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Abstract: In this study, the circular Gaussian spot emitted by a laser light source is shaped into a
rectangular flat-top beam to improve the scanning efficiency of a selective laser sintering scanning
system. A CO2 laser with a power of 200 W, wavelength of 10.6 µm, and spot diameter of 9 mm is
shaped into a flat-top spot with a length and width of 0.5 × 0.1 mm, and the mapping function and
flat-top Lorentzian function are calculated. We utilize ZEMAX to optimize the aspherical cylindrical
lens of the shaping system and the cylindrical lens of the focusing system. We then calculate the
energy uniformity of the flat-top line-shaped beam at distances from 500 to 535 mm and study the
zoom displacement of the focusing lens system. The results indicated that the energy uniformity of
the flat-top beam was greater than 80% at the distances considered, and the focusing system must
precisely control the displacement of the cylindrical lens in the Y-direction to achieve precise zooming.

Keywords: selective laser sintering; flat-top line beam; dynamic focus

1. Introduction

In a selective laser sintering 3D-printing system, the emitted laser beam has a Gaus-
sian energy distribution and circular spot. It also has a point-shaped Gaussian energy
distribution after focusing; therefore, direct applications typically result in uneven heating
and low-sintering-molding efficiency. To mitigate this limitation in practical applications,
a laser beam with a circular spot and Gaussian energy distribution must be shaped into
a rectangular spot with a flat-top energy distribution, and it should have a linear flat-top
energy distribution after focusing [1–3]. This type of line-shaped laser irradiation sintering
(line-shaped sintering) is equivalent to multiple lasers working simultaneously, and the
resultant heating is uniform. This method can improve sintering quality and shorten
the sintering time of molded parts. Moreover, in the process of laser shaping, the laser
divergence angle is compressed to reduce the diffraction of the laser beam and obtain a
thinner focusing line-shaped spot.

Current beam-shaping methods mainly include aspherical-lens systems [4–7], diffrac-
tive optical elements [8], liquid-crystal spatial light modulators [9,10], and metasurfaces and
metamaterials [11,12]. Aspherical cylindrical lenses are the most effective beam-shaping
method for an intense laser beam-shaping system. This method has the advantages of
a good shaping effect, low energy loss, and a simple structure. Additionally, only two
aspherical cylindrical lenses are typically required to realize laser-beam expansion and
shaping, and many previous studies have extensively investigated these applications. A
Gaussian beam can effectively be shaped into a flat-top beam [13–16]; however, the shape
of the beam spot cannot be changed.

This study proposes a beam-shaping system based on aspherical cylindrical lenses. The
proposed system uses the principle of the equivalent optical length of any beam between
two aspherical lenses and the law of conservation of energy of the incident and outgoing
laser beams to shape a circular laser spot with a Gaussian light-intensity distribution into
a quasi-rectangular spot with a uniform intensity distribution. We introduce the design
principle and method used for the shaping system through an example and analyze the
effectiveness of the proposed method via a practical application.
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2. Physical Model and Mapping Function of Flat-Top Beam

The simple physical model of the flat-top beam is represented by a circle function,
which has the advantage of a simple form. However, it can only describe the uniform energy
distribution of a flat-top beam and is unsuitable for calculating the beam transmission
characteristics. Compared to other physical flat-top-beam models, the flat-top Lorentz model
is the simplest for calculation. Therefore, the flat-top Lorentz model is selected as the physical
model of the flat-top beam in this study to reduce the calculation complexity [17–19].

The light intensity function distribution of the laser beam is shown in Equation (1):

I(r) = I0 exp(
−2r2

r2
0

) (1)

In Equation (1), r0 is the laser beam radius (mm) and I0 is the maximum light intensity
(cd) of the laser beam. The light-field intensity distribution of the laser beam is shown in
Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 15 
 

 

distribution into a quasi-rectangular spot with a uniform intensity distribution. We intro-

duce the design principle and method used for the shaping system through an example 

and analyze the effectiveness of the proposed method via a practical application. 

