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Abstract: With conventional stethoscopes, the auscultation results may vary from one doctor to
another due to a decline in his/her hearing ability with age or his/her different professional training,
and the problematic cardiopulmonary sound cannot be recorded for analysis. In this paper, to resolve
the above-mentioned issues, an electronic stethoscope was developed consisting of a traditional
stethoscope with a condenser microphone embedded in the head to collect cardiopulmonary sounds
and an Al-based classifier for cardiopulmonary sounds was proposed. Different deployments of
the microphone in the stethoscope head with amplification and filter circuits were explored and
analyzed using fast Fourier transform (FFT) to evaluate the effects of noise reduction. After testing,
the microphone placed in the stethoscope head surrounded by cork is found to have better noise
reduction. For classifying normal (healthy) and abnormal (pathological) cardiopulmonary sounds,
each sample of cardiopulmonary sound is first segmented into several small frames and then a
principal component analysis is performed on each small frame. The difference signal is obtained by
subtracting PCA from the original signal. MFCC (Mel-frequency cepstral coefficients) and statistics
are used for feature extraction based on the difference signal, and ensemble learning is used as the
classifier. The final results are determined by voting based on the classification results of each small
frame. After the testing, two distinct classifiers, one for heart sounds and one for lung sounds, are
proposed. The best voting for heart sounds falls at 5-45% and the best voting for lung sounds falls at
5-65%. The best accuracy of 86.9%, sensitivity of 81.9%, specificity of 91.8%, and F1 score of 86.1%
are obtained for heart sounds using 2 s frame segmentation with a 20% overlap, whereas the best
accuracy of 73.3%, sensitivity of 66.7%, specificity of 80%, and F1 score of 71.5% are yielded for lung
sounds using 5 s frame segmentation with a 50% overlap.

Keywords: electronic stethoscope; cardiopulmonary sound classification; principal component
analysis; Mel-frequency cepstral coefficients; ensemble learning

1. Introduction

Stethoscopes are an extremely important diagnostic tool in the medical community.
The stethoscope can be used to listen to not only heart sounds to determine heart-related
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diseases but also lung sounds to diagnose whether there are abnormalities in the lungs.
This is known as auscultation. Traditional stethoscopes utilized horn-shaped stethoscope
heads for listening to the sounds of the movements of the visceral organs. However, with
conventional stethoscopes, the auscultation results may vary from one doctor to another
due to a decline in his/her hearing ability with age or his/her different professional training
background, and the problematic cardiopulmonary sound cannot be recorded for further
analysis. Therefore, electronic stethoscopes that can record and analyze/ classify cardiopul-
monary sounds are needed to cope with these issues. If an effective classification algorithm
can be embedded into electronic stethoscopes, doctors can use electronic stethoscopes to
obtain a prompt preliminary diagnosis in an emergency, or those who need secondary pre-
vention after discharge from the hospital and care at home can have long-term monitoring
and early detection of abnormalities.

Based on the sensor used in electronic stethoscopes, air- and contact-conduction elec-
tronic stethoscopes are two common types of electronic stethoscopes. The air-conduction
electronic stethoscope utilizes an electromagnetic coil or electret capacitor as the sensor to
collect sound signals with high stability and strong reliability but with low sensitivity. The
contact conduction electronic stethoscope mostly uses piezoelectric materials as a sound
sensor with improved anti-interference ability and sensitivity. However, any deforma-
tion or damage to the piezoelectric materials in the manufacturing process degrades the
sensitivity of the stethoscope.

In the category of air-conduction electronic stethoscopes, McLane et al. [1] developed
an advanced air-conduction electronic stethoscope using a microphone array, an external-
facing microphone, and an onboard signal processor to perform adaptive noise suppression
of lung auscultation in noisy clinical settings. Zhang et al. [2] designed an electronic
auscultation system for the graphic recording of heart, lung, and trachea (HLT) sounds
by placing microphones in a CNC-machined Delrin housing case covered by diaphragms.
Sixteen acoustic sensors, of which 14 were positioned in a memory foam pad and 2 were
placed directly on the heart and trachea, were used to record the acoustic data using a
LabView program, and the waveforms in the time and frequency domain, as well as a
spectrogram for visual examination, could be plotted using Matlab.

In the category of contact-conduction electronic stethoscopes, Toda and Thompson [3]
devised a contact-vibration sensor by bonding a piezoelectric polyvinylidene fluoride
(PVDF) film to a curved rubber piece having a front-contact face. Vibrations transmitted
from the front-contact face through the rubber to the film cause pressure normal to the
surface of the film and then an electric field is induced by the piezoelectric effect. Duan
et al. [4] proposed a double-sided diaphragm micro-electro-mechanical system (MEMS)
electronic stethoscope (DMES) based on a bionic lollipop-shaped MEMS sound-sensitive
sensor. Shi et al. [5] designed a stethoscope also based on the bionic lollipop-shaped MEMS
and developed an acquisition circuit and PC upper machine for real-time acquisition of
heart sound signals. Recently, forcecardiography (FCG), a non-invasive technique that
measures vibrations via force-sensing resistors (FSR), has been proposed [6,7] to measure
heart mechanical vibrations. The active area of FSR was fixed with a rigid dome and an
accelerometer was used to acquire the dorso-ventral seismocardiography (SCG) signal.
In [6], the FCG sensor and the accelerometer were firmly mounted on a plexiglass rigid
board. In [7], a lead-zirconate-titanate piezoelectric disk equipped with the same dome-
shaped mechanical coupler used for the FSR-based sensor was proposed for simultaneous
monitoring of respiration, infrasonic cardiac vibrations, and heart sounds.

