
Citation: Mustafaev, B.; Tursunov, A.;

Kim, S.; Kim, E. A Novel Method to

Inspect 3D Ball Joint Socket Products

Using 2D Convolutional Neural

Network with Spatial and Channel

Attention. Sensors 2022, 22, 4192.

https://doi.org/10.3390/s22114192

Academic Editors: Dan Popescu and

Loretta Ichim

Received: 20 April 2022

Accepted: 29 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Method to Inspect 3D Ball Joint Socket Products Using
2D Convolutional Neural Network with Spatial and
Channel Attention
Bekhzod Mustafaev 1 , Anvarjon Tursunov 2 , Sungwon Kim 3 and Eungsoo Kim 4,*

1 ICT Creative Convergence Department, Busan University of Foreign Studies, Busan 46234, Korea;
bekhzodmustafaev91@gmail.com

2 Department of Software, Sejong University, Seoul 05006, Korea; tursunovanvarjon@gmail.com
3 Vazil Company Co., Ltd., Busan 46918, Korea; swk@vazilcompany.com
4 Department of Artificial Intelligence Convergence Engineering, Busan University of Foreign Studies,

Busan 46234, Korea
* Correspondence: eskim@bufs.ac.kr; Tel.: +82-51-509-6262

Abstract: Product defect inspections are extremely important for industrial manufacturing processes.
It is necessary to develop a special inspection system for each industrial product due to their com-
plexity and diversity. Even though high-precision 3D cameras are usually used to acquire data to
inspect 3D objects, it is hard to use them in real-time defect inspection systems due to their high
price and long processing time. To address these problems, we propose a product inspection system
that uses five 2D cameras to capture all inspection parts of the product and a deep learning-based
2D convolutional neural network (CNN) with spatial and channel attention (SCA) mechanisms to
efficiently inspect 3D ball joint socket products. Channel attention (CA) in our model detects the most
relevant feature maps while spatial attention (SA) finds the most important regions in the extracted
feature map of the target. To build the final SCA feature vector, we concatenated the learned feature
vectors of CA and SA because they complement each other. Thus, our proposed CNN with SCA
provides high inspection accuracy as well as it having the potential to detect small defects of the
product. Our proposed model achieved 98% classification accuracy in the experiments and proved
its efficiency on product inspection in real-time.

Keywords: quality inspection; attention mechanism; convolutional neural networks; deep learning

1. Introduction

A ball joint socket is a sort of mechanical connection that is commonly seen in cars and
other types of machinery. This connection works similarly to the ball-and-joint socket in the
human hip. It is made up of a ball or bearing that swivels inside a socket. The socket is tiny
enough to keep the ball in place and prevent it from falling out, but large enough to allow
the ball to swivel or rotate as needed [1,2]. In many mechanical applications, the ball socket
joint combines strength, flexibility, and shock absorption to help decrease wear. This type
of socket joint is used by many modern car manufacturers to connect the car wheels to the
axle. The ball joint socket allows the wheels to not only spin from side to side when driving,
but also travel over bumps or potholes on the road. Without this joint, the automobile
would suffer a lot of damage every time it struck a pothole or other tiny impediment. This
joint serves to balance the car as the wheels collide with these impediments, reducing the
driver’s stress. The ball joint socket protects the vehicle and prevents wear and tear on
automotive parts by absorbing shock, thus extending the vehicle’s life [3].

Inspection of the product quality in real time is critical in manufacturing processes
since an efficient quality monitoring system aids in preventing the cost and inconvenience
of providing defective products to customers [4]. Many factories still use human laborers to
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inspect product quality. Even though human laborers inspect products with high precision
because of their work experience and intelligence, there are some disadvantages that need
to be solved. Usually, human inspectors are unable to perform the inspection process at a
high level of precision during inspection time because of eye fatigue. They need to take
a rest at certain times to work precisely. Moreover, more workers will be required if the
production of the factory is increased, and each individual worker should have adequate
experience of analyzing the products to ensure inspection quality. Due to the above factors,
production efficiency and company reliability can be significantly reduced [5].

