methods that estimate maximum directional capabilities, it can
precisely determine maximum motion capabilities for translation and rotation while consid-
ering the exact joint velocity limits and specific task requirements. Physical consistency can
be achieved since the translational and rotational performance capabilities are considered
individually. In contrast to the polytope approach, our solution can be computed in a
time-efficient manner. The test results based on a generic 3 DOF planar robot manipulator
and a collaborative robot UR5e demonstrate the usefulness of the proposed DTF method.

The remainder of this article is organized as follows. The related research based on
the manipulability ellipsoid and polytope is described in Section 2. In this section, we
also introduce a DTF method to determine the feasible linear and angular velocity in
synchronous motion, which is required in applications such as robot surface machining. In
Section 3, the numerical test results of the proposed DTF method in the case of a generic
3 DOF planar robot mechanism and a collaborative robot UR5e are shown in the context
of the twist manipulability polytope, which proves the effectiveness and usefulness of the
proposed DTF method. Finally, a discussion with conclusions is given in Section 4.
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2. Materials and Methods
2.1. Manipulability Ellipsoid

The forward velocity kinematics of an n degree-of-freedom serial robotic manipulator,
which we consider to be operating in an m-dimensional Euclidian operational space,
describes the relation between the end-effector velocities t, called twist, and joint velocities
.
θ:

t =
[

v
ω

]
= J(θ)

.
θ, (1)

where t is defined as a set of the linear velocity vector v ∈ R3 and the angular velocity
vector ω ∈ R3; J(θ) ∈ Rmxn is a Jacobian matrix of the manipulator, with components
of Jij = ∂ fi(θ)/∂θj, where i = 1 . . . m, j = 1 . . . n, and m = 6; θ ∈ Rn is the joint position

vector, and
.
θ ∈ Rn defines the joint velocity vector. We assume rotational joints without a

significant loss of generality.
The most widely used kinematic performance measure, which is based on the Jacobian

matrix, was introduced in [21]. The velocity manipulability ellipsoid of a given config-
uration provides an intuitive graphical representation of how efficient the mapping of
velocities is from the joint space to the task-space. The set of joint velocities with the unit
Euclidian norm associated with a unit sphere in the joint velocity space:

E =

{
.
θ ∈ Rn

∣∣∣∣ .
θ

T .
θ ≤ 1

}
(2)

maps into the velocity manipulability ellipsoid ε in the task space:

ε =
{

tT(J JT)
−1

t ≤ 1
}

. (3)

Note that
.
θ

T .
θ is equal to the square of the Euclidian norm

∥∥∥ .
θ
∥∥∥2

2
of a vector

.
θ. The

volume of ε, however, may be used to define the quantitative measure of manipulability w:

w =
√

det(J JT), (4)

which is often used, although it suffers from a few limitations related to the physical incon-
sistency of the Jacobian matrix [19]. Furthermore, despite its popularity, the manipulability
measure only gives a rough estimation of the robot’s movement capability and closeness
to the singularity, and it is not accurate enough to determine how fast the robot can move
in a certain direction. The manipulability ellipsoid principal axes—the direction of which
coincides with the eigenvectors of the square matrix J JT , and whose lengths correspond to
the singular values of J—represent the best and worst directions for the robot to perform a
movement.

A robot’s movement capability in any other direction can be geometrically described
as the distance from the center of the ellipsoid to the point where the line along the direction
of interest intersects the ellipsoid surface. Let û denote the unit vector in the task velocity
direction of interest, and µ2 be the distance from the ellipsoid center to the intersection
point on the ellipsoid surface in the direction along the vector û. Thus, one can write
t = µ2û, and in combination with (3), the following equation can be derived:

(µ2û)T(J JT)
−1

(µ2û) = 1. (5)

The scalar µ2 is then the velocity transmission ratio in the direction of û introduced by
Chiu [24]:

µ2 =
[
ûT(J JT)

−1
û
]−1/2

. (6)
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The velocity transmission ratio (6), also known as the manipulator velocity ratio [25]
or directional manipulability measure [42], can also be derived from the ratio of the task
velocity vector norm to the joint velocity vector norm:

µ2 = ‖t‖/
∥∥∥ .

θ
∥∥∥. (7)

The value of this index defines how effectively the robot’s end-effector can move in
the direction û to satisfy condition

∥∥∥ .
θ
∥∥∥

2
≤ 1 in the joint space. The direction in which the

velocity transmission ratio is at its maximum is the optimal task direction for affecting
velocity, as the lowest robot overall kinematic effort is needed. However, since a natural
norm does not exist in the space used to represent the twist [29], which involves both
linear and angular velocities, it leads to the physically non-consistent definition of the
performance index with no clear physical meaning [19].

2.2. Manipulability Polytope

The main disadvantage of the manipulability ellipsoid is the fact that it does not
transform the exact joint velocity constraints into the task space [43]; however, it rather
serves as a conservative approximation of the end-effector velocity capabilities since it
relies on the Euclidean norm. In practical cases, the overall kinematic performance of the
end-effector in a task space is bounded by each joint velocity limit [26]:

max
∣∣∣ .
θi

∣∣∣ ≤ 1, (8)

where
.
θi denotes the joint velocity of the i-th joint if we assume that the maximal joint

velocity is limited by the unit value of 1. The bounds on the individual joint velocity form a
convex joint velocity polytope Q with 2n vertices in the n-dimensional joint space, which
can be written in the following compact form:

Q =
{ .

θ ∈ Rn |
∥∥∥ .

θ
∥∥∥

∞
≤ 1

}
, (9)

where ‖.‖∞ denotes the infinity norm or L∞ norm, which is equal to the maximum absolute
value of the vector’s components. The linear mapping of Q from the joint to the task space
(1) results in another convex polytope Ptwist with the same number of vertices, which is
called a twist manipulability polytope [15]:

Ptwist =
{

t ∈ Rm
∣∣∣ t = J(θ)

.
θ,
∥∥∥ .