Three steps are involved in the analysis or classification of auscultatory sounds: pre-
processing, feature extraction, and classifier design. Pre-processing deals with the noise-
processing or signal-frame decomposition. For noise processing, noise reduction and
de-noising of the samples are performed to enhance the noise immunity of the classification
algorithm. For cardiopulmonary signals, the location of the recorded cardiopulmonary
sounds may vary but usually, both cardiac and pulmonary signals are included. Therefore,
Chien et al. [8] used two microphones to collect signals from the left and right chest and
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presented a fast independent component analysis (ICA) algorithm to separate heart and
lung sounds. Hadjileontiadis and Panas [9] and Liu et al. [8] used wavelet transform tech-
niques to denoise heart sounds from lung signals [9] and, conversely, filter out lung sounds
from heart sounds [10]. Mayorga et al. [11] proposed an empirical mode decomposition
(EMD) followed by Gaussian mixed models (GMM) to improve ICA for separating heart
and lung sounds. In addition to noise reduction, EMD is also a method to estimate the
frequency components [12-14] and each component can be used as a classification feature.
In [12], EMD was used to separate heart sounds from lung signals; in [13], EMD was used to
capture heart murmurs; and in [14], EMD was used to segment and capture the underlying
heart sounds (S1, S2). Varghees and Ramachandran [15] proposed an empirical wavelet
transform (EWT)-based heart sound signal decomposition method by integrating both
EMD and WT. Ntalampiras [16] transformed the lung sound signals to the frequency and
wavelet domains before performing the subsequent analysis.

The pre-processed acoustic signals then go through feature extraction for time- and/or
frequency-domain features. The main purpose of capturing time-domain features is to
observe inter-beat or inter-respiratory variations. The frequency-domain features are most
commonly expressed as coefficients of frequency spectrum or inverse frequency spectrum,
and the signals are transformed to the frequency domain to observe the changes in the
signals in the frequency domain. The Mel-frequency cepstral coefficient is widely used in
sound processing [17,18]. Potes et al. [17] used frequency-domain features together with
time-domain features. Chowdhury et al. [18] denoised and compressed phonocardiography
(PCG) signals using a multi-resolution analysis based on the discrete wavelet transform
(DWT), segmented PCG signals using the Shannon energy envelope and zero-crossing into
four parts and extracted features from PCG signals using a Mel-scaled power spectrogram
and Mel-frequency cepstral coefficients (MFCC). Kumar et al. [19] used a set of features:
time, frequency, and statistical or phase space features.

The extracted features are finally fed into a designed classifier. In [17], a total of
124 time-frequency features were extracted from the PCG and input to a variant of the
AdaBoost classifier, and PCG cardiac cycles decomposed into four frequency bands were
input to a second classifier using a convolutional neural network (CNN). An ensemble
of classifiers combining the outputs of AdaBoost and the CNN was designed to classify
normal/abnormal heart sounds. In [18], a five-layer feed-forward deep neural network
(DNN) model was used. In [19], a support vector machine (SVM) classifier was trained and
applied for each of the feature sets. Li et al. [20] applied a wavelet scattering transform and
multidimensional scaling method and then presented a twin SVM (TWSVM) to classify
heart sound signals. Gjoreski et al. [21] utilized classic machine-learning (ML) to learn from
expert features and end-to-end deep learning (DL) to learn from a spectro-temporal repre-
sentation of the signal. Shuvo et al. [22] proposed a lightweight end-to-end convolutional
recurrent neural network (CRNN) architecture for the automatic detection of five classes of
cardiac auscultation using raw PCG signals. This model was tested on PhysioNet/CinC
2016 challenge dataset [23] achieving an accuracy of 86.57%.

In this study, a low-cost electronic stethoscope with noise reduction is proposed, and
an effective classification algorithm, based on principal component analysis (PCA), MFCC,
and ensemble learning, is developed for auscultatory sounds. A graphical user interface is
established to save or replay the recorded sounds in Raspberry Pi. The presented system
can be useful in medical care.

2. Materials and Methods
2.1. Design of Electronic Stethoscope

Figure 1 shows the system architecture of the designed electronic stethoscope. Two
microphones are used, one is installed inside the stethoscope head for heart/lung sounds,
and the other is optionally attached to the back of the stethoscope head for noise reduction.
Sound signals are then amplified through the first amplifier circuits. Different filters are
designed for heart and lung sounds. After the first filtering, the signals are amplified
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through the second amplifier circuits for the second filtering. The two processed sounds
are then subtracted by a differential amplifier and transmitted to a Raspberry Pi through a
16-bit ADC with a sampling rate of 44.1 kHz.

Mie 1 Mic 2 noise reduction
heart/lung sounds

Ist Amp Ist Amp
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Figure 1. System architecture of electronic stethoscope.

A condenser microphone that could be easily found on the market at a reasonable price
was utilized in this study. Condenser microphones without the magnet and coil generate
voltage changes with changing distances between two diaphragms in the capacitor and
present the advantages of being lightweight, small in size, and have high sensitivity,
and they are often used in high-quality recording. Condenser microphones with higher
sensitivity could record more sound details but would also easily absorb noise in the
environment; therefore, they are more suitable for use in quiet studios. Figure 2a shows
our design of the electronic stethoscope head [24] where the condenser microphone (mic 1)
is placed. Figure 2b shows the head with mic 1 inside, the cork, and the diaphragm. Here, a
round disk cork is presented and is used to cover the back of the head if desired. Figure 2c
illustrates the edge of the head (face up) surrounded by the cork. No gasket is stuffed inside
the head. Figure 2d shows the back of the head attached to a microphone (mic 2) to collect
environmental noise. Figure 2e depicts the front of the head encased with the diaphragm;
the edge of the head is surrounded by the cork. A shielded line was used to connect the
microphone and amplifier circuits. Two-stage amplification/filtering is adopted to process
the small signals collected by microphones and more accurate heart/lung sound waveforms
are obtained when compared with only one-stage amplification/filtering. The frequency
of the heart sounds is from 1 Hz to 800 Hz and the human ear is sensitive in the range of
40 Hz to 400 Hz s most of the signals below 20 Hz are inaudible [25]. Therefore, the filtering
band of heart sounds in this study is below 400 Hz and the low-pass filter is designed to
attenuate the signals above 400 Hz. The main frequency range of the lung sounds is from
100 Hz to 2000 Hz, and the high-pass filter and low-pass filter are designed to filter out
signals below 100 Hz and above 2000 Hz. Therefore, after amplification, the heart or lung
sound is filtered by the corresponding filter to filter out the unwanted frequencies of sound.
As the two processed heart/lung signals and noise signals need subtraction, the circuit
signal-processing delay would affect noise reduction. To solve this problem, two-stage
amplification/filtering circuits with different gains were applied for noise sounds. Figures 3
and 4 illustrate amplification circuits for heart/lung sounds and noise sounds, respectively.
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Figure 5 depicts the filter circuits for heart and lung sounds. The same filters were applied
to noise sounds. Figure 6 shows the whole circuit diagram where amplifiers and filters are
marked for better understanding.

