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Abstract: The evolution of mobile mapping systems (MMSs) has gained more attention in the past
few decades. MMSs have been widely used to provide valuable assets in different applications.
This has been facilitated by the wide availability of low-cost sensors, advances in computational
resources, the maturity of mapping algorithms, and the need for accurate and on-demand geographic
information system (GIS) data and digital maps. Many MMSs combine hybrid sensors to provide
a more informative, robust, and stable solution by complementing each other. In this paper, we
presented a comprehensive review of the modern MMSs by focusing on: (1) the types of sensors and
platforms, discussing their capabilities and limitations and providing a comprehensive overview of
recent MMS technologies available in the market; (2) highlighting the general workflow to process
MMS data; (3) identifying different use cases of mobile mapping technology by reviewing some of
the common applications; and (4) presenting a discussion on the benefits and challenges and sharing
our views on potential research directions.
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1. Introduction

The need for regularly updated and accurate geospatial data has grown exponentially
in the last decades. Geospatial data serve as an important source for various applications,
including, but not limited to: indoor and outdoor 3D modeling, generation of geographic in-
formation system (GIS) data, disaster response high-definition (HD) maps, and autonomous
vehicles. This data collection has been made possible through continuous advances in
mobile mapping systems (MMSs). MMS refers to an integrated system of mapping sensors
mounted on a moving platform to provide the positioning of the platform while collecting
geospatial data [1]. A typical MMS platform uses light detection and ranging (LiDAR)
and/or high-resolution cameras as its primary sensors to acquire data for objects/areas
of interest, integrated with sensor suites for positioning and georeferencing, such as the
global navigation satellite system (GNSS) and inertial measurement unit (IMU). To per-
form accurate georeferencing, traditional mobile mapping approaches require extensive
post-processing, such as strip adjustment of point cloud scans or bundle adjustment (BA)
of images using ground control points (GCPs), during which manual operations may be
required to clean noisy data and unsynchronized observations. Recent trends of MMSs
have aimed to perform direct georeferencing and to leverage the capabilities of a multi-
sensor platform [2,3] in order to minimize human interventions during data collection and
processing. Automation has been further strengthened to use machine learning/artificial
intelligence to perform online/offline object extraction and mappings, such as traffic lights
and road sign extraction [4–6].

Mobile mapping technology has undergone significant development in the past few
decades, with algorithmic advances in photogrammetry, computer vision, and robotics [7].
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In addition, increased processing power and storage capacity have further facilitated the
collection speed and data volume [8]. The applications and systems have been further
strengthened by the availability of a diverse set of low-cost survey sensors with various
specifications, making mobile mapping more flexible and able to acquire data in com-
plex environments (e.g., tunnels, caves, and enclosed spaces) with lower cost and labor
expenditures [9]. Typically, commercial MMSs can be classified (based on their hosting
platforms) into handheld, backpack, trolley, and vehicle-based. Some platforms are de-
signed to work indoors without relying on GNSS, while others can work indoors and
outdoors. Mobile mapping technology gained more attention when it was adopted by
companies such as Google and Apple [10,11] for various applications including navigation
and virtual/augmented reality [12].

An example of a vehicle-based MMS (Leica Pegasus: Two Ultimate [13]) and its typical
sensor suites is shown in Figure 1. It consists of both data acquisition sensors and position-
ing sensors. The data acquisition sensors primarily consist of a calibrated LiDAR and digital
camera suite. The LiDAR sensor is capable of producing 1,000,000 points/second and the
camera suite captures a 360◦ horizontal field of view (FoV) to provide both texture/color
information and stereo measurements, if needed. The positioning sensors include a GNSS
receiver that provides the global positional information, with an additional IMU and
distance measuring instrument (DMI) that obtains odometry information for integrated
position correction. These positioning systems are required to be calibrated in their relative
positions and play a vital role in the generation of globally-consistent point clouds.
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Figure 1. An example of an MMS: a vehicle-mounted mobile mapping platform consisting of
different positioning and data collection sensors to generate an accurate georeferenced 3D map of the
environment. Shown here are the main sensors of the Leica Pegasus: Two Ultimate as an example.
Photo courtesy of Leica Geosystems [13].

Despite the existence of a few mobile mapping technologies in the market, the tech-
nology landscape of MMS is highly disparate. There is no single and standard MMS that
is widely used in the mapping community. Most of the existing MMSs are customized
using different sensor suites at different grades of integration. As such, each has its pros
and cons. Previous studies have largely focused on comparative studies among certain
devices [1,14–19] or targeted systems for specific application scenarios (e.g., indoors or
outdoors) [20–22]. Due to the rapid development of imaging, LiDAR, positioning sensors,
and onboard computers, the updated capabilities of these essential components of an MMS
may not be fully reflected through a few integrated systems, rendering such studies less
informative. There is a general dearth of studies covering the comprehensive landscape of
sensor suites and respective MMSs. In this paper, we focused on providing a meta-review
of sensors and platforms tasked for ground-level 3D mappings, as well as the techniques
needed to integrate these sensors as suites for MMSs in different application scenarios. This
review was intended to provide an update on sensors, MMSs with different hosting plat-
forms, and the extended applications of MMSs. The aim was to serve not only researchers in
the field of mobile mapping, with updated background information, but also practitioners
on critical factors of concern when customizing an MMS for specific applications. We
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highlighted the main steps from data acquisition to refinement and discussed some of the
most common challenges and considerations of MMS.

2. Paper Scope and Organization

This paper was intended to provide a comprehensive review of MMS technology,
including a thorough discussion, covering mobile mapping from sensors and software to
their applications. We thoroughly discussed the different types of sensors, their practical
capabilities, and their limitations, as well as methods of fusing sensory data. We then
described the main platforms that are currently used for mapping tasks in different applica-
tion scenarios (e.g., indoor and outdoor applications). In addition, we discussed the main
stages of processing MMS data, including preprocessing, calibration, and refinement. In
order to assess the benefits of an MMS in practice, we examined a few of the most important
applications that widely use mobile mapping technology. Finally, for the benefit of future
work, we highlighted the main considerations and challenges in an open discussion.

The rest of this paper has been organized as follows: Section 3 provides a detailed
review of essential positioning and data collection sensors in MMSs; Section 4 presents
the different MMS hosting platforms, based on their application scenarios (i.e., vehicle-
mounted systems, handheld, wearable, and trolley-based); Section 5 presents the workflow
to process MMS data, from acquisition to algorithms for fusing their observations and
refinement; Section 6 introduces the enabled applications using MMS for mapping and
beyond. Finally, Section 7 concludes this review and discusses future trends.

3. An Overview of Sensors in Mobile Mapping Systems

Positioning and data collection sensors are two classes of essential components used
in a typical MMS, as depicted in Figure 1. Positioning sensors are used to obtain the
geographical positions and motion of the sensors, which are used to georeference the
collected 3D data. Examples of these sensors include GNSS, IMU, DMI (i.e., odometers), etc.
To achieve more statistically accurate positioning, the measurements from these sensors
are usually jointly used through fusion. Addition fusion can also be performed between
the position and navigation cameras. Sensor fusion solution for positioning is currently
standard, as neither the GNSS receiver nor the IMU/DMI alone can provide sufficiently
accurate and reliable measurements for navigating mobile platforms. GNSS measurements
are usually subject to signal strength variation in different environments; for example, one
could obtain a strong signal in open spaces and weak signal or signal loss in tunnels or
indoors, leading to a loss of information. On the other hand, the IMU and DMI are subject
to a significant accumulation of errors and are often used as supplemental observations for
navigation when GPS data are available.