2. Physical Model and Mapping Function of Flat-Top Beam 

The simple physical model of the flat-top beam is represented by a circle function, 

which has the advantage of a simple form. However, it can only describe the uniform 

energy distribution of a flat-top beam and is unsuitable for calculating the beam transmis-

sion characteristics. Compared to other physical flat-top-beam models, the flat-top Lo-

rentz model is the simplest for calculation. Therefore, the flat-top Lorentz model is se-

lected as the physical model of the flat-top beam in this study to reduce the calculation 

complexity [17–19]. 

The light intensity function distribution of the laser beam is shown in Equation (1): 

2

0 2

0

2
( ) exp( )

r
I r I

r

−
=  (1) 

In Equation (1), r0 is the laser beam radius (mm) and I0 is the maximum light intensity 

(cd) of the laser beam. The light-field intensity distribution of the laser beam is shown in 

Figure 1. 

I0

ω0

I0/e
2

r0

I

0
 

 
 

Figure 1. Intensity distribution of gaussian laser beams. 

In Figure 1, ω0 is the waist radius of the Gaussian laser beam, defined as the radius 

of the laser beam when the peak light intensity drops to I0/e2. 

Since only the flat-top Lorentz beam can obtain the analytical solution, the flat-top 

Lorentz function is used as the shaping objective. The shaping model of the flat-top Lo-

rentz beam is shown in Figure 2. 

z(r2)

R0

r2

Iout

z(r1)Iin

r1

ω0r0

 

Figure 2. Beam-shaping model. 

Let the intensity of the incident light be 𝐼in , the intensity of the outgoing light be 𝐼out , 

the projection height of any ray on the incident plane be r1, and the corresponding projec-

tion height on the outgoing plane be r2. The beam–waist radius of the incident Gaussian 

beam is ω0, and the maximum radius is r0. The outgoing flat-top beam has a radius of R0. 
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Figure 1. Intensity distribution of gaussian laser beams.

In Figure 1, ω0 is the waist radius of the Gaussian laser beam, defined as the radius of
the laser beam when the peak light intensity drops to I0/e2.

Since only the flat-top Lorentz beam can obtain the analytical solution, the flat-top
Lorentz function is used as the shaping objective. The shaping model of the flat-top Lorentz
beam is shown in Figure 2.
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Figure 2. Beam-shaping model.

Let the intensity of the incident light be Iin, the intensity of the outgoing light be
Iout, the projection height of any ray on the incident plane be r1, and the corresponding
projection height on the outgoing plane be r2. The beam–waist radius of the incident
Gaussian beam is ω0, and the maximum radius is r0. The outgoing flat-top beam has a
radius of R0. z1(r) and z2(r) are the shape functions of two aspheric surfaces. According to
the law of conservation of energy, the energies contained in r1~r1 ± ∆r1 and r2~r2 ± ∆r2
are equal. The following normalization equations can be established in the Cartesian and
polar coordinate systems:

f1(x1, y1)× Iin(x1, y1)dx1dy1 = f2(x2, y2)× Iout(x2, y2)dx2dy2 = 1 (2)

f1(r1)× 2π Iin(r1)r1dr1 = f2(r2)× 2π Iout(r2)r2dr2 = 1 (3)
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where f1 is the entrance pupil function and f2 is the exit pupil function, which are shown
as follows:

f (r1) =

{
1
0
≤ r0
> r0

f (r2) =

{
1
0
≤ R0
> R0

The intensity distribution of the incident Gaussian beam is

IG (r) =
2

πω2
0

exp

[
−2
(

r
ω0

)2
]

. (4)

Considering the integrability of the outgoing flat-top beam, the flat-top Lorentzian
function is used to express the intensity distribution as follows:

IL(R) =
1

πR2
0

[
1 +

(
R
R0

)q]1+ 2
q

(5)

where q is the order of the flat-top Lorentzian function.
After substituting the function expressions of the Gaussian and flat-top Lorentzian

beams into Equation (3), the mapping function can be obtained as follows:

1− exp

[
−2

(
r2

ω2
0

)]
=

[
1 +

(
R0

R

)q]− 2
q

(6)

The mapping function between R and r is

R = h(r) =
R0

√
1− exp

[
−2
(

r
ω0

)]
√

1−
{

1− exp
[
−2
(

r
ω0

)2
]}q/2

(7)

r = h(r) = ±ω0

√√√√√−1
2

ln

1−
[

1 +
(

R
R0

)−q
]− 2

q
 (8)