TS

stethoscope condenser mic

sﬁielded wire

(a)

(d)

Figure 2. Condenser microphone placed in stethoscope. (a) a mic put into a stethoscope head, (b) a

stethoscope head with mic 1 inside, the cork, and the diaphragm, (c) the edge of a head (face up)
surrounded by the cork, (d) the back of the head attached to a microphone (mic 2), and (e) the front
of the head encased with the diaphragm; the edge of the head surrounded by the cork

C15

Input >—| I

0.1uF

L vR2
=~ 100k

Ouiput > -

VCC |

Output >

Ouiput_» 'll Output_>

17 Cl8
0.01uF | 0.01uF

(a) | (b)

Figure 5. (a) Filter circuit for heart sounds and (b) filter circuit for lung sounds.
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Figure 6. Circuit diagram of the presented system.

A graphical user interface (GUI) for recording sounds was also developed during the
course of this study. For noise reduction, we designed 5 different models of electronic
stethoscope heads as shown in Table 1 [24], where a commercial electronic stethoscope was
included. Two microphones were used in Models 1~2, one inside the stethoscope head
for collecting heart/lung sounds and the other on the back of the stethoscope head for
collecting environmental noise. The difference between these two models is that one is
without a cork (Model 1) and the other one is surrounded by a cork (Model 2, shown as
in Figure 2c,e). Two stethoscope heads connected back-to-back are used in Models 3 and
4 and each stethoscope has its own microphone inside the head. The difference between
these two models is that one is without a cork (Model 3) and the other one is surrounded
by a cork (Model 4) as in Model 2. The difference between Models 1-2 and Models 3—4
is the way the microphone is used to collect environmental noise. Mic 2 in Models 1-2 is
exposed to the air, whereas the one in Models 34 is inside the stethoscope head. Therefore,
by comparing Models 1 and 3 (or Models 2 and 4), we can see the effects of noise reduction
by the subtracter when a different way of collecting environmental noise is used. When
compared with Model 1, Model 2 is designed to see the effects of noise isolation on the
cork. When compared with Model 3, the design of Model 4 is also to see the effects of noise
isolation on the cork. One stethoscope head (one microphone inside the head) fully covered
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by a cork is used in Model 5, which is different from Model 2 by missing one microphone
on the back of the head and adding an additional piece of cork (as shown in Figure 2b) to
cover the back of the head; therefore, the design of Model 5 is to see the effects of noise
isolation on the cork without using the subtracter.

Table 1. Six different models of electronic stethoscope heads.

Model 1

Model 2

Model 3

One stethoscope
One microphone
(without cork)

One stethoscope
One mirophone
(with cork)

Two stethoscopes
(without cork)

Model 4 Model 5 Model 6
Two stethoscope One stethoscope Thinklabs One
(with cork) covered with cork Digital Stethoscope
Ty

Note: Areas with slashes represent cork.

To test the noise reduction effect of the designed circuits, two experimental sites were
set up. Figure 7 shows the schematic diagram of experimental site I in which a thick book is
used for simulating the human chest wall. A regular speaker for PCs, a MECMAR speaker
(Boxe PC Mecmar 2.0, 240 W PMPO) with a dimension of 70 mm (width) x 163 mm (height)
x 70 mm (depth), was used. Ward construction noise [26] and airport noise [27] were
selected for observation. The distance of the stethoscope head from the sound is about
1 m for the measurement. The audio sounds of noise received from the stethoscope head
and the microphone and the audio sound after noise-canceling were analyzed by FFT
for comparison. Figure 8 shows the experimental site II in which the stethoscope on a
human body is tested. MECMAR speaker was utilized for playing the noise source. Ward
construction noise [26] was selected as the noise source, the sound volume was adjusted to
the maximal, and the distance of the measurement position is 1 m away from the speaker.
The sound source [26] at 0:30~0:40 was measured for all testing. In order to isolate the
interference of heart sounds, the skin of the lower leg, which is the farthest from the heart,
was chosen as the medium for the measurement. The sound measurement (measurement
1) using the stethoscope on the skin of the lower leg was performed in a quiet environment.
Then, the sound measurement on the skin of the lower leg was performed again in a noisy
environment to collect both sounds from the stethoscope head (measurement 2) and from
the microphone designed for collecting the environmental noise (measurement 3). The
noise frequencies of these two sounds were compared. The measurements for heart sounds
were conducted by placing the stethoscope head on the left chest (second intercostal space
at the left edge of the sternum) in a quiet environment (measurement 4) and then in a noisy
environment (measurements 5 and 6). When in a noisy environment, the measurements
from the stethoscope without using the subtracter (measurement 5) and with using the
subtracter (measurement 6) were compared by FFT.
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2.2. Heart/Lung Sound Classification

In this subsection, we focus on the design of a heart/lung sound classification algo-
rithm. In Taiwan, collecting patient data for analysis must first be approved by the Institu-
tional Review Board (IRB). Moreover, even the approval is granted, collecting enough data
is time- and labor-consuming. For the convenience of research without going through an
Institutional Review Board (IRB) review, the study of the presented algorithm is focused on
the heart and lung sound samples from the public domain [28,29]. These cardiopulmonary
samples were first pre-processed by segmentation, dimensionality reduction, and signal
processing, then the time- and frequency-domain features of the samples were extracted
and the classifier model was designed by using ensemble learning, and finally, these feature
vectors were fed into the classifier model for training and testing.