θ
∥∥∥

∞
≤ 1

}
. (10)

Since we are interested in quantifying the ability to change the position and orientation
of the end-effector along a specified task direction, the maximum feasible magnitude of
the end-effector velocity along û under the velocity constraints (8) can be defined as
follows [28]:

µ∞ = (max
∣∣∣ .
θ
∗
i

∣∣∣
i

)
−1

, (11)

where
.
θ
∗
=
[ .
θ
∗
1 ,

.
θ
∗
2 , . . . ,

.
θ
∗
n

]T
is the minimum infinity norm solution of û = J

.
θ. The end-

effector velocity (11) can be derived from the quotient of the weighted task velocity vector
Euclidian norm and the joint velocity vector infinity norm [44]:

µ∞ = ‖t‖/
∥∥∥ .

θ
∥∥∥

∞
, (12)

where the joint velocity vector
.
θ belongs to the input polytope Q (9), which is mapped

into the output task space velocity polytope calculated by (1). Geometrically, µ∞ is the
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distance from the center of the output polytope to the point where the line along the desired
direction of û intersects the polytope.

Similar to the manipulability ellipsoid concept, the manipulability polytope con-
cept also suffers from physical inconsistency due to the unwanted mixing of the linear
and angular velocity in a single scalar value. Furthermore, it may be subjected to an
algorithm seeking a computationally complex and less tractable minimum infinity norm
solution [35,45,46].

2.3. Translational and Rotational Manipulability

Due to the physical inconsistency of the twist space manipulability ellipsoids and
polytopes, the capabilities of translational and angular velocity should be handled individ-
ually. For this purpose, Yoshikawa [36] decomposed the task space into translational and
rotational subspaces. He defined the translational (rotational) manipulability ellipsoid in
the weak sense as a set of all translational velocities that are realizable under the constraint∥∥∥ .

θ
∥∥∥

2
≤ 1. The translational (rotational) manipulability ellipsoid in the strong sense has an

additional constraint, which requires the end-effector orientation to stay constant (angular
velocity is zero, ω = 0).

Similarly to the Yoshikawa approach, in the case of a manipulability ellipsoid, the
translational and rotational velocity capabilities were also handled separately for the
polytope approach [28]. Since the polytopes provide a more accurate estimation of the
maximum achievable end-effector velocities compared to the ellipsoids, only decomposed
manipulability polytopes will be considered in the following. In this case, the weak sense
polytope may result in two different types, i.e., with the minimum L∞ norm and with the
least L2 norm solution of joint velocities, respectively.

The translational (rotational) velocity polytope PT
∞(PR

∞) in the L∞ weak sense is defined
as the set of all linear (angular) velocities that are realizable under the constraints (8) with
the minimum infinity norm solution, if the joint velocity polytope is transformed to the
task space via JT (JR):

PT
∞ =

{
v ∈ R3

∣∣∣ v = JT
.
θ,
∥∥∥ .

θ
∥∥∥

∞
≤ 1

}
(13)

PR
∞ =

{
ω ∈ R3

∣∣∣ ω = JR
.
θ,
∥∥∥ .

θ
∥∥∥

∞
≤ 1

}
(14)

where the Jacobian matrix is partitioned into translational and rotational (3xn) submatrices:

J =
[

JT
JR

]
(15)

Note that mapping v = JT
.
θ in (13) (ω = JR

.
θ in (14)) describes the under-determined

linear system. The translational polytope PT
∞ is illustrated in Figure 1.

In Figure 1b,c, the example of a translational velocity polytope PT
∞ in comparison to the

twist polytope Ptwist is presented in two different views in the task space. From Figure 1c,
it can easily be seen that the translational velocity polytope PT

∞ fits to the orthogonal
projection of the twist manipulability polytope Ptwist in the translational subspace.

When an n-dimensional polytope is mapped to a space of lower dimension (k < n),
some of the vertices of the original polytope are mapped into an internal region of the
k-dimensional polytope [47]. For this kind of redundancy, part of the joint velocities
may produce end-effector velocities with non-zero rotation (translation) components. The
maximum feasible linear end-effector velocity (which could be denoted by v∞) in a certain
translational direction ûT ∈ R3, or the maximum feasible angular end-effector velocity
(which could be denoted by ω∞) in the specific rotational direction ûR ∈ R3, can be
determined by geometry-based methods [43,45,48] as the vector length from the origin of
the translational (rotational) velocity polytope PT

∞ (PR
∞) to the intersection with its boundary

in the specified direction.
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Figure 1. Example of a manipulability polytope representation based on the 3DOF planar manipula-
tor: (a) Joint velocity polytope Q and the minimum L∞ norm solution of joint velocities represented
by QT

∞; the task space polytopes Ptwist and PT
∞ in the isometric view (b), and in the top view (c).

One may select one of the subspace manipulability polytopes, depending on the
task at hand. If the main concern of the task is maximal linear velocity, then the vector
length of the translational velocity polytope will be considered, and vice versa. Since
translational subspace is considered separately from rotational subspace, multiple solutions
may exist in the joint space, which satisfies constraint (8). The minimum infinity norm
solution, illustrated by QT

∞ in Figure 1a, can be found numerically based on the structured
linear algebra algorithm [46], which is rather computationally extensive. Alternatively, this
problem can be expressed as a linear programming problem, where the optimal solution
exists at the intersection of the explicitly given linear inequality constraints.

Besides polytope analysis, performance indices based on the vector expansion method [49]
offer a computationally faster solution compared to the polytopes approach, since only
the robot’s capabilities are investigated in the direction of interest in the task space. The
maximum achievable linear (angular) end-effector velocity in the ûT (ûR) direction, based
on the vector expansion method, can be estimated by the following:

v2 =
∥∥∥J†

T ûT

∥∥∥−1

∞
(16)

ω2 =
∥∥∥J†

RûR

∥∥∥−1

∞
(17)

The value v2(ω2) matches the vector length of a manipulability polytope PT
2 (PR

2 ) in
the L2 weak sense, with the least Euclidian norm solution of joint velocities in the direction
defined by ûT (ûR). The polytope PT

2 (PR
2 ) is inscribed in the translational (rotational)

manipulability polytope PT
∞ (PR

∞) in the L2 weak sense, defined as follows:

PT
2 =

{
v ∈ R3

∣∣∣ v = JT
.
θ,
∥∥∥ .

θ
∥∥∥

∞
≤ 1,

.
θ = J†

Tv
}

(18)

PR
2 =

{
ω ∈ R3

∣∣∣ ω = JR
.
θ,
∥∥∥ .