To overcome these problems, many studies have been conducted in vision-based
systems in order to automatically identify defects in different types of products such
as fabric, bottles, car body surfaces, and metals [6–10]. When compared to a human
inspector, these kinds of automatic defect inspection systems have numerous benefits,
such as continuous operation over a long period, high inspection accuracy results during
the inspection time, and operation in a complex environment. However, there are many
industrial products that vary in terms of product material, shape, and the varying sizes
of defects. Due to the complexity and diversity of industrial products, each product in
a factory requires the development of a special inspection system. Defects in flattened
surface products would normally be identified on the product’s surface using 2D cameras.
However, the inspection procedure for three-dimensional (3D) mechanical products, such
as ball joint sockets, is substantially more challenging, because defects can occur in any
part of the 3D products. In order to inspect all parts of the 3D mechanical product, 3D
cameras are typically used to collect data for the inspection process [11]. Though, this kind
of 3D mechanical product inspection systems impose some limitations when it is applied
to a real-world manufacturing process. At first, 3D industrial cameras are very expensive
compared to 2D industrial cameras, which raises the entire cost of the inspection system.
Furthermore, dealing with 3D data is substantially more difficult, necessitating multiple
preprocessing steps, and data processing time is also long, resulting in a major reduction
in product manufacturing operations [12]. Thus, to overcome these issues we proposed a
novel method to inspect 3D ball joint socket products using 2D cameras in our system.

In this study, we proposed a novel method to inspect a 3D ball joint socket which uses
five 2D industrial cameras, to acquire all inspection parts of the product and convolutional
neural network (CNN) with spatial and channel attention (SCA) to detect defects of the
product efficiently and accurately. We primarily focused on 3D-shaped object defect
inspection problems and detecting very small defects that could occur in any part of the
object. The dataset was collected in a factory environment using five 2D cameras installed
on a 3D ball joint socket inspection system. Since the socket product shape is 3D, we
used five 2D industrial cameras to capture all parts of the object and inspected each part
individually. Our proposed technique ensures high-speed and real-time performance on the
inspection time of the product by using 2D industrial cameras. A light reflection problem
occurred during the image acquisition. That is because the product material is metal, and
the light reflection value of its surface was varied. We used a gamma correction algorithm to
deal with this problem. To efficiently process acquired images we proposed a CNN model
consisting of a feature extraction block (FEB) followed by SCA and two fully connected
layers (FCN). Our proposed CNN with SCA provides high inspection accuracy as well
as being robust to detect small defects of the product. Our proposed system provides the
following major contributions:

• We developed, tested, and deployed a defect inspection system for efficient clas-
sification of defective and non-defective 3D ball joint socket products using a 2D
convolutional neural network (CNN) with channel and spatial attention mechanisms.

• We proposed a novel method to inspect 3D objects using 2D cameras. Our system
uses five industrial cameras to capture all inspection parts of the 3D ball joint socket
product. Acquired 2D images are processed to detect defect products using 2D CNN
with channel and spatial attention.
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• Some parts of the product reflect light more than other parts and it leads to different
light reflection issue. To solve this problem, first we reduced the light intensity to a
certain value to make sure that there is no light reflection from the shiny parts of the
product. Thereafter, we applied a gamma correction method to increase the brightness
of the acquired image.

• We proposed a convolutional neural network with channel and spatial attention for
accurate detection of defects of the 3D ball joint socket product. Our proposed CNN
model with channel and spatial attention extracts useful features from the input image
using a feature extraction block (FEB), and then channel attention detects the most
relevant feature maps for the target while spatial attention finds the most important
regions in the extracted feature map for the target. Both attention features are combined
to make robust feature maps and are fed to the fully connected network to process
and make final prediction.

• We experimentally proved the effectiveness of the proposed CNN model with chan-
nel and spatial attention by developing and analyzing the results of four different
CNN models. Our proposed model achieved 98% average accuracy rate which
was 18% higher compared to the CNN model without channel and spatial
attention mechanisms.