2.2.1. Pre-Processing

In this study, the heartbeat frequency (50-80 beats per minute) and respiration fre-
quency (12-20 beats per minute) were assumed for segmentation. To keep the complete
information of one heartbeat or one respiration in a small frame, different lengths of small
frames were tested. The heart and lung sound signals were segmented into small frames.
Different lengths of small frames were tested to see which length would give the better
performance, 1, 1.5, and 2 s for heart sounds, and 3, 4, and 5 s for lung sounds. In addition,
overlapping ratios, such as 0%, 20%, and 50%, were adopted to segment the original sam-
ples in order to increase the number of samples and to see if the overlapping segmentation
approach would give better recognition results. After segmentation, the small frame signals
were subjected to principal component analysis (PCA) [30] and then the original signals
were subtracted based on PCA to obtain the difference signals (frames after PCA). In our
experience, abnormal heart sounds can be divided into three categories: heartbeat compo-
nents, abnormal beating components, and noise. The heartbeat components refer to major
cardiac cycles. For a normal or an abnormal heart sound, there exist these cardiac cycles:
diastole, systole, diastole, and systole. For an abnormal heart sound in terms of PCG, there
exist irregular vibrating waves during these cycles. These vibrations here refer to abnormal
beating components. Basically, the heartbeat sound will account for more than 80% of the
total input signal and these signals will often dominate the classification results. The noise
or abnormal heart/lung sounds account for a small amount of the original signal. However,
what we need and are concerned about are the abnormal beating sounds. Therefore, we
use principal component analysis to remove the first 85-95% of the principal component
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to reduce the classification impact dominated by the heartbeat sound, leaving the signal
data with abnormal sound as the main component for feature extraction. Figure 9 shows
the sound frames before and after PCA for normal and abnormal heart sounds. Figure 10
shows the sound frames before and after PCA for normal and abnormal lung sounds. The
horizontal axis represents the sampling points and the vertical axis represents the sound
amplitudes in a wav format. In addition, the number of components to be removed can be
decided according to the degree of contribution and usually, the principal components with
a cumulative contribution of 85-95% are taken. In this study, 95% cumulative contribution

was used.
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2.2.2. Feature Extraction

As mentioned in the previous section, although the difference signals can be directly
observed by the naked eye, they are still too complex for computers. Therefore, the
difference signals need to be characterized for easier identification. In this study, two kinds
of features, time-domain features and frequency-domain features, were extracted.

First of all, in terms of time-domain features, the original difference signals are too
high-dimensional and not easy to handle. With a sampling rate of 2000 Hz, a 2 s sound
frame would have 2 x 60 x 2000 (240,000) points, which is a high-dimension vector. This
high-dimension vector can be processed by MFCC and statistical feature extraction to
reduce its dimension. Statistical time-domain features were used to effectively simplify
the high-dimensional difference signals while retaining the characteristics of the original
signals. In this study, 11 statistical features were selected: mean, standard deviation, mean
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absolute deviation, median, first quartile, third quartile, interquartile range, skewness,
kurtosis, Shannon entropy, and spectral entropy.

Secondly, the frequency-domain information of sound signal processing is more likely
to show differences than the time-domain features because the cardiopulmonary signals
have periodic characteristics and different sounds have different frequencies. The Mel-
frequency cepstral coefficients (MFCC) [31] are suitable frequency-domain features that
are closer to the characteristics of the human ear in analyzing sound than the general
spectrum or the inverse spectrum coefficients. The reason is that the human auditory
system only responds linearly to frequencies below 1 KHz but rather shows a logarithmic
function at higher frequencies. By using this relationship, the MFCC are spectral features
and are obtained as follows. The sound signal is first pre-reinforced, such as passing the
signal through a high-pass filter to enhance the information of a high frequency. This is
because the energy of a high frequency is usually smaller than that of a low frequency.
Then, Fourier transform is performed to obtain the power spectrum. The power spectrum
obtained from each audio frame is then passed through a Mel filter to obtain the Mel scale.
Forty Mel filters are usually used. Then, the logarithmic energy is extracted for each Mel
scale, and discrete cosine conversion for the inverse spectrum domain is performed. Since
the coefficients after filtering are highly correlated, the correlation can be removed and
downscaled by discrete cosine conversion and the Mel-frequency inversion coefficient is
the amplitude of the Mel-frequency inversion spectrum. In this study, 12 coefficients were
used and the energy of the audio frame was superimposed to form the 13th coefficient.
In addition, the maximum value in the power spectrum, the frequency of the maximum
value in the power spectrum, and the percentage of the maximum energy in the power
spectrum to the total energy were calculated. A total of 16 frequency-domain features
together with 11 statistical features were used as the input feature vectors for the classifier.
So, the dimension is reduced from 240,000 to 27 for a 2 s sound frame.

2.2.3. Classifier

The classification algorithm is used to classify normal (healthy) and abnormal (patho-
logical) heart sounds and normal and abnormal lung sounds. In this study, we adopted the
concept of ensemble learning [32] to design the classifier model and experimented with
several classical ensemble learning methods, including Bagging (bootstrap aggregating),
AdaBoost (adaptive boosting), GentleBoost (gentle adaptive boosting), LogitBoost (adap-
tive logistic), and RUSBoost (random under-sampling boosting), to see which learning
method is most suitable for the database selected for this study. Each sample segmentation
approach (e.g., 0% overlap in 1 s, 20% overlap in 1 s, etc.) is trained 5 times, and an ensemble
learning method is randomly selected for each time. The final classifier model is determined
based on the best observation obtained by Bayesian optimization. The original sample was
divided into many small frames for training and the model identified the results of the
classification of the small frames for voting. If the number of abnormal frames exceeded a
specific threshold, the original sample is regarded as an abnormal cardiopulmonary sample,
whereas the opposite is a normal one. The experimental results are displayed according to
different proportions (e.g., 5%, 10%, 15%, ... , 95%) of the voting results and it is observed
which proportion has the best voting results. In addition, if the length of an original sample
could not be divided by more than one small frame, the sample is ignored and not counted.