θ
∥∥∥

∞
≤ 1,

.
θ = J†

Rω
}

(19)

which determines a set of joint velocities defined by the intersection Q ∩ Row(JT)(Q ∩
Row(JR)) in the joint space, where Row(JT) (Row(JR)) is the row space of the translational
(rotational) Jacobian matrix.

The polytope PT
2 is depicted in Figure 2. In Figure 2b,c, the polytope PT

2 in relation
to the polytopes Ptwist and PT

∞ is shown in two different views in the task space, where
it can be seen that PT

2 is inscribed in the PT
∞. Unlike the polytope PT

∞, which defines the
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minimum L∞ norm solution of the joint velocities, the polytope PT
2 represents the maximal

linear velocities with the least L2 norm solution of the joint velocities under the constraint
(8), i.e.,

∥∥∥ .
θ
∥∥∥

∞
≤ 1, illustrated by QT

2 in Figure 2a.
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The polytope PT
2 is depicted by Figure 2. In Figure 2b,c, the polytope PT

2 in relation
to the polytopes Ptwist and PT

∞ is shown in two different views in the task space, where
it can be seen that PT

2 is inscribed in the PT
∞. Unlike the polytope PT

∞, which defines the
minimum L∞ norm solution of the joint velocities, the polytope PT

2 represents the maximal
linear velocities with the least L2 norm solution of the joint velocities under the constraint
(8), i.e.,

∥∥∥ .
θ
∥∥∥

∞
≤ 1, illustrated by QT

2 in Figure 2a.
In terms of trajectory planning optimization, an analysis of the translational manipu-

lability polytope in the L2 or L∞ weak sense can offer a trajectory planning that reaches
the goal pose faster [28] or with lower kinematic effort, assuming that the orientation of
the end-effector is not important. However, how can translational capabilities be managed
separately from the rotational and also keep control over a rotational subspace?

If we add another constraint that requires joint velocities to be projected onto the null
space of JR (JT), the translational (rotational) manipulability polytope in the strong sense
can be obtained, which enables the analysis of purely translational (rotational) motions. In
order to graphically represent the translational (rotational) manipulability polytope in the
strong sense, it is necessary to find the intersection between the joint velocity polytope Q
and the null space N(JR)(N(JT)), i.e., Q ∩ N(JT) (Q ∩ N(JR)). The mapping of such joint
velocities to the task space forms a translational (rotational) manipulability polytope in the
strong sense PT

strong(PR
strong), with the shape depending on the dimension of the considered

null space:
PT

strong =
{

v ∈ R3
∣∣∣ v = JT

.
θ,
∥∥∥ .

θ
∥∥∥

∞
≤ 1, JR

.
θ = 0

}
(20)

PR
strong =

{
ω ∈ R3

∣∣∣ ω = JR
.
θ,
∥∥∥ .

θ
∥∥∥

∞
≤ 1, JT

.
θ = 0

}
(21)

The translational manipulability polytope PT
strong is depicted in Figure 3. A comparison

with the polytopes Ptwist, PT
∞, and PT

2 is shown in Figure 3b,c. The polytope PT
strong is quite
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reduced in comparison to the polytopes PT
∞ and PT

2 . The joint velocity solution under the

constraint JR
.
θ = 0 and (8), i.e.,

∥∥∥ .
θ
∥∥∥

∞
≤ 1, is illustrated by QT

strong in Figure 3a.
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∞, the least L2 norm solution of the joint velocities represented by QT
2 , and the intersection

between the joint velocity polytope Q and the null space N(JR) represented by QT
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polytopes Ptwist, PT
∞, PT

2 , and PT
strong in the isometric view (b) and in the top view (c).

The translational (rotational) manipulability polytope in the strong sense PT
strong

(PR
strong) allows for a complete separation of the translational and rotational capability

analyses since only pure translational (rotational) movement is being considered at a time.
What if a robot task requires a simultaneous motion with synchronized translational and ro-
tational end-effector velocities, as in the case of robot surface machining? For this purpose,
a solution will be derived in the following.

2.4. Proposed Method

The estimation of the maximum feasible linear and angular velocity for simultaneous
linear and angular motion using the proposed DTF method will be explained in this
section. The problem can be formulated as follows: We seek a maximum linear (angular)
velocity in the desired direction, in a rotational (translational) motion synchronized with
the specified direction, under joint velocity constraints (8). In the following, we assume
an n degree-of-freedom, non-redundant, robotic serial-link manipulator in a non-singular
configuration.

Unlike the majority of existing methods that take the translational (rotational) Jacobian
submatrix JT (JR) into consideration, the derivation of the proposed DTF method is based
on the Jacobian submatrices, which fulfils the additional restrictions with the null space
projection [36,38]. Let J̃T denote a 3xn translational Jacobian submatrix:

J̃T = JT(I − J†
R JR), (22)

where I is the identity matrix, and (I − J†
R JR) is the projector to the rotational null subspace,

with the operator (.)† that stands for the Moore–Penrose pseudoinverse of a matrix. Simi-
larly, the rotational Jacobian submatrix J̃R can be obtained. If we assume a square Jacobian
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matrix, then it can be shown that the inverse of the Jacobian (15) can be represented by two
parts, which can be derived from the pseudoinverse of J̃T and J̃R [35,36]:

J−1 =
[

J̃†
T J̃†

R
]
, (23)

such that the joint velocity vector can be decomposed correspondingly as:

.
θ = J−1 · t =

.
θT +

.
θR, (24)

where
.
θT ∈ N(JR) and

.
θR ∈ N(JT). Note that in the latter equation, we assume that the

joint velocity vector can be described in a form consisting of two parts related to translation
and rotation. This can be rewritten as follows:

.
θ = J̃†

Tv + J̃†
Rω, (25)

where the first part of (25) are the joint velocities
.
θT ∈ N(JR) required solely by the

translational end-effector displacement (i.e., with zero contribution to the rotational motion),
while the second part are joint velocities

.
θR ∈ N(JT) responsible solely for rotational end-

effector displacement (i.e., with zero contribution to the translational motion). To find the
maximal velocity capabilities in the task space, we need to analyze how well the task’s
requirements fit the robot’s joint velocity constraints (8). A robot surface machining path
consists of waypoints located along a curved surface. During the process, the robot needs
to follow the prescribed path with a constant linear velocity while maintaining the end-
effector orientation normal to the curved surface. Synchronization between the desired
linear and angular velocity vectors within two neighboring waypoints can be determined
by the curved surface geometry.