In particular, when q→∞, Equation (7) can be written as

R = R0

√
1− exp

[
−2
(

r
ω0

)]
(9)

Equation (9) shows that when the flat-top Lorentzian function is used as a flat-top
beam distribution function, its mapping function has an analytical solution, which can
facilitate ray tracing and significantly simplify the numerical calculation process. For a
Galilean-type aspheric system [20], there exists

R = −R0

√√√√1− exp

[
−2
(

r
ω0

)2
]

(10)

The Galileo shaping system is composed of a flat concave lens and a flat convex lens,
as shown in Figure 3. The convergence point generated by the Galileo-shaped structure is a
virtual focus, which can avoid the air breakdown effect, and its axial size is smaller than
that of the Kepler-shaped structure. Therefore, the application of the Kepler system for
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beam shaping requires laser power that is not too high, and the Galileo aspheric lens group
can be applied to larger power.
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The magnification β = f 2/f 1, where f 1 is the focal length of flat-concave lens and f 2 is
the focal length of flat-convex lens.

Along the cross-section of the Gaussian beam, the energy is concentrated around the
spot center. To obtain a flat-top beam with uniform illumination, it is necessary to diverge
the rays that pass through a small aperture and concentrate the rays that pass through a
large aperture. Therefore, it is necessary to obtain the relationship between the coordinates
of the rays on the entrance-pupil plane and those on the image plane, which is called the
mapping function.

3. System Design of Laser Beam Expansion and Shaping

The optical beam expansion and shaping system based on aspherical cylindrical lenses
can simultaneously adjust the intensity distribution and spot shape of the laser beam. The
parameters of the incident light of the shaping object used in the system design are as
follows: a CO2 laser is used with a power of 200 W, wavelength of 10.6 µm, and spot
diameter of 9 mm. The Gaussian beam is shaped into a rectangular flat-top beam with a
size of 15 × 60 mm using the aspherical cylindrical lenses. The working distance is 500 mm,
and the glass material is ZnSe.

3.1. Design of Aspherical Cylindrical Lenses

The Y-direction is consistent with the default coordinate setting in ZEMAX, and all
coordinate systems in this study are the same as the default setting in ZEMAX. First, we set
the wavelength and aperture. The aperture was set to 13.5 mm, and the field of view was
set to 0.

Three surfaces were inserted into the lens data editor (LDE). The second surface was
set as a cylindrical surface, the glass material was set as ZnSe, and the thickness was set
to 6 mm. The radius of the third surface was set to infinity. The radius of the second
surface, conic, 4th, 6th, 8th, and 10th order coefficients, and the thickness of the third
surface was set as optimization variables. The 2nd order system was omitted to reduce the
processing complexity. The 4th, 6th, 8th, and 10th order coefficients were a4 = −1.279× 105,
a6 = 2.878× 107, a8 = −2.878× 109, and a10 = 1.25× 1011, respectively.

The aperture, field of view, and wavelength were set similarly to the Y-direction, and
a macro program was used to generate the evaluation function. In the macro program,
the radius of the flat-top beam was changed (from 7.5 to 30 mm), and the operand was
changed accordingly (from REAY to REAX). The rays converged in the X-direction; there-
fore, a coordinate-break surface was added to the LDE to rotate the cylindrical lens by 90◦

around the Z-axis. The 4th, 6th, 8th, and 10th order coefficients were a4 = −4.816× 105,
a6 = 9.016× 107, a8 = −8.964× 109, and a10 = 3.913× 1011, respectively.

Two cylindrical lenses were used to shape the X and Y directions, and the lenses
did not interfere with each other. Thus, after the two cylindrical lenses were individually
designed, they could simply be stacked. The refraction–surface radius, air thickness,
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nonlinear coefficient of the aspheric surface, and 4th–10th order coefficients were set as the
optimization variables for the system. The distance between the shaping lenses for the X-
and Y-directions was set to 142 mm. The optimized system structure is shown in Table 1.

Table 1. Structural parameters of the combination optical system.

