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Abstract: Radar systems are mainly used for tracking aircraft, missiles, satellites, and watercraft. In
many cases, information regarding the objects detected by a radar system is sent to, and used by,
a peripheral consuming system, such as a missile system or a graphical user interface used by an
operator. Those systems process the data stream and make real-time operational decisions based
on the data received. Given this, the reliability and availability of information provided by radar
systems have grown in importance. Although the field of cyber security has been continuously
evolving, no prior research has focused on anomaly detection in radar systems. In this paper,
we present an unsupervised deep-learning-based method for detecting anomalies in radar system
data streams; we take into consideration the fact that a data stream created by a radar system is
heterogeneous, i.e., it contains both numerical and categorical features with non-linear and complex
relationships. We propose a novel technique that learns the correlation between numerical features
and an embedding representation of categorical features in an unsupervised manner. The proposed
technique, which allows for the detection of the malicious manipulation of critical fields in a data
stream, is complemented by a timing-interval anomaly-detection mechanism proposed for the
detection of message-dropping attempts. Real radar system data were used to evaluate the proposed
method. Our experiments demonstrated the method’s high detection accuracy on a variety of data-
stream manipulation attacks (an average detection rate of 88% with a false -alarm rate of 1.59%) and
message-dropping attacks (an average detection rate of 92% with a false-alarm rate of 2.2%).

Keywords: radar system; anomaly detection; deep learning

1. Introduction

Radar systems use electromagnetic radiation to detect objects within a defined scanned
area [1]; they can also be used to classify the detected objects [2]. Radar systems are mainly
integrated in air and terrestrial traffic-control systems [3], autonomous vehicles [4], air-
defense systems, anti-missile systems, aircraft anti-collision systems, and ocean surveillance
systems [5].

In recent years, as technology has evolved, the use of radar systems has increased
along with a reliance on their correct and reliable operation. Unfortunately, radar systems
are vulnerable to cyber attacks [6].

Radar systems often include extended sets of components, such as communication
systems and SCADA systems. These components can be exploited by attackers in order to
compromise a radar system [7]. In addition, in many cases, radar systems are integrated
within systems that are vulnerable to cyber attacks, such as autonomous vessels [8] and
smart vehicles [9]. These vulnerabilities may be used by an attacker as a back door for an
attack on a radar system.

Typically, the radar system architecture consists of the following basic components:
(1) an antenna responsible for transmitting/receiving electromagnetic waves to/from a
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scanned area and (2) a radar controller responsible for analyzing the waves received from
the antenna in order to determine the properties of an object.

Usually, a radar controller is connected to a centralized switch that controls the routing
of a radar system’s messages. In many cases, the switch can be used to communicate with
external entities, i.e., other systems. Often, information regarding the objects detected by
a radar system is sent to, and used by, a peripheral consuming system, such as a missile
system or a graphical user interface used by an operator [10]. Those systems process
the data stream and make real-time operational decisions based upon the data received.
Detecting anomalies in a radar data stream ensures the potential catching of manipulations
conducted at different stages of signal acquisition and processing. This may be in addition
to potentially catching manipulation threats that are commonly raised during data-stream
transmissions to peripheral consuming systems. To the best of our knowledge, no study
has proposed a method for detecting anomalies in radar-system data streams.

In this study, we address this gap. We propose an unsupervised deep-learning-based
method for detecting anomalies in critical parts of the data stream. In contrast to rule-based
detection methods, our method does not require any prior knowledge of the malicious-
manipulation model; it considers general attack scenarios in which an attacker manipulates
the data that are being generated by a radar system and transferred to peripheral consuming
systems. Because such manipulation can occur when data are in motion or in use, we also
consider adversaries that can bypass cryptography-based defenses if such defenses exist,
e.g., in cases in which higher levels of software are compromised. The proposed method
simply requires the ability to monitor messages sent by a radar controller, and thus, it can
be easily and safely integrated into existing systems without the need to change the systems,
e.g., software, hardware, and internal communication protocols. Our proposed method was
designed to deal with the particular data comprising the radar data stream; unlike many
other domains, radar data streams are made up of sequential and heterogeneous data.