The rest of this article is organized as follows: Section 2 contains an overview of the
literature on vision-based inspection methods for automatically detecting defects in various
products. Section 3 provides a comprehensive explanation of the proposed framework.
Section 4 contains the data collection and dataset information. Experimental results are
given in Section 5. The discussion and comparative analysis of the proposed system and
obtained results is included in Section 6. Finally, Section 7 presents the conclusions and
future directions.

2. Literature Review
2.1. Handcrafted Features with Traditional Machine Learning Methods

Over the past decades, there have been many studies in surface defect detection using
traditional image processing and machine learning methods. Various machine vision
algorithms are used for a defect inspection system, such as texture feature-based, color
feature-based, and shape feature-based [13]. Text feature can represent the organization
structure and arrangement properties of the image surface through the gray distribution
of the pixels and their nearby spatial neighborhoods. A statistical method can be used to
detect defects from the texture features of the image. The main idea of statistical methods
is to use the gray value distribution on the surface of an object as a random distribution
and use the statistics of the random variable through the local binary pattern. In [14],
steel plate surface defects were detected using a multiblock local binary pattern algorithm
with over 94% recognition accuracy. Color histogram features are also used to inspect
defects of products. It describes the proportion of different colors in the entire image.
Study [15] proposed a wood surface classification method based on the percentage color
histogram feature and texture feature of the image block. Another popular defect inspection
method is shape features of the image. The contour-based method is one of the most used
shape features and it obtains the shape parameters of the image by describing the outer
boundary feature of the object. Wang J. et al. [8] used Hough transform to extract a region
of interest (ROI) from the input images and then CNN was used to inspect bottle products.
Hough transform reduced the computation time by removing unrelated background in the
input images. Multiple thresholds are often required with traditional methods to target
defects in the algorithms, which are highly impacted by conditions such as lighting and
background colors. The thresholds may need to be adjusted when a new problem arises,
or the algorithms may even need to be redesigned. Additionally, handcrafted, or shallow
learning techniques fail to distinguish a complex condition effectively. A specific scenario
is used for these methods, meaning they are not very adaptable and robust.
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2.2. Deep Learning-Based Methods

Modern approaches make use of a deep learning technique to achieve more reliable
and efficient inspection performance in more complex scenarios. In recent years, several
defect inspection methods based on deep learning have been proposed. A generic deep
learning-based technique for the automated surface inspection (ASI) system was presented
by Ren et al. [16], to inspect texture, color, and microstructure defects on different public
datasets. The proposed ASI system involves image classification and defect segmentation
tasks. First, images were divided into image patches then a pretrained convolutional neural
network (CNN) was used to classify image patches into normal and defective categories.
For each defect type, a heatmap was generated and a thresholding method was used
for segmentation. The proposed ASI achieved a good result on both classification and
segmentation tasks by improving the accuracy by 0.66–25.50% and 2.29–9.86%, respectively.

Aluminum casting product defect detection from X-ray images was proposed in [17].
They divided an X-ray image into several image patches and trained CNN model to classify
image patches into defect and non-defect classes. In order to detect defect regions, first
they used a sliding window method to process entire X-ray image and for each window
they obtained defect or non-defect prediction from the trained CNN model. Afterwards,
an image processing method was used to determine the defect region among all the sliding
window results. Moreover, they used a generative adversarial network (GAN) and 3D
ellipsoidal model to generate augmented defect samples. Their proposed model achieved
0.71 mAP on aluminum casting defect detection. Another study [4] proposed conditional
convolutional variational autoencoders (CCVAE) to generate defect samples and deep
CNN for metal surface defect inspection. They increased the performance of the deep
CNN by 3.42% via training classification model on generated defect samples using CCVAE.
Zheng X et al. [18] proposed a generic semi-supervised deep learning-based approach
for ASI. Their proposed method uses MixMatch rules to augment defective data samples
and a CNN based on residual structure to detect defects. The MixMatch [19] method
generates new data samples by mixing images with labels and unlabeled images through
the MixUp [20] method after data augmentation, label guessing, averaging, and sharpening.
They achieved various accuracy results by applying different percentage of labeled training
samples. Classification accuracy of 99.83% was achieved when 70% of labeled training
samples was used for the model.