Surface Type Radius (mm) Thickness (mm) Glass Diameter (mm) Conic

Stop 0 5 Air 0 0
3 56.132 6 ZNSE 6.75 −112.603
4 Infinity 139.271 Air 6.75 0
6 Infinity 0 Air 6.75 0
7 123.491 6 ZNSE 6.75 −495.16
8 Infinity 317.448 Air 6.641 0

The light-field distribution of the flat-top rectangular beam combination optical system
is shown in Figure 4. Figure 4a is the light-field intensity distribution in the X direction,
and Figure 4b is the light-field intensity distribution in the Y direction. From the figure,
the spot size in the X direction and Y direction is 60 mm and 15 mm, respectively, which
meets the design requirements. Figure 5 shows the resulting light-field distribution spot
diagram of the combined optical components on the X–Y plane, where each grid division
represents 5 mm.
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3.2. Design of Focusing Lens Combination Optical Component System
3.2.1. Structural Parameters of Focusing Lens Combination Optical Component System

The objective is to use aspherical cylindrical lenses to focus a rectangular flat-top beam
with a size of 10 × 50 mm into a line-shaped light source with a size of 0.1 × 0.5 mm.
The focus distance is 500 mm, and the glass material is ZnSe. Two aspherical shaping
cylindrical lenses were designed as per the method described in Section 3.1. Based on
the optimized data, the evaluation function was generated using a macro program, and
the system was optimized. Table 2 shows the parameters of the optimized aspherical
shaping cylindrical-lens-combined optical system. Table 3 shows the asphericity coeffi-
cient structural parameters of the optimized spherical cylindrical-lens-combined optical
focusing system.

Table 2. Structural parameters of aspherical cylindrical-lens-combined optical system.

Surface Type Radius (mm) Thickness (mm) Glass Diameter (mm) Conic

Stop Infinity 5 Air 6.75 0
3 64.552 6 ZNSE 6.75 −64.672
4 Infinity 322.187 Air 6.75 0
6 123.491 6 ZNSE 6.75 −85.982
7 Infinity 10 Air 6.564 0
8 −124.613 5 ZNSE 5.803 0
9 Infinity 10 Air 5.778 0

11 266.913 6 ZNSE 5.665 0
12 Infinity 10 Air 5.636 0
14 Infinity 490 Air 5.523 0

Table 3. Structural parameters of spherical cylindrical-lens-combined optical focusing system.

Surface Type 4th Order Term 6th Order Term 8th Order Term 10th Order Term

3 5.586 × 10−6 −1.250 × 10−8 1.058 × 10−12 0
5 0 0 −90 0
6 5.712 × 10−6 −1.311 × 10−8 2.484 × 10−11 0

10 0 0 90 0
13 0 0 −90 0

The optical structure diagrams of the focusing system in the Y- and X-directions are
shown in Figures 6 and 7, respectively. The geometrical dimensions of aspherical cylindrical
lens 1, aspherical cylindrical lens 2, cylindrical lens 3, and cylindrical lens 4 are shown in
Supplementary Materials.
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3.2.2. Light-Field Distribution on the Focal Plane

An aperture diaphragm was placed 10 mm behind cylindrical lens 4. The size of
the diaphragm was 20 × 4 mm, and its light-transmission efficiency was 84.472%. The
flat-top distribution of the light field on the X–Y plane was more uniform after installing the
diaphragm. The light-field-intensity distributions on the focal plane of the focusing system
in the Y- and X-directions are shown in Figures 8 and 9, respectively. The spot diagram of
the light-field distribution on the X–Y plane is shown in Figure 10, where each grid division
represents 0.05 mm.
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3.2.3. Fitting of Aspheric Coefficients of Lenses

The nonlinear coefficient of the aspheric surface given in ZEMAX had a particular error;
therefore, it was necessary to use the surface sag given in ZEMAX to refit the nonlinear
coefficient of the surface. The sag data were fitted using Mathematica (MathWorks).

When the 4th order coefficient was used, the fitted nonlinear coefficient was
a4 = 5.11633 × 106. The second aspherical lens was processed in the same way, and
its aspheric coefficient was a4 = 5.25724× 106.

Table 4 shows the geometric parameters used in the calculations for each of the
cylindrical lenses.

Table 4. Geometric parameters of cylindrical lenses.