In order to evaluate the proposed method, we used data collected from four real radar
systems. We collected legitimate data streams into which we injected a variety of artificial
attacks, including manipulations with high impacts on a system (integrity violations and
denials of service), to assess our method’s performance. The results of our evaluation
showed that our proposed method can detect 90% of message-dropping attacks with a
false-positive rate of 2% and can detect from 76% to 96% of feature-manipulation attacks
with a false-positive rate of 2%. These results were obtained in a cross-session experiment
in which the model was trained on data collected from three radar systems and tested
on data collected from another radar system, thus demonstrating the ability to migrate a
pretrained model to new radar systems without retraining.

We summarize the main contributions of this study as follows:

• We present a deep-learning-based method that consists of two modules to detect
anomalies in critical parts of the heterogeneous data stream generated by radar systems.

• The proposed method can be integrated into existing radar systems without changing
the radar systems’ existing components and without retraining the model.

• The structure of the proposed method enables it to identify an anomaly type detected,
determine whether a legitimate message is missing from a sequence of messages,
and understand whether a feature of an existing message has been manipulated.

• The effectiveness of the proposed method was demonstrated in experiments using a
dataset collected from real operational radar systems and simulated attacks.

2. Background on Radar Systems

A radar system uses radio waves to determine both the location of an object relative to
a system and the distance between the object and the system. It operates by transmitting
electromagnetic signals in a certain direction and monitoring the signals that are reflected
back from objects. The reflected signals are then sent to a signal processor, which analyzes
the signals and aims to extract the properties of the objects [10].
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2.1. System Components

A typical radar system architecture includes the following components (presented in
Figure 1):

• Antenna: An antenna transforms an electric current into electromagnetic waves
and vice versa (conducts transmission and reception, respectively). Usually, one
bidirectional antenna is used; however, radar systems with two separate antennas (a
transmitting antenna and a receiving antenna) also exist.

• Radar controller: A radar controller consists of two main components: (1) a signal
processor, which receives signals from an antenna (usually via an optical link) and
analyzes the signals using a signal-processing algorithm aimed at identifying potential
relevant objects, and (2) a tracking algorithm, which analyzes a signal-processor’s
output with the aim of classifying objects and tracking movements.

• Control system: A control system is responsible for analyzing radar yields and acti-
vating the different systems connected to a radar system; for example, it may activate
a weapon system to neutralize a detected threat.

• Radar-system network: A radar-system network is used as a communication channel
between a radar controller and a control system.

Figure 1. An example of a typical radar-system architecture. The red circles indicate our assumed
adversary’s locations. Our proposed anomaly-detection method is located at the link between the
radar system and the consuming systems.

2.2. Data-Stream Description

A radar system (radar controller) continuously sends a stream of messages to pe-
ripheral consuming systems. The consuming systems process the data stream and make
real-time operational decisions based on the data received. Each message contains a plot
record. This record describes a detected object at a given time.

Since the radar system continuously scans the defined area, several plots may relate to
the same object, describing its properties at different points in time. A sequence of plots
related to the same object is defined as a track. Each plot may be correlated with other plots,
e.g., when they are part of an identified track. Each track is associated with an identification
number (referred to as a track ID). Thus, the track ID is a part of each individual plot record.
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Figure 2 illustrates a set of plots (individual points) and a track (sequence of connected
plots). Each plot record contains the following attributes:

• Metadata: Contains the source ID (unique identifier of a sending radar system),
message ID, message length, etc.

• Identified object’s properties: Categorical and numerical attributes that describe an
identified object, such as the detected object’s location, speed, or type, e.g., airplane
or bird.

• Sequence-related properties: Describe different properties of the plot record as part
of a sequence of plots related to the same object. One property is the identification
number of the track that a plot belongs to. Another property is a timestamp indicating
when a plot has been updated on a system; this property describes the delay between
a previous plot and a current plot.

Figure 2. Objects identified at a specific timestamp are represented by points. A sequence of points
related to the same detected object are represented by a path of interconnected points, i.e., a track.

3. Threat Model

Radar systems are vulnerable to a variety of threats [6]. In this study, we considered
attack scenarios in which an attacker manipulates the data that is being generated by a radar
system and transferred to peripheral consuming systems. Such a manipulation may occur
when data are in motion or in use. Therefore, we considered adversaries that can bypass
cryptography-based defenses if any such defenses are present. Specifically, as illustrated in
Figure 1, the adversary locations (points of manipulation) considered in this study were a
radar controller and a radar-system network. They can be compromised with physical or
remote access or through a supply-chain attack, i.e., before the radar system’s deployment.