2.3. Handcrafted Features with Manifold-Valued Neural Network

A novel deep neural network (DNN) framework called ManifoldNet was proposed
in [21]. An objective deep network to be regarded as a generalization of CNN to manifold-
valued inputs through purely intrinsic operations on the manifold. They consider this as a
potential analog of a CNN for handling images that are manifold-valued, that the value
set is on a Riemannian manifold [22]. A number of experimental results demonstrate the
effectiveness of ManifoldNet for computer vision and medical imaging applications [23,24],
such as, a classification of diffusion tensor images from Parkinson disease patients and
controls were trained and tested using a dataset containing diffusion weighted magnetic res-
onance (MR) images acquired at the University of Florida for 355 subjects with Parkinson’s
disease (PD) and 356 controls (healthy). For this experiment two different ManifoldNet
based approaches are used along with a traditional CNN model. In the first approach,
diffusion tensors are used to capture the local diffusion process within a voxel utilizing
symmetric positive definite matrix [25] and a second approach of representing orientation
distribution functions (ODFs) is through the ensemble average of the probability density
function [26]. Test results for the first and second approaches of ManifoldNet achieved
around 95% and 94% accuracy, respectively, and both are higher than Resnet-34 CNN
model which achieved about 71% accuracy.

Even though many deep learning methods have been developed by researchers, defect
inspection of industrial products requires specific inspection methods depending on factors
such as product material, product shape complexity, and defect types. When the product
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material is shiny metal, light reflection will be the first issue in developing the product
inspection system. Detecting defects of various types, such as small or tiny defects, is
challenging. Moreover, product shape complexity is one of the main factors to consider in
choosing the right algorithm for product inspection.

3. Proposed Method

In this section, we explain the proposed framework for the inspection of 3D ball joint
socket products using a 2D convolutional neural network (CNN) with spatial and channel
attention (SCA). Figure 1 illustrates the general overview of the proposed framework. We
used five 2D cameras to capture the entire surface of the 3D ball joint socket. Gamma
correction was used to fix the issue of different light reflection from the surface of the
product. Our proposed framework utilizes 2D CNN with SCA for effective classification of
defective and non-defective 3D ball joint socket products. The proposed model architecture
consists of a feature extraction block (FEB), SCA, and fully connected network (FCN),
which learns to classify the defective and non-defective products from the extracted feature
vectors by previous blocks. A detailed explanation of the proposed framework components
is presented in the upcoming sections.
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3.1. Data Acquisition

Typically, building deep learning (DL) models requires sufficient data, as well as the
data preparation process being one of the key factors of increasing the model accuracy
and robustness. The improper organization of this process directly affects the model’s
ability to learn and achieve high accuracy. Data collection and preprocessing require
different approaches depending on the task and object properties such as the object shape,
material type, etc. In the case of ball joint socket product inspection, the object has 3D
shape and defects can occur in any part of the object during the manufacturing process.
Generally, 3D cameras are used to acquire data for 3D shape objects and in order to process
and accomplish different tasks such as binpicking and inspection. However, we used 2D
cameras to inspect 3D ball joint sockets (Figure 1a). There are two primary intentions
for using 2D industrial cameras to inspect the 3D shape object instead of a 3D camera.
Firstly, high precision 3D industrial cameras are much expensive compared to 2D industrial
cameras. Secondly, there is a significant difference between processing 3D data points,
and 2D image data, which makes the usage of 3D cameras very difficult in fast real
time processing.
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3.2. Gamma Correction