Data collection sensors mostly consist of LiDAR and digital cameras, providing raw
3D/2D measurements of the surrounding environments. The 3D measurements of an
MMS rely on LiDAR sensors, while the images are primarily used to provide colorimet-
ric/spectral information [20]. With the development of advanced dense image matching
methods [23–27], these images are also collected stereoscopically to provide additional
dense measurements for 3D data fusion. In the following subsections, we provided an
overview of positioning and data collection sensors, as well as the respective sensor
fusion approaches.

3.1. Positioning Sensors

As mentioned above, typical positioning sensors include GNSS receiver, IMU, and
DMI. Their patterns regarding errors are complementary; thus, in modern MMS, they are
often used, through a sensor fusion solution, to provide accurate positioning information
up to the centimeter [28]. Nevertheless, their individual measurement accuracies are still
critical to the accuracy of the resulting 3D maps. An overview of the positioning sensors is
shown in Table 1. In the following subsections, we discussed the three main positioning
sensors: GNSS, IMU, and DMI.



Sensors 2022, 22, 4262 4 of 26

Table 1. Positioning sensors overview.

Sensor Description Benefits Limitations

G
N

SS
re

ce
iv

er The signals from orbiting satellites
are utilized by the GNSS receiver to
compute the position, velocity, and
elevation. Some examples include

GPS, GLONASS, Galileo,
and BeiDou.

• No/less accumulation of errors
due to its dependence on
external signals.

• Data collected under a global
reference coordinate system
(e.g., WGS84).

• Signal inaccessible in complex
urban regions e.g., tall buildings,
trees, tunnels, indoor
environments, etc.

• Requires post-processing using
DGPS and RTK-GPS to minimize
errors from receiver’s noise,
pseudo-range, carrier phase,
doppler shifts, atmospheric
delays, etc.

IM
U

IMU is an egocentric sensor that
records the relative position of the

orientation and directional
acceleration of the host platform.

• Capable of navigating in all
environments, such as indoors,
outdoors, tunnels, caves, etc.

• A necessary supplemental data
source for urban environments
where GPS is unstable.

• Requires consistent calibration
and a reference to avoid drift from
the true position.

• Limited to short-range navigation.

D
M

I

A supplementary positioning sensor
measures the traveled distance of the

platform, i.e., information derived
from a speedometer.

• A supplemental sensor to
provide additional data points
to alleviate accumulation errors
of IMU sensors.

• Requires calibration and provides
only distance information
(1 degree of freedom).

3.1.1. Global Navigation Satellite System Receiver

The GNSS receiver is a primary source used to estimate absolute position, velocity,
and elevation in open areas referenced to a global coordinate system (e.g., WGS84). It
passively receives signals from a minimum of four different navigational satellite systems
and performs trilateration to calculate its real-time positions. Since it depends on an
external source of signal, the GNSS often exhibits fewer accumulation errors or none at
all. These satellite systems mainly refer to the GPS developed by the United States, the
GLONASS (Globalnaya Navigatsionnaya Sputnikovaya Sistema) developed by Russia, the
Galileo built by the European Union, and the BeiDou system developed by China [29].
The raw observations (pseudo-range, carrier phase, doppler shifts, etc.) from the chipset
of the receiver with its solver often give a positional error at the meter level, depending
on the chipsets and antenna (e.g., single/dual frequencies) [30]. High-tier MMSs often
use augmented GPS solutions, such as Differential GPS (DGPS) or Real-Time Kinematic
GPS (RTK-GPS), to improve the positioning accuracy to decimeters and centimeters (and
can achieve an accuracy of 1 cm [31]). DGPS uses a code-based measure and can operate
with single-frequency receivers without initialization time, while RTK-GPS uses carrier-
phase measures and requires dual-frequency receivers. The latter takes about one minute
to initialize (for fixing wavenumbers) [19]. Both DGPS and RTK-GPS rely on a network
of reference stations, linked to a surveyed point in its vicinity, to apply corrections and
eliminate various errors such as ionosphere delays and other unmodeled errors. The
traditional DGPS method achieves submeter accuracy in the horizontal position, while,
with much more advanced techniques and solvers, the RTK-GPS, as a type of DGPS, can
achieve centimeter-level accuracy in three dimensions. However, these achievable accuracy
measures are conditioned to open areas; when collecting 3D data in dense urban areas
with tall buildings or indoor environments, the GNSS signal can be heavily impacted by
occlusions and the resulting measurements can be inaccurate [32]. As such, it requires other
complimentary sensors when operating under such conditions. In general, the positioning
platform of an MMS is expected to achieve an accuracy of 5–50 mm at speeds that can
reach the maximum speed of highways (120–130 km/h) when considering the integration
of complementary sensors.
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3.1.2. Inertial Measurement Unit

IMU is an egocentric sensor that records the relative position of the orientation and
directional acceleration of the host platform. Its positional information can be calculated
through dead reckoning approaches [33,34]. Unlike GNSS, it does not require links to
external signal sources, and it records relative positions with respect to a reference to
its starting point (which can usually be dynamically provided by GNSS in open fields).
Like many other egocentric navigation methods, it suffers from accumulation errors, often
leading to significant drifts to its true positions. To be more specific, an IMU consists
of an accelerometer and a gyroscope which it uses to sense acceleration and angular
velocity. These raw measurements are fed into an onboard computing unit to apply the
dead reckoning algorithm to provide real-time positioning. Thus, the IMU and computing
unit, together with the algorithm as a whole, are also called an inertial navigation system
(INS). The grade/quality of IMU sensors can be differentiated by the type of gyroscope:
a majority of light-weight, consumer-grade IMUs use microelectromechanical systems
(MEMS), which are affordable but suffer from poor precision and large drift errors (often
10–100◦/h [35]) [3,36]. Higher grade systems for precise navigation use a larger but more
accurate gyroscope, e.g., a ring laser or fiber optic gyroscope, which can reach a drift error
of less than 1◦/h [35]. IMU can work in GPS-denied environments indoors, outdoors, and
in tunnels. However, given its use of dead reckoning navigation, its measurements will
only be accurate for a relatively short period in reference to the starting point. Since GNSS
provides reasonable accuracy in an open area and its measurements do not have error
accumulations as the platform moves, it often integrates IMU for additional observations.
This, as a standard approach, provides more accurate positional information in complex
environments mixed with both open and occluded surroundings [37].

3.1.3. Distance Measuring Instrument

The DMI generally refers to instruments that measure the traveled distance of the
platform. In many cases, DMI is alternatively referred to as the odometer or wheel sensor
for MMS based on vehicles or bikes. It computes the distance based on the number of cycles
the wheel rotates. Since DMI only measures distance, it is often used as supplementary
information to GNSS/IMU as an effective means to reduce the accumulated errors and
constrain the drift from IMU in GPS-denied environments such as tunnels [38]. It requires
calibration before use and measures distance, velocity, and acceleration.

3.2. Sensors for Data Collection

Data collection sensors are another major component in an MMS, used to collect 3D
data. They typically refer to sensors such as LiDAR and high-resolution cameras that
provide both geometry and texture information. They require constant georeferencing
using the position and orientation information provided by the positioning sensors to link
the 3D data to the world coordinate system. In this section, we introduced LiDAR and
imaging systems (i.e., cameras), described their functions, types, benefits, challenges, and
limitations, and provided an example of a system representing the status quo.