Once a radar controller has been compromised by an attacker (whether remotely
or through a supply-chain attack), the attacker can execute malicious commands that
manipulate data while they are being processed—prior to their transmission from the
radar controller. With physical access to a radar-system network, an attacker can replace
a networking device, e.g., switch, with a malicious networking device that manipulates
data in motion. A similar threat exists when a radar-system network is compromised by
remote attackers. The effects of such tampering attempts are expected to be covert and,
more specifically, to be “under the radar” of radar operators, i.e., radar operators should
not be able to identify the tampering.

Based on the specified threat model, we suggest an anomaly detection method that
(1) detects abnormal data behaviors indicative of such malicious activity and (2) can be
implemented as a detector at the link between a radar-system network and a control system
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to provide anomaly-related insights to radar operators and/or systems that consume
radar data.

4. Related Work

Most studies that used machine-learning techniques to protect radar systems from
attacks focused on protecting the systems from jamming attacks since they are the main
threats to radar systems. Some studies proposed jamming classification methods [11–14],
and others proposed jamming mitigation strategies [15–17]. In addition, a comprehensive
survey discussing all of these methods in detail was published [18]. In other related research,
machine-learning techniques were used to protect the systems generally integrated within
radar systems, such as the ADS-B [19,20] and AIS systems [21].

To the best of our knowledge, no study has proposed a method for detecting anomalies
in radar-system data streams. Detecting anomalies in a radar data stream can allow one
to potentially catch manipulations conducted at different stages of signal acquisition and
processing. This may occur in addition to potentially catching a manipulation threat that is
naturally raised during transferring data to peripheral consuming systems.

One big advantage of neural networks is their ability to learn non-linear and complex
relationships between input features in an unsupervised manner. Not surprisingly, in recent
years, deep-learning models have been used increasingly to detect anomalies in the cyber
domain. Most of the methods proposed are based on autoencoders and their variants [22].
An autoencoder (AE) is an unsupervised algorithm that compresses an input into a lower
dimensionality and then decompresses the input into its original dimensionality; thus,
normal instances are decompressed properly, while abnormal instances are not. In this
way, anomalous inputs can be identified. Some examples of methods based on AEs include
N-BIoT [23], which uses an AE to detect botnet behaviors in the network traffic of IoT
devices, and Kitsune [24], which utilizes a smart feature mapper and an ensemble of AEs
to detect anomalous behaviors in network traffic.

LSTM-based networks are also widely used to detect anomalies in network traffic;
these deep-learning networks are very well-suited for sequential data. In this type of
network, instead of processing a whole sequence together, a network processes each
object in a sequence separately in chronological order. Thus, in each step, the network’s
inputs are (1) the current object in the sequence along with (2) the output of the network
from the previous step. An example of using an LSTM-based network was presented
by Bontemps et al. [25], who predicted anomalies in the network data stream by using a
sample as well as the context of the sample.

Previous studies that used unsupervised deep-learning models to detect anomalies
in network traffic relied strictly on numerical features. However, in this study, we took
into consideration the fact that a data stream created by a radar system is heterogeneous,
i.e., it contains both numerical and categorical features. Such features, which are used
to identify the different properties of a physical object, have non-linear and complex
relationships. Since manipulating both types of features may significantly violate the
integrity and availability of radar systems, there is a need for a deep-learning method
designed to detect such activities in real time.

In contrast to rule-based detection methods, our method does not require any prior
knowledge of the malicious manipulation model; our proposed method is based on an un-
supervised learning technique and is designed to efficiently detect attack scenarios targeting
the integrity and availability of radar systems. Moreover, we showed that trained models
can be transferred from one radar system to another radar system without retraining.

Model-based and machine-learning-based anomaly detection methods were also pro-
posed for common industrial control systems [26,27]. Liu et al. [26] presented a detection
strategy that uses one detector to deal with integrity and availability attacks for the track-
ing of industrial-control cyber-physical systems (ICPS); their method, which is based on
quantifying the dynamic variations of a generalized model implied by operating data, can
be deployed independently in an active ICPS and does not cause any loss of control perfor-
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mance. Houng et al. [27] proposed a federated learning approach for detecting anomalies
in time series data for industrial-control systems.