To evaluate the performance of the algorithm proposed in this paper, four common
evaluation metrics are used (Equations (1)—(5)), including accuracy (Acc), sensitivity (Se),
specificity (Sp), and F1 score, which are commonly used to evaluate the performance
of “abnormality recognition algorithms” (e.g., disease diagnosis). Accuracy is the most
intuitive way to evaluate the average accuracy of the algorithm. Specificity focuses on the
misdiagnosis, and higher specificity means lower misdiagnosis. Sensitivity evaluates the
ability to detect patients, and higher sensitivity means better ability to identify patients.



Sensors 2022, 22, 4263 12 of 25

The F1 score is the summed average of the above scores and is used to summarize the
overall performance of the algorithm.

racy — TP+ TN o
Y T TP EN+ FP+ TN

cpe TN

specificity = PN @
[ TP

sensitivity = m 3
TP

oo TP \

precision TP L EP @

F1 Score — 2 x sensitivity X precision -

sensitivity + precision

where TP stands for true positive (with disease and classified as abnormal), TN stands
for true negative (without disease and classified as normal), FP stands for false positive
(without disease but classified as abnormal), FN stands for false negative (with disease but
classified as normal).

3. Results
3.1. Design of Electronic Stethoscope

Figure 11a shows the PCB circuit of the presented system in accordance with the size
of Raspberry Pi 3 Model B (85 mm x 55 mm). Figure 11b [24] shows the whole designed
system. The gain of the first amplifier for the heart/lung sounds is designed at 1.0 so that
the gain of the first amplifier for mic 2 (noise) does not need to be adjusted to a high gain.
The gain of the second amplifier for the heart/lung sounds was adjusted to roughly 3.0.
For the experimental site I (Figure 7), two different noise sources were played. Figure 12
shows the 10 s sound waveforms and FFTs measured by mic 1, mic 2, and the subtracter
(noise reduction) for the ward construction noise that was played from the computer with
a 40% volume and a speaker with the largest volume. Based on the FFT spectra, the noise
amplitude peak before noise reduction is about 0.0013, whereas it is 0.0003 after noise
reduction. Apparently, the volume after noise reduction is 4 times lower than before noise
reduction; the noise reduction is about 12.74 dB based on the formula for the signal-to-noise
ratio (SNR). The 10 s sound waves and FFIs measured by mic 1, mic2, and noise reduction
for the airport noise are shown in Figure 13. For the airport noise played from the computer
with the maximal volume and a speaker with the largest volume, the noise amplitude peak
before noise reduction is about 0.0013 and about 0.00025 after noise reduction. In this case,
the volume after noise reduction is 5.2 times lower than before noise reduction; the noise
reduction is about 14.32 dB.

=

B

=
'

(@)
Figure 11. Physical PCB circuit. (a) PCB of designed circuit. (b) Whole designed system.
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Figure 12. Noise reduction effect for ward construction noise. (a) Signal waveform and FFT spectrum
measured by mic 1. (b) Signal waveform and FFT spectrum measured by mic 2. (c) Signal waveform
and FFT spectrum after noise reduction.

For the direct measurements of the human body in experimental site II (Figure 8),
ward construction noise was used as the noise source and the test volume was adjusted
to the maximal. The different models of stethoscopes listed in Table 1 were tested. For
conciseness, 10 s waveforms and FFTs of measurements 1-6 only for Model 2 are shown in
Figure 14. For Model 2, Figure 14a shows that the frequency band of the signals received
from the contact of the stethoscope head with the skin of the lower leg is in 0~100 Hz. In
comparison with Figure 14b, the frequency band of the noise received at the stethoscope
end on the skin of the lower leg is in 150~450 Hz and the audio frequency peak appears at
300 Hz. Figure 14c reveals that the frequency band of the noise received by mic 2 at the
ambient end distributes in 150~550 Hz and the audio frequency peak appears at 375 Hz.
Figure 14d shows that the frequency band of the heart sound signals in a quiet environment
is in 0~150 Hz and is mixed with the noise of the skin. Figure 14e reveals that the frequency
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band of the noise received at the stethoscope end is in 200~400 Hz and the audio frequency
peak appears at 325 Hz. Figure 14f shows that the frequency band of the noise residual
signals after noise reduction is in 250~450 Hz. Table 2 summarizes the observations of

the tests.
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Figure 13. Noise reduction effect for airport noise. (a) Signal waveform and FFT spectrum measured
by mic 1. (b) Signal waveform and FFT spectrum measured by mic 2. (c) Signal waveform and FFT
spectrum after noise reduction.
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Figure 14. Noise reduction effect for ward construction noise. (a) Measurement 1: stethoscope
on left leg skin in quiet space. (b) Measurement 2: stethoscope on the left leg skin in noise space.
(c) Measurement 3 on lower leg skin: mic for environmental noise. (d) Measurement 4: stethoscope
on left chest in quiet environment. (e) Measurement 5: stethoscope on left chest in noisy environment.

(f) Measurement 6 on left chest after noise reduction.

Table 2. Frequency bands (in Hz) of different measurements for different models.