Light reflection on the surface is always one of the most important problems that could
impact on the system performance efficiency. Light reflection usually occurs on the surface
of highly reflective metal objects. Recently, a gamma correction method was used to reduce
the effect of light reflection on images [27]. The light intensity varies nonlinearly in the
image captured by a camera. The gamma correction algorithm changes this nonlinearity
by raising non-negative input values to the power of gamma value and multiplied by a
certain constant value, and the output picture has the intended luminance. To fix the light
reflection and enhance the image quality automatically, a gamma correction algorithm has
been applied in this work. First, we reduced the light luminous intensity value of the light
emitting diode (LED) light bar until the reflection in any part of the object disappeared,
then images were acquired with that condition. The image brightness was then changed
according to given gamma values (Figure 1b).

Assume that P denotes an interval of image pixel values between (0, 255), Ω means
the angle value [0, π], G means the gamma value, and k represents the pixel value. Let km
be the middle point of P. Thus, the mapping from P to Ω is defined as:

ϕ : P→ Ω , Ω = {ω|ω = ϕ(k)}
ϕ(k) = πk/2km

(1)

The mapping from Ω to G is defined as:

h : Ω→ G , G = {γ|γ = h(k)}{
h(k) = 1 + f1(k)

f1(k) = a cos(ϕ(k))
(2)

where a ∈ (0, 1) is a weighted coefficient. Based on this map, there are related correlations
between pixel value groups P and G. An arbitrary pixel value is related to a numerical
gamma value that has been calculated. Let γ(k) = h(k) and choose gamma correction
function as follows:

g(k) = 255(k/255)1/γ(k) (3)

where g(k) represents the output of correction value for pixel grayscale k. In this manner,
the correction value of pixels is connected to the original pixel values, which achieved the
requirements of image correction.

3.3. Feature Extraction Block

In the field of computer vision, current state-of-the-art results are attained by utilizing
CNNs to perform various tasks, such as image classification [28], image segmentation [29],
and object detection [30]. Usually, convolution layers, pooling layers, and fully connected
layers are the three main elements of a CNN model. Convolution is used to extract
valuable information from an image. Normally, the initial convolution layer captures
low-level information, such as edges, color, gradient orientation, and with additional
layers, architecture adjusts to high-level features as well, giving us a network with a
comprehensive grasp of the pictures in the dataset. The pooling layer is responsible for
lowering the dimension of extracted feature maps. The pooling layer also reduces the
model’s processing time. As the output of the convolutional layer represents non-linear
combinations of high-level features, fully connected layers learn how to classify defective
and non-defective products from high-level features.

Seven convolution (C) layers were used to create FEB, followed by the same number
of layers of max-pooling layers. Table 1 provides details about our proposed model’s
configuration. To obtain useful local patterns from the input image, we used 32 kernels
with dimensions 3 × 3 and a stride of 1 × 1 in the first convolution (C1) layer. To improve
the model’s performance and to generalize it during training, we used the rectified linear
unit (ReLU) as an activation function in all the convolution layers. From the second to the
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fifth convolution (C2–C5) layers, there are 64 filters, each with a size of 3 × 3 and a stride of
1 × 1, in order to produce a feature map, which is input to the next layer. The sixth and
last convolution (C6–C7) layers contain 128 filters with 3 × 3 size of kernels and a stride
with 1 × 1, the padding set to SAME (In SAME padding, when stride = 1 the output size
of the convolution is the same as the input size. The same padding works by appending
zero values in the image outer frame, thus the filter can cover the edges of the matrix and
include them in the inference as well) to extract deeply hidden cues from the input data.

Table 1. Detailed configuration specifications of our proposed model. Conv2D—Convolution2D,
MP—MaxPooling2D, GAP—GlobalAveragePooling2D, ReLU—rectified linear unit, Con—concatenate,
FEB—feature extraction block, SA—spatial attention, CA—channel attention, FCN—fully connected
network, FC—fully connected layer.