3.2.1. Light Detection and Ranging (LiDAR)

LiDAR, or light detection and ranging, is an optical instrument that uses directional
laser beams to measure the distances and locations of objects. It provides individual and
accurate point measurement on a 3D object; thus, many of these measurements together
constitute information about the shape and surface characteristics of objects in the scene. It
has many desirable features in a 3D model, as it is highly accurate, can acquire dense 3D
information in a short time, exhibits invariance to illumination, and can partially penetrate
sparse objects like canopies. LiDAR itself is still an instrument used for measuring relative
locations. It requires a suite of highly accurate and well-calibrated navigation systems
to retrieve global 3D points, the installation and cost of which, in addition to the already
expensive LiDAR sensor, make it a high-cost means of collection.
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The concept of using light beams for distance measurements has existed since 1930 [39].
Since the invention of the laser in 1960, LiDAR technology has experienced rapid devel-
opment [40] and has been very popular for accurate mapping and autonomous driving
applications [41]. Nowadays, there are many commercially-available LiDAR sensors for
surveying or automotive applications. Typically, survey-grade LiDAR achieves a range
accuracy at the millimeter level (usually 10–80 mm); examples include the RIEGL VQ-250,
VQ-450 [42], and Trimble MX9 and MX50 [43]. Relatively lower-grade LiDAR sensors
(which are also lower in cost) achieve a range accuracy at the centimeter level (usually
1–8 cm), generally satisfying applications for obstacle avoidance and object detection. These
are often used in autonomous driving platforms given their good tradeoff between cost and
performance. Examples of such LiDAR sensors include Velodyne [44], Ouster [45], Luminar
Technology [46], and Innoviz Technologies [47]. In fact, the level of accuracy of different
grades of LiDAR sensors and their costs are the main deciding factors when considering
the choice of a LiDAR sensor. There is a large cost gap between grades, with survey-grade
LiDARs often costing hundreds of thousands of USD (at the time of this publication) and
relatively lower-grade ones coming in approximately ten times cheaper.

LiDAR sensors can be categorized, based on their collecting principles, into three main
categories: rotating, solid-state, and flash. Rotating LiDAR uses a rotating mirror spinning
for 360 degrees and redirecting laser beams. It usually has multiple beams, and each beam
illuminates one point at a time. The rotating LiDAR is the most commonly used in MMS;
based on its rotating nature, it provides large FoV, high signal-to-noise ratio, and dense
point clouds [48]. Solid-state LiDAR usually uses MEMS mirrors, embedded in a chip [49]
through which the mirror can be controlled to follow a specific trajectory or optical phased
arrays to steer beams [50]. As such, it is considered solid because it does not possess any
moving parts in the sensor. Flash LiDAR [51] usually illuminates the entire FoV with a wide
beam in a single pulse. Analogous to a camera with a flash, a flash LiDAR uses a 2D array
of photodiodes to capture the laser returns, which are finally processed to form 3D point
clouds [48,52]. Typically, a Flash LiDAR has a limited range (less than 100 m) as well as a
limited FoV, constrained by the sensor size. Although LiDAR is primarily used to generate
point clouds, it can also be used for localization purposes through different techniques such
as scan matching [53–55]. The extractable information can be further enhanced by deep
neural networks for semantic segmentation and localization [56,57]. However, like many
other methods, while LiDAR sensors can provide relatively accurate range measurements,
their performance deteriorates significantly in hazardous weather conditions such as heavy
rain, snow, and fog.

Table 2 shows an example of several existing LiDAR sensors along with their technical
specifications in terms of range, accuracy, number of beams, FoV, resolution, point per
second, and refresh rate. Generally, the choice of sensors depends on the application and
the characteristics of the moving platform (e.g., the speed, payload, etc.). As mentioned
above, most MMSs rely on rotating LiDAR sensors, but they often come at a high cost
compared to other categories. Therefore, using solid-state LiDAR in an MMS is a promising
direction, since its cost is lower than rotating LiDAR. When the vehicle speed is high,
there is less time to acquire data, and more beams are needed to ensure that the object of
interest is measured by sufficient points [44,58]. For instance, a 32-beam LiDAR could be
sufficient for a vehicle moving at a speed of 50–60 km/h, but a LiDAR with 128 beams is
recommended for higher speeds, up to 100–110 km/h, so that the acquired data have an
adequate resolution. The operating range of a LiDAR can be also important and should be
considered on an application basis (e.g., long-range LiDAR may be unnecessary for indoor
applications.). In general, the cost usually increases by a factor of 1.5–2 when the number
of beams is doubled; this is also positively correlated to the operating range.
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Table 2. Specifications of different LiDAR sensors.

Company Model Range (m) Range Accuracy
(cm)

Number of
Beams

Horizontal
FoV (◦)

Vertical FoV
(◦)

Horizontal
Resolution (◦)

Vertical
Resolution (◦) Points Per Second Refresh Rate

(Hz)

R
ot

at
in

g

RIGEL VQ-250 1.5–500 0.1 — 360 — — — 300,000 —
VQ-450 1.5–800 0.8 — 360 — — — 550,000 —

Trimble MX50 laser scanner 0.6–80 0.2 — 360 — — — 960,000 —
MX9 laser scanner 1.2–420 0.5 — 360 — — — 1,000,000 —

Velodyne

HDL-64E 120 ±2 64 360 26.9 0.08 to 0.35 0.4 1,300,000 5 to 20
HDL-32E 100 ±2 32 360 41.33 0.08 to 0.33 1.33 695,000 5 to 20

Puck 100 ±3 16 360 30 0.1 to 0.4 2.0 300,000 5 to 20
Puck LITE 100 ±3 16 360 30 0.1 to 0.4 2.0 300,000 5 to 20

Puck Hi-Res 100 ±3 16 360 20 0.1 to 0.4 1.33 300,000 5 to 20
Puck 32MR 120 ±3 32 360 40 0.1 to 0.4 0.33 (min) 600,000 5 to 20
Ultra Puck 200 ±3 32 360 40 0.1 to 0.4 0.33 (min) 600,000 5 to 20

Alpha Prime 245 ±3 128 360 40 0.1 to 0.4 0.11 (min) 2,400,000 5 to 20

Ouster
OS2-32 1 to 240 ±2.5 to ±8 32 360 22.5 0.18 0.7 655,000 10, 20
OS2-64 1 to 240 ±2.5 to ±8 64 360 22.5 0.18 0.36 1,311,000 10, 20
OS2-128 1 to 240 ±2.5 to ±8 128 360 22.5 0.18 0.18 2,621,000 10–20

Hesai

PandarQT 0.1 to 60 ±3 64 360 104.2 0.6◦ 1.45 384,000 10
PandarXT 0.05 to 120 ±1 32 360 31 0.09, 0.18, 0.36 1 640,000 5, 10, 20

Oandar40M 0.3 to 120 ±5 to ±2 40 360 40 0.2, 0.4 1, 2, 3, 4, 5, 6 720,000 10, 20
Oandar64 0.3 to 200 ±5 to ±2 64 360 40 0.2, 0.4 1, 2, 3, 4, 5, 6 1,152,000 10, 20

Pandar128E3X 0.3 to 200 ±8 to ±2 128 360 40 0.1, 0.2, 0.4 0.125, 0.5, 1 3,456,000 10, 20