In contrast to the existing methods, where the desired motion synchronization cannot
be controlled (the maximum kinematic capabilities can be evaluated only based on the
desired linear/angular velocity direction), the proposed method also takes the desired
motion synchronization into consideration. The ratio of these magnitudes denoted by
h ∈ R defines the relative importance of the synchronized translational and rotational
motion independently of the velocity profile scaling:

h = V/Ω, (26)

where V = ‖v‖2 is the magnitude of the linear velocity, and Ω = ‖ω‖2 is the magnitude of
the angular velocity. The parameter h is a task-dependent velocity ratio factor that reflects
the synchronization of translational and rotational motion.

The linear velocity vector and the angular velocity vector can be represented by:

v = V · ûT , (27)

ω = Ω · ûR, (28)

where ûT ∈ R3 and ûR ∈ R3 are the unit vectors in the desired direction of the linear and the
angular velocities in the task space, respectively. When the end-effector maintains a constant
orientation, there is no rotational motion required (ω = 0), thus the ratio h approaches
infinity and the motion is purely linear. The maximum directional kinematic capabilities
can be obtained by the translational manipulability polytope PT

strong in the strong sense. If
the velocity ratio factor h is zero, the motion is pure rotation. The maximum directional
kinematic capabilities can be determined by the rotational manipulability polytope PR

strong
in the strong sense. Combining the task requirements and the robot’s velocity capabilities
leads to the following: ∥∥∥ J̃†

TVûT + J̃†
RΩûR

∥∥∥
∞
≤ 1. (29)
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The maximum linear and angular velocity can be found by scaling under the con-
straints (8), considering (26). This yields the following equations:

Vmax =
∥∥∥ J̃†

T ûT + h−1 · J̃†
RûR

∥∥∥−1

∞
, (30)

Ωmax =
∥∥∥h · J̃†

T ûT + J̃†
RûR

∥∥∥−1

∞
, (31)

where we consider that the linear velocity is synchronized with the angular velocity, thus
Ωmax = h−1 ·Vmax and Vmax = h ·Ωmax. In contrast to the existing methods, the proposed
DTF method gives us the physically meaningful and accurate information about how fast
the robot can move when a simultaneous translational and rotational motion is needed
in directions ûT and ûR, respectively. The maximum linear (angular) velocity vector,
considering the desired angular (linear) motion constraint, can be obtained as follows:

vmax = VmaxûT , (32)

ωmax = ΩmaxûR, (33)

which can be combined further into the maximum feasible twist vector tT
max =

[
vT

max ωT
max
]

for the given base task parameters (ûT , ûR, h) and under the constraints (8).
To provide an intuitive understanding of the proposed DTF method, the maximum

linear and angular velocity vectors (vmax and ωmax) are shown graphically by the twist
manipulability polytope in Figure 4. In the case of the 3 DOF planar robotic mechanism,
the twist manipulability polytope lies in the 3-dimensional space, which consists of the
2-dimensional translational subspace (the vx − vy plane) and the 1-dimensional rotational
subspace (ω-axis). The maximum linear velocity capability is illustrated as a vector vmax in
red, with the direction ûT and the magnitude Vmax, which lie in the vx − vy plane, and it
can be interpreted as the orthogonal projection of the twist vector onto the translational
subspace. The maximum angular velocity capability is shown as a vector ωmax in blue in
the ω-axis, with the direction ûR and the magnitude Ωmax. The tip of the resultant twist
vector tmax in purple is touching the surface of the twist manipulability polytope.
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Unlike the existing methods [32,49] that separately evaluate maximal end-effector
capabilities based on the desired velocity direction for the translational and the rotational
subspaces, the proposed DTF method, although based on twist decomposition, links both
individual subspace constraints by the inclusion of the specific robot task requirements
with the velocity ratio factor h. In terms of the robot machining of the workpiece with
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complex surface geometric properties, the task requirements depend on the variation in
the surface curvature and the defined tool path, which is then reflected in the velocity
ratio factor h. Thus, for a given translational direction ûT , rotational direction ûR, and
velocity ratio factor h, we seek the maximum linear Vmax and rotational velocity Ωmax
that could be achieved. To provide an illustrative and intuitive demonstration of the
proposed DTF method with respect to different task requirements, the maximal linear and
angular end-effector velocities are illustrated graphically by the task-space twist polytope
in Figure 5.
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Figure 5. Twist polytope Ptwist with the iso-curves of the same task requirements (h = const.); (a,c,f,h) a
polytope-based representation of the feasible angular velocity (ωmax —blue) for (i) a concave path
segment, (ii) a convex path segment, (iii) a flat path segment, and (iv) a flat convex path segment,
respectively; (b,d,e,g) a polytope-based representation of the feasible linear velocity (vmax —red) for
(i) a concave path segment, (ii) a convex path segment, (iii) a flat path segment, and (iv) a flat convex
path segment, respectively.

In the middle of Figure 5, we show the twist polytope with the curves on its surface,
described by the tips of the resultant twist velocity vectors at different values of the velocity
ratio factor h, while the translational direction vector interpolates as ûT =

[
cos(α) sin(α)

]
,

α = 0 . . . 2π. Note that the different values of the velocity ratio factor h are related to
different task requirements, which, in our case, are chosen as: (i) Concave path segment
with h = 0.21, (ii) Convex path segment with h = 0.42, (iii) Flat path segment with h
= 1000, (iv) Flat convex path segment with h=1.25. Each of the polytope iso-curves is
related to the evaluation of the twist vector tips with the same task requirements at the
specific value of the synchronization parameter h (also see the colorbar for the selected
value). It can be noted that each iso-curve lies entirely on the surface of the manipulability
polytope, thus satisfying the constraint given by (8). If the reverse direction of angular
velocity is considered, the set of resultant tips are mirrored to the opposite side of the twist
manipulability polytope.