Model 1 Model 2 Model 3 Model 4 Model 5
Measurement 1 0~100 0~100 0~100 0~100 0~100
0~100 0~100 0~100 0~100 0~100
Measurement 2 150~450 150~450 150~450 150~450 150~450
peak at 300 peak at 300 peak at 300 peak at 300 peak at 300
M 3 150~550 150~550 150~450 250~450
easurement peak at 375 peak at 375 peak at 350 peak at 350
Measurement 4 0~150 0~150 0~150 0~150 0~150
0~150 0~150 0~150 0~150 0~150
Measurement 5 200~450 200~400 240~420 250~400 250~400
peak at 325 peak at 325 peak at 310 peak at 310 peak at 310
M 6 0~150 0~150 0~150 0~150
easurement 250~450 250~450 250~450 250~450

Table 3 shows the FFT spectra of the heart sound signals with and without the sub-
tracter, measured at the stethoscope end using four different models. Model 5 has no
subtracter and Model 6 does not provide the option of using the subtracter. Therefore,
Models 5 and 6 are not listed in Table 3. The results of noise reduction using the subtracter
circuit for these four models are not satisfactory. However, when comparing the FFT
spectra of the heart sounds obtained using the subtracter, Model 4 shows the lowest noise
amplitude. When the subtracter is not used, the FFT spectra of the heart sound signals of
the six Models (including the electronic stethoscope from Thinklabs One) are shown in
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Figure 15. Model 4 shows the lowest noise amplitude when measuring heart sounds in
a noisy environment. Figure 15 also shows that the cork can reduce the noise by 1.9 dB
between Model 1 and Model 2 and by 2.8 dB between Model 3 and Model 4. Model 4 can
reduce the noise by 4.7 dB when compared to the commercial one, Model 6.

Table 3. Comparison of FFT spectra of heart sound signals with and w/o the subtracter.

Model 1 Model 2
w /o subtracter with subtracter w /o subtracter with subtracter
- FFT spectra 1 FFT spectra i FFT spectra l FFT spectra
- M~ e il YT T “f!""““‘:"‘:
Model 3 Model 4
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Figure 15. Comparison of FFT spectra of heart sound signals without using the subtracter.

3.2. Heart/Lung Sound Classification
Two sample databases were adopted from the Internet [28,29]. The database [28]

contains 3240 heart sounds in wav format, including 2548 normal heart sounds and 692 ab-
normal heart sounds, with lengths of between 5 and 120 s and a sampling rate of 2000 Hz.
The Lung Sound Dataset [29] is a collection of 920 lung sound recordings in wav format
with lengths ranging from 10 to 90 s, created by two research teams in Portugal and Greece,
containing 35 normal lung sounds, 1 asthma, 16 bronchiectasis, 13 occlusive bronchiolitis,
793 chronic obstructive pulmonary diseases (COPD), 37 pneumonia, 23 upper respiratory
tract infection (URTI), and 2 lower respiratory tract infection (LRTI) sounds. The samples
containing no noise from [28] were split into five folds and the samples for training and
testing were randomly selected. The sample sizes for training and testing are shown in
Table 4. In addition, samples containing noise in the database set were categorized as test
samples (samples) to evaluate the tolerance of the proposed algorithm to noise. The score
of each index was evaluated by averaging the 5-fold classification results. The classifica-
tion results of the heart sound dataset with different segmentation lengths (1s,1.5s, and
2 s), different overlap ratios (0%, 20%, and 50%), and different voting ratios (5-95%) are
presented in Figures 16-19 in terms of four metrics (accuracy, sensitivity, specificity, and

F1 score).
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Table 4. Sizes of heart sound samples.
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Figure 16. Heart sound classification results: Accuracy. (a) Testing samples. (b) Noisy samples.
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Figure 17. Heart sound classification results: Sensitivity. (a) Testing samples. (b) Noisy samples.
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Figure 18. Heart sound classification results: Specificity. (a) Testing samples. (b) Noisy samples.
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Figure 19. Heart sound classification results: F1 Score. (a) Testing samples. (b) Noisy samples.

Furthermore, sounds from the lung sound database [29] were used as the training
and testing samples for the proposed algorithm. This database contains several types of
lung sounds. However, the number of samples of some types is too small. Therefore, only
30 normal lung sounds and 30 abnormal lung sounds (including 6 bronchial dilatation,
6 occlusive bronchitis, 6 chronic obstructive pulmonary disease, 6 pneumonia, and 6 upper
respiratory tract infection) were used to split the samples into three folds, and the samples
were classified in a binary way, i.e., all lung-related diseases were considered as abnormal
lung sounds. The number of training and test samples was 20 and 10, respectively. Similarly,
the results were observed by four metrics: accuracy, sensitivity, specificity, and F1 score, as
shown in Figures 20-23, respectively.

72 >—o—8

:: ¥$ W/.—.

Accuracy(%)
S

S 10 15 20 25 30 35 40 45 SO0 S5 60 65 70 75 80 85 90 95
voting ratios (%)

—8—350% —8— 3520% —8—3550% 450% —8—A4520%
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Figure 20. Lung sound classification results: Accuracy.
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Figure 21. Lung sound classification results: Sensitivity.
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Figure 22. Lung sound classification results: Specificity.
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Figure 23. Lung sound classification results: F1 Score.