Name of Layers Input Tensor
Shape

Output Tensor
Shape Kernel Size Stride Activation

Function
Number of
Parameters

FEB

Conv2D_1 380 × 380 × 3 378 × 378 × 32 3 × 3 1 × 1 ReLU 896
MP_1 378 × 378 × 32 189 × 189 × 32 2 × 2 2 × 2 - 0

Conv2D_2 189 × 189 × 32 187 × 187 × 64 3 × 3 1 × 1 ReLU 18,496
MP_2 187 × 187 × 64 93 × 93 × 64 2 × 2 2 × 2 - 0

Conv2D_3 93 × 93 × 64 91 × 91 × 64 3 × 3 1 × 1 ReLU 36,928
MP_3 91 × 91 × 64 45 × 45 × 64 2 × 2 2 × 2 - 0

Conv2D_4 45 × 45 × 64 43 × 43 × 64 3 × 3 1 × 1 ReLU 36,928
MP_4 43 × 43 × 64 21 × 21 × 64 2 × 2 2 × 2 - 0

Conv2D_5 21 × 21 × 64 19 × 19 × 64 3 × 3 1 × 1 ReLU 36,928
MP_5 19 × 19 × 64 9 × 9 × 64 2 × 2 2 × 2 - 0

Conv2D_6 9 × 9 × 64 9 × 9 × 128 3 × 3 1 × 1 ReLU 73,856
MP_6 9 × 9 × 128 4 × 4 × 128 2 × 2 2 × 2 - 0

Conv2D_7 4 × 4 × 128 4 × 4 × 128 3 × 3 1 × 1 ReLU 147,584
MP_7 4 × 4 × 128 2 × 2 × 128 2 × 2 2 × 2 - 0

GAP_1 2 × 2 × 128 128 - - - 0

SA

Conv2D_8 2 × 2 × 128 2 × 2 × 64 1 × 1 1 × 1 ReLU 8256
Conv2D_9 2 × 2 × 64 2 × 2 × 64 3 × 3 1 × 1 ReLU 36,928

Conv2D_10 2 × 2 × 64 2 × 2 × 64 1 × 1 1 × 1 ReLU 4160
GAP_2 2 × 2 × 64 64 - - - 0

CA

GAP_3 2 × 2 × 128 128 - - - 0
FC_1 128 128 - - ReLU 16,512
FC_2 128 64 ReLU 8256

Con_1 128, 64, 64 256 - - - 0

FCN

FC_3 256 128 - - ReLU 32,896
FC_4 128 64 - - ReLU 8256
FC_5 64 2 - - SoftMax 130

Total parameters = 467,010

The max-pooling layer with pool size and stride of 2 × 2 is applied after each convolu-
tion layer. In addition to reducing the feature map dimensions, max-pooling reduces the
computation cost for the network.

3.4. Proposed Spatial and Channel Attention

A number of tasks, such as text classification, machine translation, and speech recog-
nition [31–33], have demonstrated the value of utilizing attention mechanisms in deep
learning models. Attention works by focusing on the extracted features to select essential
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features of the target. It is not always the case that all extracted features apply to a target in
any deep learning task. CNNs are very good at extracting useful salient feature maps from
the input image. The extracted high-level salient feature maps are used to differentiate
the objects with high accuracy in the task of classification. However, it is challenging
to capture very small defects using those extracted feature maps, because similarity of
defective and non-defective images is very high. In order to achieve high performance,
all the useful features of the input data must be captured. To address this problem and
enhance the classification model’s performance and robustness, we proposed spatial and
channel attention (SCA) mechanisms to pay attention to the special part of the extracted
feature maps as well as to effectively capture the importance of each extracted feature map.
Figure 1c illustrates the SCA precise architecture.

The channel attention module exploits which feature map is the most relevant among
all feature maps generated by FEB. To accumulate the feature map in each channel, we first
applied global average pooling to the feature map following two fully connected layers
and produced a channel attention vector AVC ∈ RCH/r where, r is reduction ratio. The
hidden layers of the first and second fully connected layers is set to 128 and 64, respectively.
The output vector size of the channel attention module is 64. The final channel attention
vector is calculated as follows:

AVC(F) = FC2(FC1(GAP(F))) (4)

where F indicates the feature map, FC denotes a fully connected layer, and GAP denotes
the global average pooling.