So
li

d-
st

at
e

Luminar IRIS Up to 600 — 640 lines/s 120 0–26 0.05 0.05 300 points/square degree 1 to 30

Innoviz
InnovizOne 250 — — 115 25 0.1 0.1 — 5 to 20
InnovizTwo 300 — 8000 lines/s 125 40 0.07 0.05 — 10 to 20

Fl
as

h LeddarTech Pixell Up to 56 ±3 — 117.5 ± 2.5 16.0 ± 0.5 — — — 20

Continental HFL110 50 — — 120 30 — — — 25

“—” indicates that the specifications were not mentioned in the product datasheet.
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3.2.2. Imaging Systems and Cameras

Imaging systems like cameras are among the most popular sensors used for data
collection due to their low-cost and ability to provide high-resolution texture information.
Cameras are usually mounted on the top or front of the moving platform to capture infor-
mation about the surrounding environment. They are intended to acquire many images at
a high frame rate i.e., 30–60 frames per second. Cameras are useful to serve a few main
purposes. First, they are used for recovering the geometry of the scene, usually obtained
through stereoscopic/binocular cameras that process a pair of overlapping images and
recover depth information using stereo-dense image matching approaches [24–26]. Second,
they are capable of obtaining the textures of objects in the scene (a camera records photons
of the object at different spectral frequencies that provide rich and critical information
about the object’s natural appearance) and can be used to build panoramic and geotagged
images, as well as photorealistic models. Third, the texture information gathered by cam-
eras encodes critical semantics of the object and can be used to detect static objects such as
traffic lights, stop signs, markings, and road lanes. They can also detect moving objects
such as pedestrians and cars, which is gradually becoming more applicable as modern
deep learning methods are developed to tackle such problems [4,59,60].

There are many types of camera sensors and configurations used in MMSs, depending
on their intended use, as described earlier. Examples include monocular cameras, binocular
cameras, RGB-D cameras, multi-camera systems (e.g., ladybug), fisheye, etc. A summary
of different camera types is shown in Table 3. Monocular cameras (low-cost cameras)
provide a series of single RGB images without any additional depth information and are
often used to collect high-resolution and geotagged images or panoramas [11]. However,
they cannot be used to recover 3D scale or generate high accurate 3D points. Binocular
cameras, on the other hand, consist of two cameras capturing synchronized stereo images
to recover depth and scale, with an additional computational cost incurred through stereo-
dense image matching techniques [24–26]. The performance and accuracy of the 3D
information depend on the selection of the stereo-dense image matching method. In many
cases, mapping solutions may rely on RGB-D cameras (e.g., Kinect [61], Intel RealSense
D435 [62]) which can provide both RGB images and depth images (through structured
light) simultaneous. They are primarily used in indoor settings due to their limited range.
Integrating LiDAR with RGB-D images can yield highly accurate 3D information; however,
this may require precompensation for the uncertainties in the RGB-D images from random
noise or occlusions. Due to the compact/cluttered environment, an MMS often includes a
wide FoV or even 360◦ panoramic camera, which is usually achieved via a multi-camera
system that uses a group of synchronized cameras sharing the same optical center (e.g.,
FLIR Ladybug5+ [63]). Panoramic images additionally facilitate the integration with
LiDAR scanners, providing 100% overlap between the image and LiDAR point clouds
(e.g., those from rotating LiDAR). As a result, the panoramic images are suitable for street
mapping applications. As a lower-cost alternative, a fisheye camera aims to provide an
image with extended FoV from a single camera. It has a spherical lens that can provide
more than 180◦ FOV. Although this is cheaper, the savings may come at the cost of image
distortions in scale, geometry, shape, and illumination, requiring additional and slightly
more complex calibrations.

As a modern MMS benefits from various cameras providing additional information, it
comes with a few added complexities. First, it captures images using the reflected light off
of objects, which makes it sensitive to the illumination of the environment, such as the high
dynamic range of the scene (between sky and ground) and hazy weather conditions [64,65].
Second, cameras and multi-camera systems require calibration to reduce different types of
distortions [66]. Third, moving platforms require high framerate cameras to leverage the
speed, image quality, and resolution [67].
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Table 3. Camera sensor overview.

Type Description Benefits Limitations

M
on

oc
ul

ar

Single-lens camera.

• Low cost.
• Provides a series of single RGB

images to collect high-resolution and
geotagged images or panoramas.

• Cannot recover 3D scale without
additional sensors.

• Camera networks suboptimal to
generate highly accurate 3D points.

Bi
no

cu
la

r Two collocated cameras with
known relative orientation
capturing overlapping and

synchronized image

• Can provide depth and scale of
objects the scene.

• Provides better accuracy integrated
with LiDAR sensor.

• Performance and accuracy may
depend on the algorithm used to
compute the 3D information.

R
G

B-
D Cameras that capture RGB and

depth images at the same time

• Simultaneous data acquisition.
• Provides high accuracy when

integrated with LiDAR.

• Depth image sensitive to occlusions.
• Low range.
• The depth image may include some

uncertainties and errors.

M
ul

ti
-c

am
er

a
sy

st
em

A spherical camera system with
multiple cameras that can

provide a 360◦ field of view

• Panoramic view showing the entire
scene.

• Suitable for street mapping
applications.

• Requires large storage to save
images in real-time.

• Must be properly calibrated to
assure alignment of images and
minimum distortions.

Fi
sh

ey
e

Spherical lens camera that has
more than 180◦ field of view

• Provides wide coverage of the scene
allowing capture of the scene with
fewer images.

• Lens distortions.
• Non-projective transformation.
• Requires rigorous calibration.

4. Mobile Mapping Systems and Platforms

There are a few factors that determine the type of sensor and platform to be used for
MMS tasks. These factors include available sensors, project budget, technical solutions,
processing strategies, and scene contents (i.e., indoor or outdoor). These help to determine
the type of available sensors (e.g., with/without GPS) and the accessible platforms (e.g.,
vehicle-mounted or backpack, etc.). For example, in indoor environments, there is no access
to GPS signals or vehicles, thus, alternative solutions must be adopted.

In general, we considered broadly categorizing the MMS platforms into traditional
vehicles and nontraditional lightweight/portable mapping devices. Traditional vehicle-
based MMSs primarily operate on main roads, collecting city or block-level 3D data. The
nontraditional portable devices, such as backpack/wearable systems, handheld systems, or
trolley-based systems, depending on their application and task, can be used both outdoors
or indoors in GPS-denied environments. For outdoor applications, these means of map-
ping are primarily used to complement vehicle-based systems, mapping narrow streets,
and areas that cannot be accessed by larger vehicles [68,69]. For indoor or GPS-denied
environments, the sensor suites may be significantly different from those used outdoors;
for example, they may primarily rely on INS or visual odometry for positioning [70,71]. To
be more specific, in this section, we introduced four typical MMS platforms that offered
mapping solutions, namely a traditional vehicle platform and three portable platforms
(handheld, wearable, and trolley-based systems). Further details of these systems are
provided in Table 4 and the following subsections.
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Table 4. Specifications of different MMSs.

System Release
Year Indoor Outdoor Camera LiDAR/Max. Range IMU GPS Accuracy * Applications

Ve
hi

cl
e-

m
ou

nt
ed

Leica Pegasus:
Two Ultimate 2018 × X 360◦ FoV ZF9012 profiler 360◦ ×

41.33◦/100 m X X 2 cm horizontal accuracy
1.5 cm vertical accuracy

• Urban 3D modeling.
• Road asset management.
• Analyzing change

detection
• Creating HD maps.
• Generating geolocated

panoramic images.