Radius (mm) Lens
Orientation

Focal Length
(mm)

Size
(mm) Conic 4th Order

Coefficient

Aspherical Cylindrical Lens 1 64.55 X 46.00 25 × 25 −4.672 5.11633 × 10−6

Aspherical Cylindrical Lens 2 123.49 Y 88.00 60 × 25 −5.982 5.25724 × 10−6

Cylindrical Lens 3 −24.91 Y −88.00 60 × 25 0
Cylindrical Lens 4 266.91 X 190.20 60 × 25 0

3.3. Study on the Zoom Function of the Lens System

It is necessary to change the focal length of the focusing lens system during the
scanning and molding process of the selective laser sintering system to realize the scanning
of the processing surface. In the focusing lens system, aspherical cylindrical lenses 1
and 2 shape the beams in the X- and Y-directions, respectively. Two standard cylindrical
lenses, cylindrical lens 3 and cylindrical lens 4, focus the beams in the X- and Y-directions,
respectively. The optical-structure diagram is shown in Figure 11. The zoom function of
the system can be achieved by changing the optical interval between aspherical cylindrical
lens 2 and cylindrical lens 3 and that between aspherical cylindrical lens 2 and cylindrical
lens 4. Therefore, cylindrical lenses 3 and 4 are defined as a zoom lens system.
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We adopted the optimized design method using the combined optical components,
as described in Section 3.2, and used approximately 20% of the light-intensity difference
between the center of the spot and the edge as the adjustment range. We calculated the
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intensity distribution of the light field and the displacement parameters of the zoom lens
system with different working distances. Figures 12 and 13 show some of the intensity-
distribution diagrams of light fields with working distances between 500–560 mm.
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Figure 12. Light-field-intensity distribution of the focusing system with a working distance of
500 mm. (a) Light-field-intensity distribution in the X-direction. (b) Light-field-intensity distribution
in the Y-direction.
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When the working distance is between 500 and 535 mm, the intensity distribution of
the light field exhibits a good rectangular flat-top beam. We set the working distance to a
range of 500–535 mm; thus, we obtained a system scanning range of 2 L × 2 L, where

L = ±
√

5352 − 5002 = ±190 (mm) (11)

Table 5 shows the working distance and displacement parameters of the zoom lens system.

Table 5. Working distance and displacement parameters of the zoom lens system.

Working Distance (mm)
The Distance from the Second

Aspherical Cylindrical Lens to the
Third Cylindrical Lens (mm)

The Distance from the Second
Aspherical Cylindrical Lens to the

Fourth Cylindrical Lens (mm)

500 10.43 31.18
505 10.36 29.14
510 10.29 27.16
515 10.22 25.25
520 10.15 23.41
525 10.07 21.62
530 10.00 20.00
535 9.93 18.20
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The data in Table 5 were linearly fitted to provide a motion-control mathematical
equation for the dynamic focusing. The fitted data are shown in Table 6.

Table 6. Linear fitted displacement values of the zoom lens system.

Working
Distance (mm)

The Distance from the
Second Aspherical

Cylindrical Lens to the Third
Cylindrical Lens (mm)

The Distance from the Second
Aspherical Cylindrical Lens to

the Fourth Cylindrical Lens (mm)

The Fitted Distance from the
Second Aspherical

Cylindrical Lens to the Third
Cylindrical Lens (mm)

The Fitted Distance from the Second
Aspherical Cylindrical Lens to the

Fourth Cylindrical Lens (mm)

500 10.43 31.18 10.43 31.17
505 10.36 29.14 10.36 29.14
510 10.29 27.16 10.29 27.17
515 10.22 25.25 10.22 25.26
520 10.15 23.41 10.15 23.42
525 10.07 21.62 10.07 21.63
530 10.00 20.00 10.00 19.91
535 9.93 18.20 9.93 18.25

The depth of field of the focusing system is ±0.7 mm. Considering the systematic and
random errors caused by the subsequent mechanical and electronic systems, we set the
focusing error (working distance error) of the zoom lens system to ±0.1 mm, which is 1/7
of the total error.