4. Discussion
4.1. Design of Electronic Stethoscope

The presented stethoscope is cost-effective and easily implemented. The condenser mi-
crophone used in the presented stethoscope can be found on the market at a reasonable price
and the filter and amplification circuits are simple. From the test results (Figures 12 and 13)
for experimental site I, the microphone at the noise-receiving end over-received the sound
at low frequencies; therefore, a superposition of noise signals in the low-frequency section
was observed. Even so, the noise reduction effect is still satisfactory, being 4~6 times lower
than in the case not using the subtracter. However, this phenomenon affected the noise
reduction when the stethoscope was applied to human skin. With the human body test
for experimental site II, the noise reduction effect was far different from the test results
conducted in experimental site L. It is because the noise peak frequency received at the
stethoscope end on the skin of the lower leg (Measurement 2) is at 300 Hz, whereas the
noise peak frequency received by mic 2 at the ambient end above the skin of the lower leg
(Measurement 3) is at 350 Hz for Models 3 and 4 or 375 Hz for Models 1 and 2, as listed
in Table 2. There is a frequency shift due to different sound media. The media for the
microphone inside the stethoscope are the skin, diaphragm, and the air. The medium for
the microphone of Models 1 and 2 to collect environmental noise is the air. The media for
the microphone of Models 3 and 4 to collect environmental noise are the diaphragm and the
air. When heart sounds were mixed with the noise, the noise peak frequency (Measurement
5) became 325 Hz for Models 1 and 2 or 310 Hz for Models 3 and 4 (see Table 2). This
peak frequency shift resulted in some noise signals being superposed, as shown in Table 3,
when the subtraction of two signals was performed. Nevertheless, when Models 14 all
used the subtracter, the design of Model 4 outperformed the others (Models 1-3) with the
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lowest noise amplitudes. Even when the subtracter was not used for Models 1-4, Model 4
still performed better than the others. The cork surrounding the double heads in Model 4
presents certain noise isolation.

4.2. Heart/Lung Sound Classification

For the testing samples of the heart sounds in Table 4, we can see from Figure 16a that
the best overall accuracy falls in the range of 84.3-86.9% at 20-40% of the voting ratios. The
sensitivity and the specificity are inversely proportional to each other, with one being higher
and the other lower. The sensitivity falls in the range of 42.2-88.3% and the specificity
falls in the range of 76.6-98.8%. The trend shows that the sensitivity is greater than 76.6%
only when the voting ratio is less than 25%. When the specificity is also considered, i.e.,
Figures 17a and 18a are considered together, the best results are obtained at 20% and 25% of
the voting ratios. The average sensitivity and the average specificity are 81.2% and 89.4%,
respectively, at a voting ratio of 20%. The average sensitivity and the average specificity
are 79.8% and 90.7%, respectively, at a voting ratio of 25%. The best overall F1 score is
in the range of 83.1-86.2% at 10-20% of the voting ratios and the highest overall score
was obtained at 20% of the voting ratio, as shown in Figure 19a. Based on the above four
metrics (accuracy, sensitivity, specificity, and F1 score), the overall best score is at 20% of
the voting ratio.

For the noisy samples of the heart sounds, the best overall accuracy is in the range of
25-80% of the voting ratios with a value of 66.1-70.4% as seen in Figure 16b. The sensitivity
value ranges from 34.3 to 72.7% and the specificity value ranges from 58.5 to 92.7%. From
the trend in Figure 17b, the sensitivity is greater than 58.5% only when the voting ratio is
less than 25%, and furthermore, when considering the specificity of Figure 18b, the best
performance occurs when the voting ratio is 25%, with an average sensitivity of 65.1% and
an average specificity of 71.3%. From Figure 19b, the best overall F1 score is in the range of
63.6-69.5% at 5-40% of the voting ratios. Based on the four metrics, the best overall score is
at 25% of the voting ratio.

The experimental results of different segmentation methods for heart sounds were
compiled and discussed according to different voting ratios. Although nine different
segmentation methods were presented, only the top three scoring methods are discussed
here. From the results shown in Figures 16a, 17a, 18a and 19a for the testing samples, the
best accuracy was obtained with a 20% voting ratio and a segmentation length of 2 s, the
best sensitivity was obtained with a segmentation length of 1 and 1.5 s and an overlap
ratio of 50%, the best specificity was obtained with a segmentation length of 2 s and an
overlap ratio of 50%, and the best F1 score was obtained with a segmentation length of 1
or 2 s and overlap ratios of 20% or 50%. Based on these four metrics, the model using the
segmentation length of 2 s and overlap ratio of 20% achieves the best overall score. The
scores are 86.9% for accuracy, which is slightly higher than that of [22], 81.9% for sensitivity,
91.8% for specificity, and 86.1% for F1 score. For further comparison considering the sample
source, we chose the top three models [17,33,34] in the 2016 PhysioNet/CinC Heart Sound
Classification Challenge [28]. Since the original training code of the authors participating
in the 2016 competition was not available, only the final classification program and the
trained weights of the neural network were available, so it was not possible to compare
the results fairly. The comparison results are shown in the last four rows of Table 5. The
results show that the recognition of normal heart sounds using our model is a little better
than those using the other methods but the recognition of abnormal heart sounds is a
little worse. Although the overall score was about 4-7% different from the top three in the
competition, the classification method they used was a very complex DNN method that
required special hardware with high computing power to execute and, in addition to the
higher cost and inconvenience of porting the model, these methods could not be executed
on embedded systems with low computing power. For outpatient physicians, they are
unable to obtain the patient’s heart sound recognition results in real-time to assist them
in making correct judgments. On the other hand, our model is not complicated and with
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reasonable performance, it can be imported into an embedded system such as Raspberry
Pi. The performance indices of other models [17,18,20-22,33,34] that were reviewed in the
Introduction are also listed in rows 1-7 of Table 5. However, since we don’t have access to
the codes of these models, Table 5 only lists the test results collected from the literature.

Table 5. Comparison results.

Models Training #: Testing # Accuracy Sensitivity Specificity F1
Adaptive Boosting + CNN [17] 9:1 86.02 94.24 77.81 -
DNN [18] 9:1 97.10 99.26 94.86 -
WST + PCA +2SVM [20] * 7:3 93.06 - - -
Classic ML + DL [21] 9:1 92.9 82.3 96.2 -
1D CNN+ BiLSTM [22] 9:1 86.57 91.78 59.05 91.78
Ensemble-NN [33] 9:1 91.5 94.23 88.76 -
DropConnected-NN [34] 9:1 84.1 84.8 93.3 -
Adaptive Boosting + CNN [17] ** - 89.6 93.7 85.6 90
Ensemble-NN [33] ** - 93.0 94.5 914 93.1
DropConnected-NN [34] ** - 93.1 94.5 91.7 93.1
Presented model 4:1 86.9 81.9 91.8 86.1

#: number(s). DNN: deep neural network. ML: machine learning. DL: deep learning. NN: neural network. CNN:
convolutional neural network. WST + 2SVM: Wavelet scattering transformation (WST) + twin support vector
machine (25VM). 1D CNN + BiLSTM: 1D CNN (1DCNN) + bi-directional long short-term memory (BiLSTM). 9:1
means 10-fold evaluation approach in PhysioNet dataset. *: dataset A in PhysioNet dataset. **: The test using the
program and trained weights of NN was obtained from the PhysioNet website [28]. —: data not available.