Teledyne Optech
Lynx HS600-D 2017 × X 360◦ FoV 2 Optech sensors/130 m X X ±5 cm absolute accuracy

Topcon IP-S3 HD1 2015 × X 360◦ FoV Velodyne HDL-32E
LiDAR/100 m X X 0.1 cm road surface accuracy

(1 sigma)

Hi-Target HiScan-C 2017 × X 360◦ FoV 650 m X X 5 cm at 40 m range

Trimble MX7 × X 360◦ FoV × X X —

Trimble MX50 2021 × X 90% of a full sphere 2 MX50 Laser scanner/80 m X X 0.2 cm (laser scanner)

Trimble MX9 2018 × X
1 spherical + 2 side looking
+ 1 backward/downward

camera

MX9 Laser scanner/up to
420 m X X 0.5 cm (laser scanner)

Viametris vMS3D 2016 × X FLIR Ladybug5+ Velodyne VLP-16 + Velodyne
HDL-32E X X 2–3 cm relative accuracy

H
an

dh
el

d

HERON LITE Color 2018 X X 360◦ × 360◦ FoV 1 Velodyne Puck/100 m X × 3 cm relative accuracy

• Mapping enclosed and
complex spaces and
cultural heritage.

• Forest surveying.
• Building Information

Modeling.

GeoSLAM Zeb Go 2020 X × Can be added, accessory Hokuyo UTM-30LX laser
scanner/30m × × 1 to 3 cm relative accuracy

GeoSLAM Zeb Revo RT 2015 X × Can be added, accessory Hokuyo UTM-30LX laser
scanner/30m × × 0.6 cm relative accuracy

GeoSLAM Zeb Horizon 2018 X X Can be added, accessory Velodyne Puck
VLP-16/100 m × × 0.6 cm relative accuracy

Leica BLK2GO 2018 X X 3 camera system 300◦ ×
150◦ FoV Up to 25 m 360 × 270 × ×

±1 cm in an indoor
environment with a scan

duration of 2 min

W
ea

ra
bl

e

Leica Pegasus: Backpack 2017 X X 360◦ × 200◦ FoV Dual Velodyne
VLP-16/100 m X X 2 to 3 cm relative accuracy

5 cm absolute accuracy

HERON MS Twin 2020 X X 360◦ × 360◦ FoV Dual Velodyne Puck/
100 m X × 3 cm relative accuracy

NavVis VLX 2021 X X 360◦ FoV Dual Velodyne Puck
LITE/100 m X ×

0.6 cm absolute accuracy at
68% confidence

1.5 cm absolute accuracy at
95% confidence

Viametris BMS3D-HD 2019 X X FLIR Ladybug5+ 16 beams LiDAR + 32 beams
LiDAR X X 2 cm relative accuracy
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Table 4. Cont.

System Release
Year Indoor Outdoor Camera LiDAR/Max. Range IMU GPS Accuracy * Applications

Tr
ol

le
y

NavVis M6 2018 X × 360◦ FoV 6 Velodyne Puck LITE/100 m X ×
0.57 cm absolute accuracy at

68% confidence
1.38 cm absolute accuracy at

95% confidence
• Indoor mapping for

government buildings,
airports, and train
stations.

• Tunnel inspection.
• Measuring asphalt

roughness.
• Building Information

Modeling.

Leica ProScan 2017 X X × Leica ScanStation P40, P30
or P16 X X 0.12 cm (range accuracy for

Lecia ScanStation P40)

Trimble Indoor 2015 X × 360◦ FoV
Trimble TX-5, FARO Focus

X-130, X-330, S-70-A,
S-150-A, S-350-A

X ×
1 cm relative accuracy when
combined with FARO Focus

X-130

FARO Focus Swift 2020 X × HDR camera
FARO Focus Laser Scanner

with a FARO ScanPlan
2D mapper

X ×
0.2 cm relative accuracy at

10 m range
0.1 cm absolute accuracy

* The accuracy measurement reported by the manufacturers. The measure of the accuracy is unknown if not stated as relative or absolute. The “—” symbol indicates that the specifications
were not mentioned in the product datasheet.
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4.1. Vehicle-Mounted Systems

This setting refers to mounting the sensor suites on top of a vehicle to capture dense
point clouds. These systems enable a high rate of data acquisition at the vehicle travel speed
(20–70 mph). The sensor platform can be mounted on cars, trains, or boats, depending on
the mapping application. Generally, vehicle-mounted systems achieve the highest accuracy
compared to other mobile mapping platforms, primarily because of their size and payload,
which allows them to host high-grade sensors [72]. A vehicle-mounted MMS system is
usually equipped with a survey-grade LiDAR that provides dense and accurate measure-
ments, as well as a deeply integrated 360◦ FoV camera providing textural information.
Regarding the positioning sensors, a vehicle-mounted system usually fuses measurements
from GNSS receivers with IMU and DMI. An example of these systems is introduced
in [73], where one Velodyne HDL-32E, and five Velodyne VLP-16 LiDAR sensors were
combined with multiple GPS receivers and IMUs. Other examples include Leica Pegasus:
Two Ultimate [13], Teledyne Optech Lynx HS600-D [74], Topcon IP-S3 HD1 [75], Hi-Target
HiScan-C [76], Trimble MX50, MX9, MX7 [43], and Viametris vMS3D [77]. Figure 2 shows a
sample of such vehicle-mounted systems.
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Vehicle-mounted systems are used for various applications, such as urban 3D model-
ing, road asset management, and condition assessment [78,79]. Moreover, these systems can
be used for automated change detection in the mapped regions [80,81], creating up-to-date
HD maps as an asset for autonomous driving [73] and railway monitoring applications [82].

Although vehicle-mounted systems play a major role in mobile mapping, their rela-
tively large size hinders their accessibility to many sites, such as narrow alleys and indoor
environments. Additionally, some studies [83] have demonstrated that the speed of the vehi-
cle may affect the quality of the 3D data, creating doppler effects over successive scans [84].
Therefore, the speed and route have to be planned ahead of the mapping mission.

4.2. Handheld and Wearable Systems

The handheld and wearable systems follow lightweight and compact designs using
small-sized sensors. An operator can hold or wear the platform and walk through the area
of interest. Wearable systems are often designed as a backpack system to allow the operator
to collect data while walking. Both handheld and wearable systems are distinguished
by their portability, which enables mapping GPS-denied environments such as enclosed
spaces, complex terrains, or narrow spaces that vehicles cannot access [20,85]. Due to the
nature of these environments, handheld and wearable systems may not rely on GNSS
receivers for positioning, but could instead depend on an IMU or use a LiDAR and camera
for both data collection and localization (using simultaneous localization and mapping
(SLAM) approaches) [86]. A sample of several handheld and wearable systems is shown in
Figure 3. Examples of these devices include HERON LITE Color [87], GeoSLAM Zeb Revo
Go, Zeb RT, Zeb Horizon [88], Leica BLK2GO [13], Leica Pegasus: Backpack [13], HERON
MS Twin [87], NavVis VLX [89], and Viametris BMS3D-HD [77]. Some other examples of
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these devices are introduced in [70,85,90], where they showed the benefit of using LiDAR
with IMU to generate 2D and 3D maps and evaluated the performance of these mapping
devices in indoor environments.
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As mentioned above, handheld and wearable systems are effective in mapping en-
closed spaces; for instance, these devices can be used to map caves where GNSS signals
and lighting are not available [91]. In addition, they are used to map cultural heritage
sites that may be complex and require data to be efficiently collected from different view-
ing points [92–94]. Furthermore, these systems are efficient in mapping areas that are not
machine-accessible, such as forest surveying [68,95,96], safety and security maps, and build-
ing information modeling (BIM) [97]. However, working in GPS-denied regions requires
compensating for the lost signal, which demands setting GCPs in these regions, or utilizing
GPS information before entering into such environments [98], whereas, inside tunnels,
navigation completely depends on IMU/DMI or scanning sensors (LiDAR or cameras).