The fitted equation is:
y1 fitted = 17.61 − 0.014x (12)

y2 fitted = 0.00123x2 − 1.64067x + 544.3596 (13)

Taking the derivatives of Equations (12) and (13) and including an error of 0.1 mm in
the equations, we obtain the following:

∆y1 fitted = (−0.014) × ∆x = (−0.014) × (±0.1) = ±0.0014 (mm) (14)

∆y2 fitted = 0.00123∆x − 1.64064= 0.00123 × (±0.1) − 1.64064 ≈ −1.64 (mm) (15)

Based on the above analysis, the displacement distance of cylindrical lens 3 is 0.5 mm,
and the displacement error is less than ±0.0014 mm. The displacement distance of cylindri-
cal lens 4 is 12.91 mm, and the displacement error is less than ±1.64 mm. Therefore, the
zoom lens system can achieve precise zooming if the displacement distance of cylindrical
lens 3 is well controlled.

4. Experiment and Results

We performed a laser uniformity test on the designed optical system and used a CMOS
beam analyzer (CinCam, CINOGY Technologies, Duderstadt, Germany) for testing. The
diameter of the collimated Gaussian laser spot was approximately 9.01 mm, the size of the
shaped rectangular flat-top spot was approximately 0.1 × 0.5 mm, and the laser energy in
the spot was uniformly distributed.

The laser shaping and focusing system was tested using a selective laser sintering
rapid prototyping machine (ASF 360, Longyuan AFS Co., Ltd., Beijing, China). Polystyrene
powder produced by Longyuan AFS Co., Ltd. was used as the printing material. The
flat-top line-shaped laser beam shaping system has an energy loss of approximately 17%;
therefore, this study selected a 15 W Gaussian laser spot with a diameter of 0.1 mm and
a 93 W flat-top line-shaped laser spot with a length and width of 0.5 mm and 0.1 mm,
respectively, for experiments. The experimental parameters are shown in Table 7.

In the selective laser sintering system, the molded parts are typically placed in one
of three ways: horizontally, vertically, and sideways, as shown in Figure 14. Owing to
the large volume of the parts, multiple layers and a long workbench scanning time are
required to print the molded parts in the vertical direction. Therefore, this study only
investigated the influence of the sideways placement and horizontal placement methods on
the molding speed of the molded parts. Diagrams of the experimental samples are shown in
Figures 15 and 16, and each independent part is a 20 × 10 × 100 mm cuboid.
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Table 7. Sintering parameters of molded parts.

Laser Device
Output Power (W)

Working
Power (W)

Spot Size
(mm)

Scan Speed
(mm/s)

Hatch Spacing
(mm)

Layer Thickness
(mm)

Flat-top
line-shaped spot 93 15 0.1 × 0.5 2000 0.5 0.1

Gaussian spot 15 15 Φ0.1 2000 0.1 0.1
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The laser scanning path adopted the alternate scanning modes of the X- and Y-axes,
and the experimental molded parts were placed at 0◦, 30◦, and 45◦ from the longest side in
the X-axis direction, as shown in Figure 17.

Sample model 1 was placed at 0◦, 30◦, and 45◦ from the longest side in the X-axis
direction, and the sintering experiment was performed five times. The scanning time of the
galvanometer required to record the flat-top line-shaped spot and Gaussian spot are Ta1
and Ta2, respectively, and the times of the first and last scans are Tb1 and Tb2, respectively.
We took the average of the results of the five experiments to obtain Ta1, Ta2, Tb1, and Tb2.
The experimental results are shown in Table 8.
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Table 8. Molding data of sample 1.

Placement Spot Horizontal Sideways

Laser Type Time 0◦ 30◦ 45◦ 0◦ 30◦ 45◦

Flat-top line-shaped spot (s)
Ta1 104 117 153 105 114 152

Tb1 454 467 507 1511 1515 1571

Gaussian spot (s)
Ta2 503 512 503 501 532 579

Tb2 853 863 853 1914 1932 1984

Flat-top line-shaped spot/Gaussian spot (%)
Ta1/Ta2 20.7 22.8 30.4 21.0 21.4 26.3

Tb1/Tb2 53.3 54.1 59.4 78.9 78.4 79.2

The experimental results show that when the flat-top line-shaped laser spot is used
for scanning and the placement angle is 0◦, the scanning efficiency is approximately five-
times that of the Gaussian spot. When the placement angle is 45◦, the improvement in the
scanning efficiency is at its lowest.

The placement is also an important factor that affects molding efficiency. Different
placement methods affect the height of the molded part along the Z-axis. The larger the
number of layers, the longer the non-working time of the galvanometer, and the lower the
molding efficiency.