From the results shown in Figures 16b, 17b, 18b and 19b for noisy samples of heart
sounds, at 25% of the voting ratio, segment lengths of 1.5 and 2 s and overlap ratios of 20%
and 50% provide better performance in terms of accuracy; segment lengths of 1.5and 2 s
and overlap ratios of 20% offer better performance in terms of sensitivity; segment lengths
of 1.5 and 2 s and overlap ratios of 50% give better performance in terms of specificity; and
segment lengths of 1.5 and 2 s and overlap ratios of 20% and 50% offer better performance
in terms of F1 score. Therefore, based on these four metrics, the model using a segmentation
length of 2 s and an overlap ratio of 20% obtains the highest overall score: 69% for accuracy,
68.3% for sensitivity, 69.7% for specificity, and 68.8% for F1 score.

In summary, the signal segmentation length of 2 s and the overlap of 20% or 50% were
found to be the most effective for the heart sounds. This indicates that a 2 s segmentation
length can contain the most complete information for a single heartbeat. In addition, some
degree of overlap is also effective in improving the overall classification accuracy.

As shown in Figure 20 for the lung sound classification, there is no significant change
in the voting ratios for accuracy and the trend is similar. From Figures 21 and 22, the
sensitivity falls in the range of 53.3-70% and the specificity falls in the range of 50-93.3%.
The voting ratio does not have much influence on these scores, only a slight upward or
downward trend occurs at around 30-35% and 70-75% of the voting ratios. The best overall
F1 score, as seen in Figure 23, falls at 56.7-71.5% at 5-30% of the voting ratios. Based on
these four metrics, the best overall score occurs at 5-30% of the voting ratios. However,
from the experimental results, the voting ratio did not have much effect on the scores
and there was no significant change from 5% to 65% of the voting ratios. This might be
caused by the high proportion of abnormal lung sound samples or uneven distribution.
The segmentation length of 5 s with 50% overlap gave the best classification result: 73.3%
for accuracy, 66.7% for sensitivity, 80% for specificity, and 71.5% for F1 score. This indicates
that a segmentation length of 5 s can contain the most complete information about one
respiration. In addition, allowing a certain degree of overlap in the segmentation as in the
case of heart sounds, can effectively improve the overall classification accuracy.
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In summary, the above results show that the voting ratio usually correlates with
the metrics. There are three factors that affect the trends in the metrics. The first is the
percentage of abnormal heart sounds or lung sounds in the samples. In medical terms, if
a heart sound or lung sound is diagnosed as abnormal, not every heartbeat in that heart
sound or respiration in that lung sound may be abnormal. The second is the total number
of small frames segmented from a given sample. The higher the number of frames, the
smoother the score curve and the easier it is to see the trend and the more accurate the
results. The last one is the accuracy of the classifier in training the frames. The higher the
accuracy of the frames, the higher the accuracy of the subsequent voting.

5. Conclusions

In this paper, the design of an electronic stethoscope and an Al classification algorithm
for cardiopulmonary sounds were addressed. Five models of electronic stethoscopes
have been proposed and tested. In Models 1 and 2, a microphone is installed inside the
stethoscope head to collect heart and lung sounds and a second microphone is attached
to the back of the stethoscope head for collecting environmental noise. In Models 3 and
4, double stethoscope heads where each has a microphone installed are connected back-
to-back, one stethoscope head is for collecting heart and lung sounds and the other is for
collecting environmental noise. Cork is used in Models 2 and 4 to isolate environmental
sounds. In Model 5, only one stethoscope head covered by cork is used. The collected
sounds are processed through two-stage amplification and filter circuits. Each processed
heart/lung sound then optionally subtracts the processed noise sound for noise reduction
and a Raspberry Pi is used to record the final sound. The effect of noise reduction for the
presented electronic stethoscopes was tested in two different experimental sites. When
subtraction is not used, Model 4 presents better performance with fewer noise amplitudes.
When subtraction is used for Models 1-4, Model 4 still outperforms the other 3 Models
with the lowest subtracted noise signals. The cork surrounding the double heads in Model
4 presents certain noise isolation. However, frequency shifts due to different sound media
associated with the stethoscope head and the microphone for the noise were observed
during the course of the study. Therefore, this issue may need further investigation.

For the cardiopulmonary sound classifications, a voting ensemble learning approach
combined with PCA and MFCC was developed. Two public databases were used for
training and testing. Different segmentation lengths (1 s, 1.5 s, and 2 s) and different
overlap ratios (0%, 20%, and 50%) were applied to segment one sample into several small
frames. Four common metrics (accuracy, sensitivity, specificity, and F1 score) were used to
evaluate the performance of the algorithm. After testing, the best voting for heart sounds
falls at 5-45% and the best voting for lung sounds falls at 5-65%. Based on the results for
the heart sound testing samples containing no noise, the best overall score is obtained using
2 s frame segmentation with a 20% overlap: 86.9% for accuracy, 81.9% for sensitivity, 91.8%
for specificity, and 86.1% for F1 score. For the lung sound testing samples, the best overall
score is yielded using 5 s frame segmentation with a 50% overlap: 73.3% for accuracy, 66.7%
for sensitivity, 80% for specificity, and 71.5% for F1 score. The signal segmentation length is
long enough to cover one heartbeat or one respiration and a certain degree of overlap in
segmentation would effectively improve the overall classification performance.
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