4.3. Trolley-Based Systems

This type of system is similar in nature to the backpack system while maintaining the
ability to be slightly more sizeable and carry a heavier payload. It is suitable for indoor and
outdoor mapping where the ground is flat [99]. A sample of trolley-based systems is shown
in Figure 4. Examples of these systems include NavVis M6 [89], Leica ProScan [13], Trimble
indoor [43], and FARO Focus Swift [100]. Trolley-based systems are also suitable for a
variety of applications, such as tunnel inspection, measuring asphalt roughness, creating
floorplans, and BIM [22]. In addition, they are used for creating 3D indoor geospatial views
of all kinds of infrastructure, such as plant and factory facilities, residential and commercial
buildings, airports, and train stations.
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5. MMS Workflow and Processing Pipeline

There are a few processing steps required to turn raw sensory data from an MMS
to the final 3D product. These generally include data acquisition, sensor calibration and
fusion, georeferencing, and data processing in preparation for scene understanding (shown
in Figure 5). In the following subsections, we provided an overview of these typical
processing steps.
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5.1. Data Acquisition

The planned route must be analyzed to determine the configured platforms and
sensors to be deployed; for example, the operators should be aware of the GNSS accessible
regions in order to plan the primary sensors to use. For MMS positioning, the GNSS,
IMU, and DMI continuously measure the position and motion of the platform. In most
outdoor applications, the main navigation and positioning data are provided by the GNSS
satellite to the receiver, and the IMU and DMI supplement measurements where GNSS
signals are insufficient or lost. In some specific cases where GNSS is completely inaccessible,
such as cave mapping, GCPs will be used to reference the data to the geodetic coordinate
system. Additionally, 3D data are mainly collected by an integrated LiDAR and camera
system, where LiDAR produces accurate 3D point clouds colorized by the images from the
associated camera.

5.2. Sensors Calibration and Fusion

Sensor calibration and fusion are often performed throughout the data collection
cycle. The goal of this is to calibrate the relative positions between multiple sensors,
including between cameras, between camera and LiDAR, or among LiDAR, camera, and
navigation sensors. Additionally, their output must be fused as a postprocessing step to
achieve more accurate positional measurements. These serve multiple purposes: more
accurate localization, more accurate geometric reconstruction, and data alignment for
fusion [101,102]. In the following subsections, we introduced a few typical calibration
procedures in MMS.

5.2.1. Positioning Sensors Calibration and Fusion

The integration of GNSS, IMU, and DMI is split into several steps. The first is
lab/factory precalibration, which estimates the relative offset among these sensors and
their relative position to the data collecting sensors (e.g., LiDAR and cameras) [103]. The
second step involves the fusion of sensor information to output the estimated positions
through optimal statistical/stochastic estimators [29,104]. A typical algorithm used for this
purpose is the Kalman filter (KF) [105–108], which uses continuous measurements over time
with their uncertainties and a stochastic model for each sensor to estimate the unknown
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variables in a recursive scheme. KF is the simplest dynamic estimator that assumes linear
models and Gaussian random noise of observations. As such, it is often readopted through
Extended KF (EKF) for linearized nonlinear models [109,110]. However, convergence is
not guaranteed for EKF, especially when the random noise does not follow the Gaussian
distribution. Thus, a particle filter [111,112] is usually adopted as a good alternative, as it
can simulate the noises to deal with the potential non-Gaussian noise distributions.

5.2.2. Camera Calibration

Camera calibration refers to the process of rigorously determining the camera intrinsic
parameters (i.e., focal length, principal point), various lens distortions (e.g., radial distor-
tion), and other intrinsic distortions, such as affinity or decentering errors [113,114]. The
camera calibration parameters often follow the standard Brown model [115] or the extended
parameters [116] that additionally model in-plane errors due to film/chip displacements.
The traditional and most rigorous camera calibration approach uses a 3D control field
consisting of highly accurate 3D physical point arrays. Converging images of these point
arrays are captured at various angles and positions. These well-distributed 3D points,
together with their corresponding 2D observations on the image, go through a rigorous BA
with additional parameters (i.e., calibration parameters). However, 3D control fields are
demanding and costly. This approach is mostly used for calibrating survey-grade or aerial
cameras at the factory level. A popular and less demanding calibration approach is called
cloud-based camera calibration [116]. Instead of using the very expensive 3D control fields,
this approach uses coded targets, which can be arbitrarily placed (but well-distributed with
certain depth variations) in a scene as a target cloud. Converging images of these targets
can yield very accurate 2D multi ray measurements, which are fed into a free-network
BA for calibrating the camera parameters. Thanks to its simplicity, this is often used as
a good alternative for calibrating cameras for close-range applications, including MMS
applications. A less rigorous (but often used) calibration method uses a chessboard as a
target for calibration [117], which extracts regularly distributed 2D measurements from
images of the chessboard and performs self-calibrating BA. However, due to its limited
scene coverage, the nature of the board being planar (thus lacking depth variation), and the
limited flexibility in capturing well-converged images filled with features, this method may
not, in BA, decorrelate camera parameters from exterior orientation parameters, leading
to potential errors in calibration. Since it is very commonly used in the computer vision
community and well supported by available open-source tools, it is one of the most popular
approaches to obtain quick calibrations and can be used to calibrate cameras that do not
demand high surveying accuracy, such as navigation cameras.

When calibrating a multi-camera system (e.g., a stereo rig), the camera calibration is
extended to additionally estimate the accurate relative orientation among these cameras.
The calibration still goes through a BA, but requires at least knowledge of the scale of the
targets (either the target clouds or chessboard) in order to metrically estimate the baselines
between all these cameras.

5.2.3. LiDAR and Camera Calibration

The calibration between LiDAR and camera covers a few aspects: first, images must
be time-synchronized with the LiDAR scans. Second, the relative orientation between the
LiDAR and camera rays must be computed. Third, they must have the same viewpoint
to avoid parallaxes. Time-synchronization is one of the most crucial calibration steps to
correct time offsets between sensors. It refers to matching the recorded and measured data
from different sensors with separate clocks to create well-aligned data, in terms of time and
position. Time-synchronization errors (or the time offsets) are due to (1) clock offset, which
refers to the time difference between internal clocks of sensors, or (2) clock drift, which
refers to sensors’ clocks operating at different frequencies or times [118]. A time offset
greater than milliseconds between LiDAR and camera can cause significant positioning
errors when recording an object. Additionally, the impact can be more significant and
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noticeable if the platform is operating at a high speed. To address this problem, sensors
must have a common time reference, often based on GNSS’s time because of its high
precision and ability to record positions in nanoseconds [119]. The time offset between
GNSS and IMU is either neglected because of its insignificance or may be slightly corrected
using KF as a fusion method. The LiDAR and camera timestamps are corrected in real-time
using the computer system on board. The computer system updates that data based on
GNSS’s time; some examples of these computer systems/servers include GPS service
daemon (GPSD), IEEE, and Chrony.