5. High-Level Description of the Proposed Method

We propose an unsupervised anomaly detection method that is based on the contin-
uous monitoring of messages transmitted from radar to peripheral consuming systems.
Our proposed method utilizes state-of-the-art deep-learning modules to detect possible
malicious data manipulation. In this section, we provide a high-level description of each
proposed module: the main role, motivation, and general operation.

5.1. Description of the Proposed Method

The proposed anomaly detection method (see Figure 3) consists of two main modules:
(1) a field manipulation-detection module and (2) a timing-based anomaly-detection mod-
ule. Each module outputs an anomaly score, and an alert is generated if the score exceeds a
predefined threshold.

• Field manipulation detection: For each track, the field manipulation-detection mod-
ule receives the categorical and numerical features of a plot. First, it determines if
the relationships between the features’ values are anomalous. If so, an anomaly score
for the plot is generated. An anomalous relationship between the values of a plot’s
features indicates that a malicious change has been made aimed at violating the radar
system’s integrity. Such manipulations may cause consuming systems or radar op-
erators to incorrectly characterize and handle detected objects. Finally, to increase
the sensitivity of the detection method for malicious manipulation attacks, an alert is
generated if the score’s average exceeds a certain threshold. The latter step aims to
detect anomalies that are harder to detect by analyzing a single plot.

• Timing-based anomaly detection: The timing-based anomaly detection module re-
ceives the last K-inspected plots and the current plot associated with the same track
and determines if the time difference between the current plot and the previous plot is
anomalous. An anomalous time difference between plots indicates a malicious plot
dropping or injecting of events. Such activities may enable an object to evade detection
by the detection system or cause a denial of service.

Figure 3. High-level architecture of the proposed anomaly detection method. Our method consists of
two modules: a field manipulation-detection module and a timing-based anomaly-detection module.
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5.2. Design Considerations

The following considerations were taken into account in the design of the proposed method:

1. Analysis of heterogeneous data: As mentioned in Section 2.2, plot records consist
of numerical and categorical features. They are used by a radar system to identify
an object’s properties.One big advantage of deep-learning models is their ability to
learn and model non-linear and complex relationships between input features. When
categorical features are properly encoded, such relationships can be learned when the
given data are heterogeneous.

2. Immediate detection: Often, radar systems are integrated within real-time decision-
making systems. This requires a detection method capable of making a quick and
accurate prediction while keeping the false-alarm rate as low as possible.

3. Processing of sequential (stream) data: As mentioned in Section 2.2, each plot may
be correlated with other plots, e.g., when they are part of an identified track. Therefore,
in addition to capturing and learning patterns among the features of the same plot
record, the model should be able to learn patterns within a sequence of plots.

4. Explanations of anomalies: Understanding which parts of data are anomalous can
help a system operator perform a correct action. If the method has the ability to
identify the packets/features that contribute the most to an anomaly, it can improve a
system operator’s decision-making capabilities. The structure of the proposed method
enables it to identify an anomaly type detected, determine whether a legitimate
message is missing from a sequence of messages, and understand whether a feature
of an existing message has been manipulated.

5.3. Extracted Features

As described in Section 2.2, each plot record contains a set of features used by a radar
system to determine properties with regard to physical objects. In our dataset, each plot
record includes 10 categorical features and 18 numerical features, all with a high potential of
being exploited by an attacker interested in disrupting a radar system’s normal operation.
Categorical features. Five of the categorical features describe a returned signal’s physical
properties. The other five are (1) trackType, which specifies the track type, (2) signalQuality,
which specifies the quality of a returned signal, (3) objectType, which specifies the type
of object detected, (4) alertRaised, which specifies whether an alert has been raised on a
system, and (5) objectCategory, which specifies whether an object is considered hostile.
Numerical features. Seventeen of the numerical features relate to the correlations between
a detected object’s locations. Another numerical feature is timeStamp—the timestamp
indicating when a plot has been updated on a system.

Note that due to privacy concerns, a more detailed description of the features in the
dataset used in this research cannot be provided. However, Garland et al. [28] proposed a
framework for modeling real-time radar systems; this framework can be used for various
engineering purposes. For example, the framework can be used to design transferable secu-
rity techniques, as proposed in this study, to protect radar systems from data manipulation
attacks similar to the features used in our work, e.g., track type or a signal’s quality or
location. Features containing a physical object’s properties with a high potential of being
exploited by attackers can be obtained.