The maximum linear and angular velocity vectors of each example (i)–(iv) is addition-
ally shown in detail by two different projection views, i.e., the vx −ω plane and the vx − vy
plane, respectively. In the vx − vy plane, the maximum feasible linear velocity vectors
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(plotted in red) can be obtained if the unit direction vector ûT is interpolated as described
above. Note that this projection view also depicts the translational polytopes PT

∞, PT
2 , and

PT
strong in reddish, greenish, and yellowish colors, respectively. The corresponding angular

velocity vectors are plotted in blue in the vx − ω plane for the directions ûR = +1 or
ûR = −1. The maximum feasible magnitude of the linear and angular velocity vectors for
the same combination of ûT and ûR obviously depends on the value of the synchronization
parameter h.

The example (i) represents the case where the curvature of the path is high, and the
change in the end-effector orientation is much bigger than the change in position (the
highest value of h−1). Since the example path curve is of a concave function shape, the
direction of angular velocity is ûR = +1, and the tips of the resultant vectors are located
on the upper part of the twist manipulability polytope Ptwist(see Figure 5a)). The set of
maximum feasible linear velocity vectors form a circle; thus, the maximum directional
kinematic capabilities are the same in all directions (see Figure 5b). Since almost only
angular motion is needed in this case, the maximum feasible linear velocities based on
the proposed DTF method (vmax) are quite low. Note that in the case of the translational
manipulability polytope PT

∞ (reddish) or PT
2 (yellowish), the maximum linear velocity

vector would end on the surface of each polytope (see Figure 5b) since the analysis of linear
velocity capabilities are evaluated separately from the rotational subspace in this case.

An example of the path segment with a convex function shape (ûR = −1) is demon-
strated in the case (ii). The tips of the resultant vectors are located at the bottom of the
manipulability polytope (see Figure 5c) in this case. The desired combination of linear and
angular motion can be performed faster in the +y direction than in the −y direction if the
same direction of angular velocity is considered (see Figure 5d). The magnitude of the
maximum feasible linear velocity based on the manipulability polytope PT

∞ (reddish) is the
same as in Figure 5b; an even more flattened path segment is considered in this case, and
different synchronization between the linear and angular velocities is needed (more linear
motion).

In the example (iii), almost only translational motion is considered. The magnitudes of
the linear velocity vectors are equal to the vector lengths of the translational manipulability
polytope in the strong sense PT

strong (see Figure 5e). The resultant vectors lie in the vx − vy
plane since there is no rotational motion (see Figure 5f). Although the results based on
the manipulability polytope PT

strong (greenish) can give the same solution as the proposed
method, the analysis of this polytope is not suitable for other cases, where synchronization
between the linear and angular motion is needed.

In contrast to (iii), example (iv) represents a more flattened path segment. The magni-
tudes of the feasible linear velocity vectors are larger than the magnitudes of the angular
velocity vectors. Especially in Figure 5g,h, it can clearly be seen that the maximal directional
kinematic capabilities are strongly dependent on the direction of the linear velocity vector
ûT , considering that the velocity ratio factor h and the direction of angular velocity ûR for
all directions are the same. As it can be seen from Figure 5g, the geometry obtained by
the proposed DTF method touches the translational manipulability polytope PT

∞ (reddish)
only in two directions, which means that only for those directions, the same solution can
be obtained based on the translational manipulability polytope in the weak sense. For
all other directions, the linear velocity evaluated by PT

∞ can be feasible only if suitable
synchronization to rotational motion is considered, as can be seen in Figure 5h. The angular
velocity vector should not exceed the dimension of the twist manipulability polytope.

Note that Figure 5b,d,e,g beside the weak and the strong translational polytopes show
regions of feasible linear velocities under the constraint of the task-dependent velocity ratio
factor h, which are introduced as subregions within the L∞ weak polytopes.
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3. Results

To demonstrate the effectiveness and potential usefulness of the proposed DTF method,
we present two case studies in which the maximal end-effector capabilities were evaluated,
i.e., for a generic 3DOF planar robot manipulator and for the 6DOF collaborative robot
UR5e. To ensure the physical consistency of such evaluation in the case of a robot machining
task, where the simultaneous control of synchronous translational and rotational motion
is required, the maximal linear and angular velocity of the end-effector will be given
individually for a predefined path segment. We will show that the maximal end-effector
capabilities do not only depend on the configuration and direction of the desired linear
and angular motion, but they are also strongly dependent on the specific task requirements.
Additionally, in the case of the collaborative robot UR5e, it will be shown that this criterion
could be useful in the case of a task-oriented workspace analysis and an optimal task
placement.

3.1. Basic Case Study Formulation

We consider the robot machining trajectory along a complex curved surface that is
divided into N equally spaced curve segments defined by M = N + 1 waypoints. For this
evaluation, the maximum end-effector kinematic capabilities will be analyzed to move the
robot end-effector from an initial point to a target point in each segment, while aiming not
to exceed the joint velocity limits. In addition, the end-effector tip should follow the desired
surface along the path all the time, moving with constant linear velocity and synchronizing
the angular velocity to maintain the tool orientation normal to the surface. Our goal was to
calculate the maximum feasible linear velocity for each segment of the desired path. In this
study, three different parts of the geometrically curved surface will be analyzed and used
to demonstrate the proposed DTF method graphically and numerically.

3.2. Generic 3 DOF Planar Manipulator
Path Segment Feasiblity

The proposed DTF method was firstly applied to a generic 3 DOF planar manipulator,
which enables an easier graphical representation of the manipulability polytope in a twist
space. The 2D curve shown in Figure 6 represents the path that the manipulator end-effector
followed. A set of waypoints was placed along the path, with the orientation normal to the
curve. The end-effector was to simultaneously reach each of them at the desired position
and orientation. In this experiment, the proposed DTF method was used to determine the
maximum feasible linear velocity at three different parts of the curved path, as shown in
Figure 6. Example (i) represents a slightly curved path segment, whereas a strongly curved
path segment was considered in example (ii), and a flat path segment was analyzed in
example (iii). We assume that the maximum kinematic capabilities of the robot are limited
by the joint velocity

.
θmax = 1 (rad/s) for all joints.
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At each of the path segments under consideration, the direction of linear and angular
velocity was determined along the path. Since simultaneous synchronous linear and
angular motion was required along the path, the relative importance of each motion type
plays a crucial role in the accurate determination of the maximal end-effector capabilities.
In the case of following the curved path, the ratio between the translations and the rotations
depends on its curvature. During the motion along the strongly curved path segment, as in
case (ii), a significant change in the end-effector orientation was required, while a relatively
small change in position was performed; therefore, the ratio between the magnitudes of the
linear and angular velocities, denoted by the synchronization parameter h, converged to 0.
For the flat path segment (iii), the synchronization parameter h value was the highest since
the linear motion dominated over the angular. The values for the considered TCP position,
the direction of the linear velocity vector ûT , the direction of the angular velocity vector ûR,
and the velocity ratio factor h of each path segment are summarized in Table 1.