Relative orientation refers to estimating the translation and orientation parameters
between sensors. This type of calibration needs to be carried out periodically due to
deteriorations of the mechanics within and among the sensors after operating in differ-
ent environments. Quick calibration can be performed using a single image where four
corresponding points are selected between the image and the 3D scan, using either the
well-identified natural corner points or highly reflective coded targets.

Ideally, LiDAR and Camera data must be well-aligned. However, because of the wide
baseline between the two sensors, they often view objects from different angles, leading to
large parallaxes between them. A large parallax causes crucial distortions such as flipping
or flying points, flying points, occlusions, etc. To resolve this issue, the relative orientation
parameters are used to project the LiDAR data into the camera coordinate system [120].

5.3. Georeferencing LiDAR Scans and Camera Images Using Navigation Data

Both the LiDAR scan and images collect data in a local coordinate system. Georef-
erencing them refers to determining their global/geodetic coordinates, mostly based on
fused GNSS/IMU/DMI positioning data. This is a process after calibration among these
data collection sensors (as described in Section 5.2). Georeferencing includes the estimation
of the orientation (boresight) and position (lever-arm) parameters/offsets with respect
to GNSS and IMU [19]. The boresight and level-arm parameters define the geometrical
relationship between positioning and data collection sensors. There are two approaches
to perform georeferencing: (1) the direct approach, which uses only GNSS/IMU data, or
(2) the indirect approach, which uses GNSS/IMU data in addition to GCP and BA for
refinement [68]. The direct approaches are less demanding, since they do not require GCP,
and they can achieve accuracy in the decimeter to centimeter levels. Indirect approaches
can provide more accurate (centimeter-level) and precise results where typical surveying
methods like GCPs and BA are adopted. However, they are very expensive, and their
accuracy may vary based on the GCP setup (i.e., position and number of GCPs).

5.4. Data Processing in Preparation for Scene Understanding

Mobile mapping is highly relevant to autonomous vehicles, where scene understand-
ing is crucial to not only automate the mapping process but also provide critical scene
information in real-time to support platform mobilizations. Scene understanding is the
process of identifying the semantics and geometry of objects [121,122]. With the enhanced
processing capability of mobile computing units, advanced machine learning models, and
the ever-increasing datasets, there is a growing trend toward performing on-board data
processing and scene understanding using the collected measurements from the mobile
system [123,124]. These include real-time detection, tracking, and semantic segmentation
of both dynamic (e.g., pedestrians) and static (e.g., road markings or signs) objects in a
scene [122,125]. This has driven the need to develop representative benchmark datasets,
better-generalized training, domain adaptation approaches [126], and lighter machine learn-
ing models or network structures that support real-time result inferences [127]. Examples of
these efforts include MobileNet [128], BlitzNet [127], MGNet [129], and MVLidarNet [130].
Challenges exist when addressing these needs, as the mobile platforms may collect data
under extremely different illuminations (e.g., daylight and night), weather conditions (e.g.,
rainy, snowy, and sunny), and may utilize drastically different sensor suites with different
qualities of raw data.
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6. Applications

Mobile mapping provides valuable assets for different applications, driven by not
only the broad availability of easy-to-use and portable MMS platforms but also their readi-
ness under different operating environments. This is particularly useful as most of these
applications rely on regularly acquired data for detection and monitoring purposes, such
as railway-based powerline detection/monitoring [131,132]. In this section, we reviewed
some of the main applications of mobile mapping technology, including road asset manage-
ment, conditions assessment, BIM creation, disaster response, and heritage conservation.
Documented examples of these applications in publications are shown in Table 5 and are
detailed in the following subsections.

Table 5. An overview of the selected mobile mapping applications.

Selected Applications Highlights

Road asset management and
condition assessment

Extraction of road assets [79]; road condition
assessment [133]; detection of pavement distress

using deep-learning [134]; evaluation of pavement
surface distress for maintenance planning [135].

• Vehicle-mounted system regularly
operating on the road.

• More efficient than manual
inspection.

• Leveraging deep learning to
facilitate the inspection process.

BIM
Low-cost MMS for BIM of archeological
reconstruction [136]; analysis of BIM for

transportation infrastructure [137].

• Data are collected with portable
systems.

• Useful for maintenance and
renovation planning.

• Rich database for better information
management.

Emergency and disaster
response

Network-based GIS for disaster response [138];
analyzing post-disaster damage [139].

• Timely and accurate disaster
response.

• Facilitates the decision-making
process.

• Effective training and simulations.

Vegetation mapping and
detection

Mapping and monitoring riverine vegetation [140];
tree detection and measurement [141–143].

• Accurate and automatic
measurements.

• Reduces occlusions for 3D urban
models.

Digital Heritage Conservation

Mapping a complex heritage site using handheld
MMS [92]; mapping a museum in a complex

building [94]; numerical simulations for structural
analysis of historical constructions [144]; digital

heritage documentation [145]; mapping
archaeological sites [146]; development of a digital

heritage inventory system [147].

• Utilizes the flexibility of portable
platforms.

• Enables virtual tourism.
• Digital recording of cultural sites.

Road Asset Management and Condition Assessment: MMSs operating on roads can
regularly collect accurate 3D data of the road and its surroundings, which facilitates road
asset management, mapping, and monitoring (e.g., road signs, traffic signals, pavement
dimensions) [79]. Creating road asset inventories is of great importance, given the large
volume of road assets. Furthermore, since the condition of the roads deteriorates over
time, automatic means of regular transportation maintenance, such as pavement crack and
distress detection are critically needed [133,135]. Therefore, a key benefit of generating
an updated and accurately georeferenced road asset inventory is to allow automatic and
efficient change detection in place of traditionally laborious manual inspections [134].

Typically, road condition monitoring processes consist of four steps [148]: (1) data
collection using MMS, (2) defect detection, which can be performed automatically us-
ing deep learning-based approaches, (3) defect assessment, and (4) road condition index
calculation to classify road segments based on the type and severity of the defect. There-
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fore, MMS data could further assist in increasing road safety, for example by detecting
road potholes [78,149], evaluating the location of speed signs before horizontal curves on
roadways [150], or assessing the passing sight distance on highways [151].

Building Information Modeling: BIM is one of the most well-established technolo-
gies in the industry of architecture, engineering, and construction. It provides an integrated
digital database about an asset (e.g., building, tunnel, bridge, or 3D model of a city) during
the project’s life cycle. Typical BIM stages include (1) rigorous data collection, preparation
of the 2D plans, and upload of these into specialized software programs to convert them
into a digital format. The collected data include information such as architectural design
(i.e., materials and dimensions), structural design (e.g., beams, columns, etc.), electrical and
mechanical designs, sewage systems, etc.; (2) preparation of the 2D plans; and (3) manual
upload and update of the plans using specialized software. This can facilitate the design,
maintenance, and renovation processes of engineering buildings and infrastructures. How-
ever, this can be a challenging task because of the amount of data that need to be collected
and the lack of automated processes that can increase the time and cost.