6. Low-Level Description of the Proposed Method

In this section, we provide a detailed description of each component of the proposed
method: the architectures of the machine learning models, the data preprocessing applied
to the raw features, and the procedures proposed for calculating the anomaly thresholds
for each module.

6.1. Field Manipulation Detection

As illustrated in Figure 3, this module consists of the following two computational
components: (1) a plot-level anomaly detector and (2) a track-level anomaly detector. As
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mentioned earlier, the plot-level anomaly detector generates an anomaly score for each plot
independently, while the track-level anomaly detector aggregates the anomaly scores of
the plots and generates an alert if a computed value exceeds a certain threshold.

Plot-Level Anomaly Detector. This module focuses on detecting an anomaly within
a single plot. The plot features used by this module are described in Section 5.3. In order
to detect an anomaly within a given plot, a special variant of an autoencoder is proposed
(Figure 4, left side).

Input neurons representing categorical features are attached with an embedding layer.
An embedding technique is commonly used to create a concise, numerical representation
of categorical features [29]. The embedding representation of the 10 categorical features is
concatenated with the 17 numerical features, resulting in a vector of size 27. This vector is
then fed to a stacked autoencoder consisting of seven layers with, respectively, 27, 20, 15,
10, 15, 20, and 27 neurons. Finally, the following output layer is attached.

1. For the numerical features, a fully connected layer is attached, followed by a linear
activation function. This layer contains 17 neurons against 17 numerical features.

2. For each categorical feature with l possible values, l output neurons are assigned,
followed by a softmax function. During inferences, this function provides a probability
distribution over all possible values for each categorical feature.

During a training phase, we use data that consist solely of benign tracks. As described
in Section 2, each track contains several plots (training examples). We divide the tracks in
the dataset so that 80% are used for training and 20% are used for validation. As illustrated
in Figure 4, the label for each example is one vector of 17 entries containing the value of
each numerical feature, concatenated to 10 vectors representing a one-hot encoding for
each of the 10 categorical features. The loss function used is the following combination of
the mean-squared error (MSE) used for the numerical features (num) and the sparse categorical
cross-entropy (SCCE) used for the categorical features (cat):

loss = MSE(xi : xi ∈ num) + ∑
xi∈cat

SCCE(xi) (1)

Given the training set, the network is trained to minimize the loss function on the
validation set using the Adam optimizer. The training is stopped when the loss function
reaches its minimum.

Track-Level Anomaly Detector. This module consists of a track-score collector and
a track-level anomaly detector. The scores generated by the plot-level detection module
serve as inputs for this model. The model collects all of the scores for the plots that are part
of the same track and outputs them for the track-level anomaly-detector model. All of the
plots’ scores for a track serve as the input for this model.

For each track, we define the anomaly score as the average of all of the input scores
calculated by the plot-level anomaly detector (they are stored inside the track score col-
lector). In order to determine the anomaly threshold, we used the validation set that was
used to train the plot-level anomaly detector. The anomaly threshold was calculated as the
maximum value over the tracks’ average scores.
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Figure 4. The neural network architecture of the proposed plot-level anomaly detector (left) and the
neural-network architecture of the proposed sequence-based anomaly detector (right).

6.2. Timing-Based Anomaly Detection

This module focuses on detecting anomalies related to the plots’ arrival times. We
observed that timing features by their own were not sufficient to detect such anomalies,
and the long term relationships with other features should be learned. Thus, we picked
a model that is based on an LSTM, and we used the following subset of plot features
(described in Section 5.3): objectType, signalQuality, trackType, and timeStamp. timeStamp
was used to extract the time interval between two consecutive plots. The module consists
of the following two components: (1) a data preprocessing component and (2) a sequence-
based anomaly detector (see Figure 4 (right side)), which is based on an LSTM network.
Data Preprocessing. The inputs for this component are the current plot along with the K
previous plots that correspond to the same track (with a sequence length of K + 1).

This component consists of the following three parts:

1. Categorical-feature one-hot encoding: In this part, each feature is converted into a
vector that has a value of one in one entry (corresponding to the feature value) and
zeros in all of the other places.