The method follows that of the previous sample model. Sample model 2 was placed
at 0◦, 30◦, and 45◦ from the longest side along the X-axis. The sintering experiment was
performed five times, and the scanning time of the galvanometer was recorded as Ta. The
scanning times of the galvanometer required to record the flat-top line-shaped spot and
Gaussian spot are Ta1 and Ta2, respectively. The times of the first and last scans are Tb1 and
Tb2, respectively. We took the average of the results of the five experiments to obtain Ta1,
Ta2, Tb1, and Tb2. The experimental results are shown in Table 9.

Sample model 1 was placed at 0◦, 30◦, and 45◦ from the longest side in the X-axis
direction, and the sintering experiment was performed five times. The scanning time of the
galvanometer required to record the flat-top line-shaped spot and Gaussian spot are Ta1
and Ta2, respectively, and the times of the first and last scans are Tb1 and Tb2, respectively.
We took the average of the results of the five experiments to obtain Ta1, Ta2, Tb1, and Tb2.
The experimental results are shown in Table 8.

We tested whether there was any deviation in the size of the experimental samples.
We used a vernier caliper to measure and record the size of 27 experimental samples and
calculated their size deviation in three directions.
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Table 9. Molding data of sample 2.

Sample Model and Placement 2a 2b

Laser Type Time 0◦ 30◦ 45◦ 0◦ 30◦ 45◦

Flat-top line-shaped spot (s)
Ta1 1673 1745 2521 1717 1768 2627
Tb1 3114 3181 2937 8927 8964 9710

Gaussian spot (s)
Ta2 8113 8242 8265 8135 8404 8483
Tb2 9493 9705 9698 15,237 15,507 15,533

Flat-top line-shaped spot/Gaussian spot (%)
Ta1/Ta2 20.6 21.2 30.5 21.1 21.0 31.0

Tb1/Tb2 32.8 32.8 30.3 58.6 57.8 62.5

Sample model 1 was used for multiple sintering experiments. When the Gaussian spot
was used for the sintering experiment, the average deviation in the X-, Y-, and Z-directions
were 0.35 mm, 0.50 mm, and −0.60 mm, respectively. When the flat-top line-shaped
laser spot was used for the sintering experiment, the average deviation in the X-, Y-, and
Z-directions were 0.30 mm, 0.40 mm, and −0.40 mm, respectively.

5. Conclusions

This study analyzed current laser-beam-shaping theory and systems and proposed a
theory and system to produce non-imaging Gaussian laser beams and rectangular flat-top
beam shaping. After discussing the laser beam-shaping theory of aspherical cylindrical
lenses, we proposed the beam mapping function, called the flat-top Lorentzian function.
Using ZEMAX, we designed the laser-beam expansion and shaping system and focusing
system to mitigate the uneven beam energy when shaping a point light source into a surface
light source. This study also analyzed the zoom lens system and it was observed that if the
displacement of cylindrical lens 3 is precisely controlled, precise zooming can be achieved.

When the molded parts are placed horizontally, the overall molding efficiency is
significantly improved. When the molded parts are placed sideways, the total scanning
time of the galvanometer is similar to that achieved with horizontal placement. However,
the powder bed fusion process requires more time, owing to the larger number of layers.
Compared to the Gaussian laser, the scanning efficiency of the flat-top line-shaped laser
is not considerably improved. When the number of layers is the same, a larger layer area
results in a greater improvement in the scanning efficiency. The closer the placement angle
of the molded part is to 45◦, the lower the molding efficiency. However, as the layer area
increases, the effect is smaller. It can be observed from the deviation rate of sample model
1 that the size deviations in the flat-top line-shaped beam and Gaussian beam are similar
in the X- and Y-directions, and the size deviation in the flat-top line-shaped beam in the
Z-direction is smaller than that of the Gaussian beam.

There are some limitations in this paper; the laser-beam expansion and shaping system
and focusing system are designed for a flat-top line-shaped beam spot with a length and
width of 0.5 mm× 0.1 mm. For other sizes of flat-top line-shaped beam spots, it is necessary
to design laser-beam expansion and shaping systems and focusing systems with different
parameters. In the future, the beam expansion and shaping system and focusing system of
the adjustable-size flat-top line beam spot will be studied.
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