Table 1. Task requirements for three different path segments (3 DOF manipulator).

Path Segment Position ûT ûR h

(i) X: 0.7720, Y: 0.3882
[
0.7720 0.3882

]
[+1] 1.3231

(ii) X: 1.0340, Y: 0.2374
[
1.0340 0.2374

]
[+1] 0.0493

(iii) X: 1.1640, Y: 0.3877
[
1.1640 0.3877

]
[−1] 62.4704

Based on the proposed DTF method, the maximum feasible directional kinematic
capabilities (Vmax denotes the maximal magnitude of linear velocity evaluated by (30),
whereas Ωmax denotes the maximal magnitude of angular velocity evaluated by (31)) was
calculated for each path segment. The required joint velocities were also computed to
confirm that condition (8) was satisfied. From Table 2, it can be noted that the computed
combination of the maximal linear and angular velocity reaches the joint velocity limit
in at least one joint in all cases. Although the velocity limit was achieved in all path
segments, at least at a single joint, the maximum linear velocity varied, depending on the
considered robot configuration, the linear and angular velocity directions, and the specific
task requirements linked to the curvature of the path that determines the velocity ratio
factor h.

Table 2. Feasible directional kinematic capabilities for three different path segments (3 DOF manipu-
lator).

Path Segment Vmax (m/s) Ωmax (rad/s)
.
θ (rad/s)

(i) 1.1439 0.8646
[
−0.7471 0.6117 1.0000

]
(ii) 0.0489 0.9935

[
0.4469 −0.4534 1.0000

]
(iii) 0.9471 0.0152

[
−0.1118 1.0000 −0.9034

]
The highest maximum feasible linear velocity was achieved in the case of segment

(i), where the required change in position was approximately the same in relation to the
change in the orientation (h ≈ 1). The lowest maximum feasible linear velocity was
obtained for segment (ii), where almost only the angular motion was needed. For a better
understanding of the computed results, the graphical representation of the proposed DTF
method is presented in Figure 7 in relation to the manipulability polytopes defined above.
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For each of the considered examples (i), (ii), and (iii), the twist polytope Ptwist and
the translational manipulability polytopes PT

∞, PT
2 , and PT

strong are illustrated in Figure 7 in
three different views, i.e., the 3D projection view, the 2D view in the vx −ω plane, and the
2D view in the vx − vy plane, respectively. The figure also depicts the maximum feasible
linear and angular velocities, as determined by the proposed DTF method given by (30),
(31).

It can easily be verified that the translational manipulability polytope PT
∞ fits to the

orthogonal projection of the twist manipulability polytope Ptwist onto the translational
subspace, shown by the vx–vy plane in this case (Figure 7c,f,j). For the synchronous linear
and angular motion, considering the desired task requirements given by the synchroniza-
tion parameter vmax h, the maximal linear velocity vector vmax (see (32)) based on the
proposed DTF method was calculated and shown as a vector in red. For the desired motion
considered for the segment (i), the magnitude of the maximum linear velocity vector vmax
was smaller than the vector length of the manipulability polytope PT

∞. When almost only
angular motion was needed, as in the case of segment (ii), the maximum linear velocity vmax
was near zero. In the case of segment (iii), where the linear motion dominates the angular
motion, the value of Vmax was equal to the vector length of the translational manipulability
polytope PT

strong in the strong sense, which was also the highest feasible linear velocity for
this combination of ûT and ûR.

The vx −ω plane view (Figure 7b,c,e) shows the maximum feasible angular velocity
capabilities of each path segment. The maximum feasible angular velocity for the specific
task requirements of each considered segment is shown as a vector ωmax in blue. The maxi-
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mum feasible angular velocity can be achieved for segment (ii), where the angular motion
dominates the linear motion. A relatively high angular velocity can also be performed for
the synchronous movement considered for segment (ii), while the lowest angular velocity
can be performed in the case of segment (iii) since almost only linear motion was needed.

3.3. Collaborative Robot UR5e
3.3.1. Path Segment Feasiblity

The proposed DTF method was also demonstrated and verified on the collaborative
robot UR5e, which is of 6DOF, thus enabling robot operation in a 3D space. In this case, the
3D curve on the workpiece surface was determined as the path that the robot tool had to
follow. A set of waypoints was placed along the path, with the orientation normal to the
surface. The robot end-effector was to simultaneously reach each of them with the desired
position and orientation. In this experiment, the proposed DTF method will be used to
determine the maximum feasible linear velocity at three different parts of the curved path,
as shown in Figure 8, if we assume that the maximum kinematic capabilities of the robot
are limited by the joint velocity

.
θmax = 3.14 rad/s for all joints. Similar to the 3 DOF planar

case, example (i) represents a flat path segment of the surface, a strongly curved path
segment was considered in example (ii), and a slightly curved path segment of the surface
was analyzed in example (iii).
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Figure 8. Collaborative robot UR5e with three different parts of the curved surface: (i) a flat path
segment; (ii) a strongly curved path segment; (iii) a slightly curved path segment.

At each of the segments under consideration, the directions of the linear and angular
velocities were determined along the path. During the motion along path segment (ii), a
significant change in the end-effector orientation was required, while a relatively small
change in position was performed; therefore, the ratio between the magnitudes of the linear
and angular velocities, denoted by h, converged to 0. On the relatively flat path segment (i),
the velocity ratio factor h was the highest since the linear motion dominated the angular
motion. The direction of the linear velocity vector ûT , the direction of the angular velocity
vector ûR, and the velocity ratio factor h of each segment are shown in Table 3.