2. Plot time interval extraction: In this part, we calculate a feature called updatingPeriod.
The value of this feature is the time difference between two consecutive plots in a
sequence, e.g., current time–previous time.

3. Feature scaling: In this part, we apply min-max scaling to the data for feature scaling.

Sequence-Based Anomaly Detector. This module receives a sequence with a length of
K + 1 as an input, and by using the first K elements of the sequence, the model tries to
predict the value of the updatingPeriod, e.g., time interval, feature of the K + 1th element,
i.e., current plot. To enable this, we designed an LSTM-based regressor. The architecture of
the regressor is presented in Figure 4. As can be seen, the K length sequence serves as input
into an LSTM network with five hidden units. Then, the output of the LSTM component in
the final step is fully connected to one neuron. At the end, a linear activation function is
applied to this neuron.

During the training phase, we used data consisting solely of benign tracks. For each
track, we generated a set of training examples such that each consisted of a set of K
consecutive plots and was labeled by the updatingPeriod feature of the following K + 1th
plot. We divided the tracks in the dataset so that 80% were used for training (T) and 20%
were used for validating (V).
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The loss function that was used was the MSE. Given T, the network was trained to
minimize the loss function on V using the Adam optimizer. Training was stopped when
the loss function reached its minimum.

Once the training was complete, the anomaly threshold thr was set. This anomaly
threshold, above which an instance was considered anomalous, was calculated as the sum
of the sample mean and standard deviation of MSE over V:

thr = mean(MSEV) + std(MSEV) (2)

7. Evaluation

For the evaluation, we used benign data collected from four real radar systems that
are deployed in different operational setups and are used to identify objects. We refer to
each dataset as a recording session. The number of messages, i.e., radar data records, in each
recording session was as follows: R1: 45,720 (50.7%); R2: 23,017 (25.5%); R3: 11,955 (13.2%);
and R4: 9551 (10.6%). In total, there were 90,243 messages.

7.1. Simulated Attack Scenarios

Since our dataset did not include any attacks, we had to simulate attacks and inject
them into our dataset. We simulated four attack scenarios by manipulating valuable benign
data and conducted 15 different experiments for each attack.
Categorical feature manipulation. This is an integrity violation attack in which an attacker
changes a categorical feature. In the following cases, such manipulations may cause con-
suming systems or radar operators to incorrectly characterize and handle a detected object.

1. objectType: Changing this feature may cause aerial objects to appear as ground objects
and vice versa. This can change the way a radar operator reacts to various objects
detected; an attacker can utilize this attack in order to disguise threatening objects,
leaving them untreated by radar operators.

2. alertRaised: Changing this feature may cause an alert to be issued for no reason and
vice versa. Such an attack can create many false alarms, causing a radar operator to
ignore threats.

3. objectCategory: Changing this feature may cause friendly objects to be considered
enemy objects and vice versa. This attack can cause radar operators to fire on friendly
objects or ignore enemy objects.

Changing the features for an entire track or track segment will be much more beneficial
to an attacker than changing the features of random plots. This is because changes in the
features of random plots may be ignored by a radar operator and are not likely to influence
an action taken by an operator.

Accordingly, to mimic a sophisticated threat against radar, the following process was
used to generate a test set given the benign set B collected from real radar systems: (1) create
B′ by duplicating B; (2) select f , the feature that should be manipulated; (3) for each track
T in B′, change the value of f to a distinct random value from the set of valid values of
f ; (4) label the manipulated plots as anomalies and (5) combine the benign set B and the
manipulated set B′ into one test set. This process generates a similar number of benign and
malicious plots; therefore, the resulting test set is balanced.
Plot dropping. This is an availability violation attack in which an attacker drops one/several
plots from a track, so that a detected object will evade a consuming system for some period
of time. Dropping several consecutive plots will be much more beneficial to an attacker
than dropping nonconsecutive plots or just a single plot. Therefore, for track T, we first
selected the minimum value c (c ≤ |T|) of plots to be removed from T. We picked c to be
the minimum value that allowed an attacker to cause real harm to the data integrity of a
radar system. For the radar system used in our experiments, our c was set at 10.