The spatial attention module learns the important parts of the each extracted feature
map during training. The spatial attention module has three convolution layers and a
global average pooling layer which retains useful features in output feature vector. Three
convolution operations are applied to the input feature maps of F ∈ RW×H×CH . The first
convolution layer contains 64 kernels with a size of 1 × 1, and the second convolution layer
includes 64 filters with the size of 3 × 3, and finally, the last convolution layer has the same
parameters as the first convolution layer. The output dimension of this attention module is
the same as that of the channel attention module. The final spatial attention vector AVS(F)
is computed as follows:

AVS(F) = GAP
(

Z1×1
3

(
Z3×3

2

(
Z1×1

1 (F)
)))

(5)

where Z denotes a convolution operation and the superscripts represent the sizes of the
convolution filters.

After computing the attention vectors from two separate branches, which are focused
on which features and where the most relevant part of the input feature maps is located.
To build our final attention vector AV(F), we combined these two attention vectors. The
attention values estimated at two distinct channel and spatial branches complement each
other, because the extracted attention vectors are different even though the input feature
map is the same for both branches. Channel attention extracts the most relevant feature
maps while spatial attention finds the most important regions in the extracted feature
map. To facilitate gradient flow, we used a residual learning method conjunction with the
SCA. To compose an efficient and robust attention module, we first compute the channel
attention vector AVC(F) ∈ RCH/r and the spatial attention vector AVS(F) ∈ RCH/r values
at two separate branches. The final attention vector is computed as follows:

AV(F) = AVC + AVS (6)

In order to combine computed attention vectors with extracted feature maps, we
converted feature maps into feature vectors using GAP operation. At first, learned attention
vectors AV(F)εRCH/r are computed from the given input feature map F ∈ RH×W×CH that
is extracted by the FEB, while feature vector FV(F)εRCH is computed from the input
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feature map by going through GAP, and the final refined feature vector FV ′ prime is
calculated as follows:

FV ′ = AV(F) + FV(F) (7)

4. Data Collection and Dataset Information
4.1. Ball Joint Socket Product Inspection System

The 3D ball joint socket defect inspection system contains a personal computer (PC)
with a GPU device, five 2D industrial cameras, and a touch screen monitor. The defect
inspection system is capable of detecting the defects of the product ranging from small to
big sizes in real time in the product production process. The 3D model representation of
the defect inspection system is shown in Figure 2. Alternatively, an inspection system for
3D ball joint sockets can be built in a different way. For instance, a robot arm grabs each
product for inspection and then first two cameras take images of the front and back sides
of the product. Then, a third camera takes side images of the product while the robot arm
rotates the product horizontally. In this case, three 2D cameras would be enough. However,
one of the main disadvantages of this system would be inspection time. Long inspection
time comes from the two main aspects, which are: (a) the robot should change the grab
point to inspect the sides of the product after completing the inspection of the front and
the back sides of the product; and (b) during the product side inspection, the robot arm
should rotate the product horizontally to some degree as well as it should move the product
horizontally back and forth according to the side shape of the product towards the camera
in order to adjust the camera focus to acquire high quality images.
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Figure 2. The 3D representation of the 3D ball joint socket defect inspection hardware system.
LED—light-emitting diode.

According to the requirements of the project in question, the 3D ball joint socket
inspection system must inspect 5000 products per day. Thus, the time limit for the inspection
of each product must not exceed 6 s. To reduce the processing time of the inspection system,
we built an inspection system that uses a sequential inspection method. We used five 2D
cameras to inspect the entire surface of the products sequentially.