Nowadays, MMSs have been widely adopted for BIM projects due to their high
accuracy, time efficiency, and lower cost in collecting 3D data. The collected point clouds
and images are used to produce the 3D reconstructed model of an asset, then processed
under semantic segmentation or classification to extract detailed information of all elements
in the asset. The final product is then transferred to the BIM software to extract and simulate
important information related to the life cycle of the project. In general, MMS can provide
sufficiently accurate results for the derived BIM products [20]. These derived products
can be either 2D floor plans or 3D mesh or polyhedral models representing the structure
of architecture or the life cycle of the construction process [145]. A popular example of
MMS in BIM is 3D city modeling, where MMS can be used to collect information on
roadside buildings [143–145] and their structural information (e.g., window layout and
doors) [98,146]. Additionally, they can also be used to maintain plans and record indoor
3D assets and building layouts, which can be generated using handheld, backpack, or
trolley MMSs.

Emergency and Disaster Response: The geospatial data provided by the MMSs are
critical to improving emergency, disaster responses, and post-disaster recovery projects.
MMSs provide cost and time-efficient solutions to collect and produce 3D reconstructed
models with detailed information about the semantics and geometry to navigate through an
emergency or a disaster. MMSs have been reported to provide building-level information
(e.g., floors, walls, and doors) to a resolution/accuracy at the centimeter level. In many
cases, the building’s plans are not up-to-date after construction, which may hinder a rescue
mission in case of a fire emergency [139,152]. On the other hand, the MMS can provide an
efficient alternative to produce an accurate and updated 3D model of a facility or a building
at a minimal cost, which facilitates emergency responses. Another example is collecting 3D
data on roadside assets and feeding them into GIS systems, which can serve as pre-event
analysis tools to identify potential impacts of natural disasters through simulation (e.g.,
flood simulation, earthquake, etc.), aiding preventative planning. The future directions
of MMSs involve more efficient data collection methods (as simple as a man holding a
cellphone imaging surroundings), and although these might involve lower accuracy [3],
they could supply critical georeferenced information in a disastrous or emergency event to
supply information for situation awareness and remedies.

Vegetation Mapping and Detection: Mobile mapping has shown great success in
collecting high-resolution and detailed vegetation plots, used to create up-to-date digital
tree inventories for urban green planning and management. This has greatly accelerated
traditionally laborious visual inspections [142]. In addition, vegetation monitoring is im-
portant to limit declines in biodiversity and identify hazardous trees [153,154]. Therefore,
these requirements impacted the advancement of keeping an up-to-date digital database
for vegetation data. The collected 3D data could be used to model 3D trees for visualiza-
tion purposes in urban 3D models. Typically, the workflow might consist of three main
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steps [155]: (1) tree detection by segmenting the generated point clouds, (2) simplifying the
detected structure of point clouds, (3) deriving the geometry parameters, such as canopy
height and crown width and diameter [155,156]. Then, the collected point cloud could be
used to detect trees and low vegetation at the roadside [141,143] to take into account the
occlusion on building facades and supply information for city modeling. Moreover, the
collected data from MMSs could also be used in calculating urban biomass, combatting the
urban heat island effect, and helping in analyzing the influence of the ecosystem on climate
change [157].

Digital Heritage Conservation: There is a growing trend toward people realizing
the importance of digitally documenting archaeological sites and preserving cultural her-
itage [146,158,159]. Many of these sites are in danger of deterioration and collapse, which
may be accelerated due to extreme weather and natural disasters, such as the collapse of
many cultural sites in Nepal and Iran due to earthquakes [160]. Therefore, there is a critical
need to proactively document these sites while they are still in shape [92,161,162]. More-
over, a well-documented heritage site may enable other means of tourism, such as virtual
tours, to off-load site visitation and reduce the human factors that impact the deterioration
of these sites. As a means of collecting highly accurate 3D data, MMS has been used as one
of the primary sources to create 3D models of complex and large archaeological heritage
sites. The data collection process for these sites often requires multi-scans of both the
interior and exterior from different angles to generate occlusion-free, realistic 3D models.
For example, a vehicle-mounted system could be used to drive around the sites to collect
exterior information, and wearable/handheld devices used to scan their interiors [162].

Summary

We discussed selected applications of mobile mapping that demonstrate the impor-
tance and necessity of utilizing MMSs in different scenarios. The adoption of mobile
mapping technology in various applications has been proven to not only increase produc-
tivity but also reduce the cost of operation. For instance, using digital assets for construction
has led to a boost in productivity for the global construction sector by 14–15% [163]. In
addition, digitizing historic structures through creating BIMs using mobile mapping data
will enable preventive conservation for heritage buildings, saving 40–70% on maintenance
costs [164]. Aside from the productivity and cost aspects, mobile mapping data pave the
way for producing new road monitoring studies and methods that will increase road safety
and dramatically reduce the probability of accidents [165].

7. Conclusions
7.1. Summary

In this paper, we provided a thorough review of state-of-the-art mobile mapping
systems, their sensors, and relevant applications. We reviewed sensors and sensor suites
typically used in modern MMSs and discussed, in detail, their types, benefits, and lim-
itations (Section 3). Then, we reviewed mobile platforms, including vehicle-mounted,
handheld, wearables, etc., and described, in detail, their collection logistics, giving exam-
ples of modern systems of different types (Section 4). We also specifically highlighted their
supported-use case scenarios. We further reviewed the critical processing steps that turn
raw data into the final mapping products (Section 5), including sensor calibration, fusion,
and georeferencing. Finally, we summarized the most common applications (Section 6) that
currently utilize the capabilities of modern MMSs.

7.2. Future Trends

Despite the many variations of MMSs and their sensor suites, the main goal of an
MMS is to provide a means of collecting 3D data at close range, with maximal flexibility
and minimal cost. Given the complex terrain environment, a single MMS or even a few
MMSs could hardly be sufficient at all levels of mobile mapping applications. Thus, while
off-the-shelf solutions are partially available, developing or adapting MMSs to designated
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applications is an ongoing effort. To date, MMS is still regarded as an expensive collection
means, as the equipment, sensors, and manpower required to handle the logistics and
processing are still considerable. Therefore, as far as we can conclude, ongoing and future
trends continue to be:

(1) Reduced sensor cost for high-resolution sensors, primarily LiDAR systems with
equivalent accuracy/resolution as those currently in use, but at a much lower cost.

(2) Crowdsourced and collaborative MMS using smartphone data; for example, the new
iPhone has been equipped with a low-cost LiDAR sensor.

(3) Incorporation of new sensors, such as ultra-wide-band tracking systems, as well as
WiFi-based localization for use in MMS.

(4) Enhanced (more robust) use of cameras as visual sensors for navigation.
(5) Higher flexibility in sensor integration and customization as well as more mature

software ecosystems (e.g., self-calibration algorithms among multiple sensors) to allow
users to easily plug and play different sensors to match the demand for mapping
different environments.

(6) Advanced post-processing algorithms for pose estimation, data registration for a
close-range scenario, dynamic object removal for data cleaning, and refinement for
collections in cluttered environments.

(7) The integration of novel deep learning solutions at all levels of processing, from
navigation and device calibration to 3D scene reconstruction and interpretation.

Given the complexity of MMSs and their application scenarios, a one-stop-shop solu-
tion arguably does not exist. However, it could be possible to streamline and optimize the
customization of a system if the above-mentioned challenges were consistently attacked.
Our future work will encompass component-level surveys that provide the community
with comprehensive views accelerating the convergence of solutions addressing the above-
mentioned efforts.
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