The following process was used to generate the test set given the benign set B collected
from real radar systems: (1) for each track T, select a random plot index i and a random
integer r ∈ c, |T| − 1; (2) starting at index i, drop a minimum number min(|T| − i, r) of
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consecutive plots; (3) label the plot that follows the dropped plots as an anomaly. This
process generated a different number of benign and malicious plots; therefore, the resulting
test set is imbalanced.

7.2. Evaluation Method

We conducted three types of evaluations; in each case, we repeated the experiment
five times (each time a different recording session was selected for testing).

A description of the types of evaluations performed is provided below, along with
an example of the training/testing data in a scenario in which the R4 recording session
was examined.

• Cross-session setup: In this case, each time, we used three recording sessions for
training, and the fourth session was used to test the model. For example, for the R4
recording session, training used R1, R2, and R3 and testing used 4.

• Chronological setup: In this case, for each recording session, we trained the model
on the first 90% of the instances (in chronological order) and tested it on the remaining
10% of the instances. For example, for the R4 recording session, training was 90% of
the instances of R4 and testing was the remaining 10% of the instances of R4.

• Transfer-learning setup: This case was a combination of the previous two setups
in which we used three recording sessions as well as the first 10% of the instances
of the fourth session to train the model; the remaining 90% of the instances of the
fifth session were used to test the model. For example, for the R4 recording session,
training used R1, R2, R3, and the first 10% of the instances of R4; testing used the
remaining 90% of the instances of R4.

It should be noted that the cross-session evaluation setup had two significant advan-
tages over the other two: (1) in practice, it is easier for radar engineers to deploy a model
that has already been trained rather than training a model using new system data, and (2)
training a model on new system data can expose the model to cyber risks, e.g., adversarial
poisoning [30].

7.3. Evaluation Metrics

The task of identifying anomalies in the radar data stream was a binary classification
task in which benign samples were labeled as zero (negative) and malicious data was
labeled as one (positive). We used the following common metrics for the evaluation:
true positive rate (TPR)/recall, false positive rate (FPR), receiver-operating characteristic
(ROC) curve, area under the ROC curve (AUC), precision, precision-recall (PRC) curve,
and average precision (AP).

7.4. Results

In this section, we present the evaluation results for each attack scenario (presented in
Section 7.1) and evaluation method (presented in Section 7.2). First, we present a graph of
the evaluation results as a function of different thresholds (using ROC and PRC graphs).
Then, we summarize the evaluation results for predefined anomaly thresholds. The method
for calculating the anomaly thresholds is described in Section 6.
Categorical feature manipulation. Figures 5–7 present the detection results of the field
manipulation-detection module when manipulating the objectType, objectCategory, and
alertRaised features, respectively; the ROC curve shows the true positive rate (TPR) and
false positive rate (FPR) for every possible anomaly detection threshold, and the AUC
provides an overall performance. The PRC curve shows the precision and recall for every
possible anomaly detection threshold, and the AP provides an overall performance. As can
be seen, in all cases except for recording session R4 of the objectType feature-manipulation
attack, all the setups had a great performance in terms of the AUC and AP for all the
categorical feature-manipulation attacks.

For recording session R4 of the objectType feature, the best performance was obtained
with the chronological setup; this indicates that the ability to detect manipulation attacks
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becomes weaker when using a pretrained model (without retraining) for cases in which
the objectType feature has been manipulated by an attacker. As can be seen, the best
detection rates were observed for the manipulation attack on both the objectCategory and
alertRaised features.
Plot dropping. Table 1 presents the distribution of the benign malicious samples in the
plot-dropping attack. It should be noted that the data were imbalanced since for each
track, we only executed the attack once. The performance of the timing-based anomaly-
detection module on the generated test set is presented in Figure 8. During our experiments,
the K parameter representing the length of the plot sequence used by the sequence-based
anomaly-detector module was optimized to the value of five. As can be seen, in all scenarios,
the model achieved good results; the AUC provided an overall performance for every
possible detection threshold. Thus, as can be seen, our proposed method achieved very
good results for the cross-session setup; this indicates the ability of the proposed method to
generalize to different setups.
Performance for predefined anomaly thresholds. Table 2 presents the performance for
each attack scenario and each setup in terms of the true-positive rate (TPR) and false-
positive rate (FPR) for a threshold that was computed on a validation set and then ap-
plied on a test set. As can be seen, our proposed method can detect 90% of the plot-
dropping attacks with a false-positive rate of 2% and can detect from 76% to 96% of feature-
manipulation attacks with a false-positive rate of 2%. In typical scenarios, 400 plots are
generated and transferred by a radar system every minute. A false-alarm rate of 2% means
that eight plots should be tracked by a system operator/automatic system every minute.