Table 3. Task requirements for three different path segments (UR5e).

Path Segment ûT ûR h

(i)
[
0.9999 0 0.0117

]T [
0.6209 0.7625 −0.1820

]T 4.4632
(ii)

[
−0.9893 0 0.1459

]T [
0.0865 −0.9761 −0.1994

]T 0.0360
(iii)

[
0.9992 0 0.0411

]T [
0.9997 −0.0249 0.0011

]T 0.7454

The maximum linear velocity Vmax and maximum angular velocity Ωmax based on the
DTF method are shown in Table 4, together with the required joint velocities

.
θ.
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Table 4. Feasible directional kinematic capabilities for three different path segments (UR5e).

Path Segment Vmax (m/s) Ωmax (rad/s)
.
θ (rad/s)

(i) 1.1552 0.2588 [−0.9854, 1.7508, − 3.1416, 1.2716, 0.1298, − 0.9807]T

(ii) 0.0699 1.9391 [0.3208,−1.2202, 2.4198, − 3.1416, − 0.7500, 0.8459]T

(iii) 2.4365 3.2688 [−3.1063, 1.6537, − 2.7480, − 1.4495, 2.2663, − 3.1416]T

For each of the considered examples (i), (ii), and (iii), the 3D translational manipula-
bility polytope PT

∞ in the L∞ weak sense (magenta), the 3D translational manipulability
polytope PT

strong in the strong sense (green), the 3D rotational manipulability polytope PR
∞

in the L∞ weak sense (blue), and the 3D rotational manipulability polytope PR
strong in the

strong sense (red) are all illustrated in Figure 9. The maximum feasible linear velocity vector
vmax (red arrow) and the maximum feasible angular velocity vector ωmax (blue arrow) by
the proposed DTF method are also illustrated. Note that the twist space in this case is of
6D, and thus inconvenient for a graphical presentation of the 6D twist polytope Ptwist.
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If the main concern was the linear velocity (the value of the synchronization parameter
h was high), as in case (i), the maximal linear velocity vector vmax in the direction ûT
practically coincides with the vector length of the translational manipulability polytope
PT

strong in the strong sense in the same direction. The maximal angular velocity Ωmax was
near zero since the flattest part of the surface was considered. On the other hand, the
lowest value of the synchronization parameter h was when a greater change in orientation
was required as compared to the change in position, as it was in case (ii). As a result,
the maximal angular velocity Ωmax was, in this case, equal to the vector length of the
rotational manipulability polytope PR

strong in the strong sense, and the maximal feasible
linear velocity Vmax was the lowest among all three cases. When the synchronized linear
and angular motion was taken into account, as in case (iii), the maximum linear and angular
velocities were higher, and its vectors exceeded the bounds of the translational (rotational)
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manipulability polytope PT
strong (PR

strong) in the strong sense. Generally, however, they can
never exceed the bounds of the translational (rotational) manipulability polytope PT

∞ (PR
∞)

in the weak sense.

3.3.2. Workspace Analysis

An important issue in robot task design is to place the robot tool path in such a
location in the robot’s workspace where the robot will be capable of performing a desired
movement utilizing the lowest possible joint velocities, or, in other words, performing
a desired movement with maximum feasible tool velocity. In order to demonstrate that
we can apply the proposed DTF method, we generated a colored task-oriented kinematic
capability map, which represents the maximum directional kinematic capabilities for the
desired movement. The kinematic capabilities were computed for equidistantly distributed
sets of points in the UR5e’s horizontal x-y plane (z = 0) of the base robot frame {B}, as shown
in Figure 10, where n = 0.05 m denotes the discretization step for both directions, and
R = 1 m and r = 0.2 m represent the inner and the outer workspace boundaries, respectively.
The maximum linear velocity was calculated at each discretized point along a specified
task direction (i), (ii), and (iii) (see Figure 8), which required synchronous translational–
rotational motion. The robot configuration was chosen, as shown in Figure 10, for all
discretized points.
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Figure 10. Discretization of the robot workspace.

At each point, the inverse kinematic solution was firstly computed for the considered
robot configuration. Only those points for which the inverse kinematic solution exists
were included in further workspace analysis; the others were disregarded. The maximum
linear velocity Vmax based on the proposed DTF method (30) was calculated for those with
a valid inverse kinematic solution; then each of them was assigned to a different color,
ranging from magenta to green (see the colorbar in Figure 11 for the selected value), which
formed a so-called task-oriented kinematic capability map, illustrated in Figure 11 for
each path segment. The magenta-colored areas represent the placement with the lowest
feasible linear velocity (the worst robot kinematic capabilities for the desired task), and
the green-colored areas represent locations with the maximum value of the feasible linear
velocity (the best robot kinematic capabilities for the desired task). Since Vmax is related to
Ωmax by Ωmax = h−1 ·Vmax, the distribution of the colormap would be the same for Ωmax,
only scaled by h−1. The randomly chosen initial placements of each considered segment
(see Figure 8) are denoted by the white point on the generated task-oriented kinematic
capability maps, while the locations with the highest maximum linear velocity Vmax are
represented by the black point.



Sensors 2022, 22, 4267 20 of 24Sensors 2022, 22, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 11. The task-oriented kinematic capability map based on the DTF method for: (a) Segment 
(i); (b) Segment (ii); (c) Segment (iii). 

As shown in Figure 11, the distribution of the maximum linear velocity maxV  based 
on the proposed DTF method varied greatly according to the task requirements. Although 
the considered direction of the linear velocity vector T̂u  was pointing in almost the same 
direction in the case of path segments (i) and (iii) (see Table 3 and Figure 9), the best loca-
tions to perform a required movement were not located in the same place in the robot 
workspace since the requirements for rotational movement were quite different. An even 
greater difference in the distribution of the maximum linear velocity can be seen for path 
segment (ii), where the angular motion dominated the linear. 

The feasible directional kinematic capabilities for the best placement of each path 
segment are presented in Table 5. In comparison to the maximum kinematic capabilities 
from Table 4, much higher linear velocity can be achieved under the same joint velocity 
constraints (8). 

Table 5. Feasible directional kinematic capabilities for three different path segments—best place-
ment. 