In addition, in most cases, our proposed method achieved very good results for the
cross-session setup. This is an important point, since it means that a pretrained model can
be migrated to new radar systems without retraining.

Table 1. Numbers of benign (b) and malicious (m) samples in the plot dropping attack.

Recording Session Examined

R1 R2 R3 R4

b m b m b m b m

Cross-session 46,600 213 23,068 177 12,139 97 9484 119

Chron. (10%) 4606 60 2323 34 1206 15 842 31

Transfer (90%) 42,709 195 21,126 170 10,808 86 8451 110

Table 2. Evaluation results obtained for predefined anomaly thresholds.

Setup Avg. AUC Avg. PR Avg. TPR Avg. FPR

Feature manipulation of objectType

Cross-session 0.922 0.930 0.759 0.028

Chronological (10%) 0.972 0.712 0.894 0.016

Transfer (90%) 0.943 0.931 0.710 0.090

Feature manipulation of objectCategory

Cross directories 0.986 0.973 0.906 0.028

Chronological (10%) 0.997 0.994 0.770 0.016

Transfer (90%) 0.975 0.952 0.769 0.090

Feature manipulation of alertRaised

Cross-session 0.987 0.975 0.963 0.028

Chronological (10%) 0.997 0.988 0.776 0.016

Transfer (90%) 0.974 0.950 0.750 0.090
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Table 2. Cont.

Setup Avg. AUC Avg. PR Avg. TPR Avg. FPR

Plot dropping

Cross-session 0.975 0.820 0.900 0.023

Chronological (10%) 0.987 0.916 0.937 0.026

Transfer (90%) 0.983 0.830 0.909 0.023

Figure 5. The ROC and PRC curves for the objectType feature-manipulation attack for each recording
session examined.
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Figure 6. The ROC and PRC curves for the objectCategory feature-manipulation attack for each
recording session examined.
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Figure 7. The ROC and PRC curves for the alertRaised feature-manipulation attack for each recording
session examined.
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Figure 8. The ROC and PRC curves for the Plot-dropping attack for each recording session examined.

7.5. Performance Analysis

In order to understand whether the proposed method is practical and can be applied to
the real-time tracking of anomalies in radar-system data streams, we measured the average
time it takes to process a single plot. This experiment was conducted on a standard machine
with an Intel core i7-7600U 2.8 Ghz CPU and 32 GB of RAM. The machine’s operating
system was Windows 10.

The results showed that our proposed method can analyze 20,000 plots per second.
Given that in typical scenarios, a radar system generates and transfers 400 plots per minute,
we concluded that our method is practical and can be used for the real-time tracking of
anomalies in radar-system data streams.

8. Summary and Conclusions

In this paper, we propose a novel deep-learning-based method for detecting data
manipulation attacks on radar systems. We considered attack scenarios in which an attacker
manipulates the data sent by a radar system to peripheral consuming systems. To evaluate
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our method, we used data collected from four real radar systems. This dataset consisted of
plot records that were sent from a radar system to a peripheral consuming system.

To evaluate our method, we generated attacks considered beneficial to an attacker,
ranging from integrity-violation attacks to availability-violation attacks. The results of our
evaluation showed that the proposed method can learn the normal behavior of the data
and distinguish between normal and manipulated data.

In our design process, we took into account the benefits of identifying an anomaly type
detected, determining whether a legitimate plot is missing from a sequence of plots, and un-
derstanding whether an existing plot’s feature has been manipulated; these properties
could help radar operators determine the correct actions to take when attacks occur.

The transferability and practicality of the proposed method was demonstrated as
follows: (1) our method obtained very good results when training on data collected from
three radar systems and testing on data collected from another radar system, and (2) a
typical Intel controller can analyze plots at a frequency of 20,000/s, while radar systems
generate and transfer plots at a frequency of 7/s.

In future research, we plan to extend the proposed method with an explainability
mechanism that may be a good basis for real-time remediation and thus for potentially
preventing the malicious effects of attacks.
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