Path Segment max(m/s)V  max(rad/s)Ω  (rad/s)θ  

(i) 2.7351 0.6128 [ ]3.1416,  1.6230, 3.1328, 1.5284, 1.2614, 3.0600 T− − −  

(ii) 0.1656 4.5959 [ ]3.0173,  2.9210,  2.8698, 2.7092, 2.9541, 3.1416 T− − − −  

(iii) 2.6605 3.5693 [ ]3.1416,  2.0760,  2.9403,  1.6904,  2.3072,  3.1057 T− −  

By the optimal placement of the workpiece with the considered machining path, a 
great improvement in the linear velocity amplitude can be achieved, while keeping the 
same desired base task parameters ( ˆTu , ˆ Ru , h). The improvement of the maximum lin-
ear velocity for all three path segments are shown in percentages in Table 6. 

Table 6. Comparison between the maximum linear velocity for the initial and best placements. 

Path Segment max(m/s)V —Initial Placement max (rad/s)Ω —Best Placement % 
(i) 1.1552 2.7351 136.77 
(ii) 0.0699 0.1656 136.91 
(iii) 2.4365 2.6605 9.19 

Similar to Figure 9, the maximum linear and angular velocity vectors based on the 
proposed DTF method are shown with respect to the translational and rotational manip-
ulability polytope in both the weak and the strong senses, respectively, in Figure 12. The 
shape of each polytope and the amplitude of each vector were quite different in 
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(b) Segment (ii); (c) Segment (iii).

As shown in Figure 11, the distribution of the maximum linear velocity Vmax based on
the proposed DTF method varied greatly according to the task requirements. Although
the considered direction of the linear velocity vector ûT was pointing in almost the same
direction in the case of path segments (i) and (iii) (see Table 3 and Figure 9), the best
locations to perform a required movement were not located in the same place in the robot
workspace since the requirements for rotational movement were quite different. An even
greater difference in the distribution of the maximum linear velocity can be seen for path
segment (ii), where the angular motion dominated the linear.

The feasible directional kinematic capabilities for the best placement of each path
segment are presented in Table 5. In comparison to the maximum kinematic capabilities
from Table 4, much higher linear velocity can be achieved under the same joint velocity
constraints (8).

Table 5. Feasible directional kinematic capabilities for three different path segments—best placement.

Path Segment Vmax (m/s) Ωmax (rad/s)
.
θ (rad/s)

(i) 2.7351 0.6128 [3.1416,−1.6230, 3.1328, − 1.5284, − 1.2614, 3.0600]T

(ii) 0.1656 4.5959 [−3.0173,−2.9210, 2.8698, − 2.7092, 2.9541, − 3.1416]T

(iii) 2.6605 3.5693 [3.1416,−2.0760, 2.9403, 1.6904,−2.3072, 3.1057]T

By the optimal placement of the workpiece with the considered machining path, a
great improvement in the linear velocity amplitude can be achieved, while keeping the
same desired base task parameters (ûT , ûR, h). The improvement of the maximum linear
velocity for all three path segments are shown in percentages in Table 6.

Table 6. Comparison between the maximum linear velocity for the initial and best placements.

Path Segment Vmax (m/s)—Initial Placement Ωmax (rad/s)—Best Placement %

(i) 1.1552 2.7351 136.77
(ii) 0.0699 0.1656 136.91
(iii) 2.4365 2.6605 9.19

Similar to Figure 9, the maximum linear and angular velocity vectors based on the
proposed DTF method are shown with respect to the translational and rotational manipula-
bility polytope in both the weak and the strong senses, respectively, in Figure 12. The shape
of each polytope and the amplitude of each vector were quite different in comparison to
the initial placement of the task segments, and even if the considered task requirements
(ûT , ûR, h) were the same.
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segment (iii): (e) vmax and (f) ωmax.

4. Discussion and Conclusions

When planning a feasible robotic task, the required joint capabilities should be lower
than the maximum capabilities available. To evaluate the feasible kinematic directional ca-
pabilities for robot machining, an approach called the Decomposed Twist Feasibility (DTF)
method has been proposed in this paper. The basic idea behind the proposed DTF method
is to find the maximal feasible directional kinematic capabilities in an operational space,
individually for translational and rotational performances, under the robot joint velocity
constraints. The method was algebraically derived and described by the manipulability
polytopes as well. In contrast to the conventional manipulability methods, the proposed
DTF method can provide accurate and dimensionally homogeneous information on how
fast the robot end-effector can move under the constraint of joint velocities while maintain-
ing the base task requirements. It can give us reliable information about the maximum linear
and angular velocities when synchronized translational/rotational motion is required. A
graphical representation of the proposed DTF method was presented by the twist manip-
ulability polytope in the case of a generic 3DOF planar mechanism. Although we gave
individual consideration to the translational and rotational capabilities in the proposed DTF
method, the presented results show that the tip of the resulting maximum feasible twist
velocity vector obtained by (30)–(33) always ends on the surface of the well-known twist
manipulability polytope at the given joint velocity constraint (8), which verifies the method.
In comparison to the conventional analysis of the twist manipulability polytope—which
requires a computation of its vertices, the construction of the corresponding convex hull,
and a further computation analysis of the convex hull in order to determine the intersection
point with the polytope surface in the desired direction—the computational complexity can
be reduced significantly by the DTF method, and the accuracy of the resulting information
is maintained as well. The usefulness was demonstrated, especially in the case of the robot
machining task purpose on a generic 3DOF planar mechanism and the collaborative robot
UR5e. The maximum feasible linear velocity, considering the desired rotational motion,
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was determined in order to follow a specific path segment on the workpiece surface. The
regions with the highest and lowest maximum feasible linear velocities were determined
and then illustrated by the colormap, which forms the so-called task-oriented kinematic
capability map.

In conclusion it should be noted that the proposed DTF method addresses a purely
kinematic performance measure. To provide feasible and optimal workpiece placement,
the dynamic performances regarding the given task parameters should also be considered.
In order to find an optimal workpiece placement for the entire tool path, the maximum
linear velocity should be calculated for each path segment, or at least for the most critical
ones. Thus, the proposed DTF method could be used as a suitable optimization criterion
for optimal task-oriented workpiece placement within the robot’s workspace.
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