The whole process of our implemented inspection system begins when the product
is inserted into the equipment. Before starting the image acquisition process, a grabber
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installed on top of the object placement location moves the product to the next stage camera
for capturing. This process continues until the fourth camera finishes capturing the part
of the product. Afterwards, the industrial robot grabs the object and moves to the fifth
camera to complete the image acquisition process. Once the entire surface of the product is
acquired from the 2D industrial cameras, the product classification process begins. Finally,
the robot places the object onto the designated place based on the classification result.
The resolution of the camera is 2592 × 1944 (height × width) pixels, which acquires high
quality images. The first and second cameras acquire the top and bottom surfaces of the
object. The third camera captures the front part of the product while the fourth camera
acquires first the right front side of the product and then the left front side after rotating the
product 90 degrees anticlockwise. Finally, the robot hand grabs the product and moves it
to the fifth camera to capture the back side of the product, and then rotates it 90 degrees
anticlockwise to capture the right back side, and 180 degrees clockwise to acquire the left
back side of the product. When all acquired images from five 2D cameras are predicted
as non-defective by our convolutional neural network (CNN) with spatial and channel
attention (SCA), the robot arm puts the product into the good category, otherwise the
product is considered as defective. An example of product defect is shown in Figure 3.
Defect size is divided into three types, that is, small, medium, and large size defects are
1.5–3, 3–6, and 6–10 mm, respectively.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 20 
 

 

   
(a) (b) (c) 

Figure 3. Demonstration of 3D ball joint socket product defects and defect sizes. (a) Small defects—
1.5–3 mm, (b) medium defects—3–6 mm, (c) big defects—6–10 mm. 

4.2. Dataset Description 
To develop a robust defect inspection system utilizing deep learning (DL) algorithms, 

we must deal with a number of DL requirements. For example, the amount of training 
samples in each class should be a sufficient in order to learn and generalize the problem 
for the DL model. However, to solve computer vision challenges in industry, such as 
image classification and defect inspection, we must create our own dataset from scratch. 

We obtained the data from the 3D ball joint socket product inspection system in a 
factory environment. Of the collected data, 80% was used to train a model and the 
remaining 20% of the data was used to test model performance. The training data contains 
1014 non-defective and 734 defective samples. In the test data, there were 150 defective 
and 255 non-defective samples. A total of 2153 3D ball joint socket product images were 
used in the dataset. A detailed description of the dataset is given in Table 2. 

Table 2. Detailed description of the acquired 3D ball joint socket dataset. The dataset was divided 
into training and test sets with 80% and 20%, respectively. OK—non-defective products, NG—
defective products. 

Dataset Folders 
Class Names and Number of Images 

OK NG 
Train set 1014 734 
Test set 255 150 

Total 1269 884 

5. Experiments and Results 
5.1. Experimental Setup 

We developed our proposed model using TensorFlow open-source framework [34], 
and the Python programming language [35]. The developed model was trained on an 
NVIDIA GeForce RTX 3090 GPU which has 24 GB of graphic memory. The detail 
specifications of software and hardware are listed in Table 3. 

The 3D ball joint dataset is divided into 80% for training and 20% for testing. The 
training set was used to train our proposed convolutional neural network (CNN) with 
spatial and channel attention (SCA), the model and test set was used to verify the model 
performance after training. Training parameters were set as follows: input image 
dimension was 380 × 380 × 3 (height × width × channel), training iterations was set to 100, 
learning rate was set to 0.001, number of images in each batch was set to 128, and 
momentum was 0.99. The Adam optimization algorithm was used to optimize model 
parameters during training. The categorical cross entropy loss function was used to 
measure the prediction error of the model. 
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4.2. Dataset Description

To develop a robust defect inspection system utilizing deep learning (DL) algorithms,
we must deal with a number of DL requirements. For example, the amount of training
samples in each class should be a sufficient in order to learn and generalize the problem for
the DL model. However, to solve computer vision challenges in industry, such as image
classification and defect inspection, we must create our own dataset from scratch.

We obtained the data from the 3D ball joint socket product inspection system in
a factory environment. Of the collected data, 80% was used to train a model and the
remaining 20% of the data was used to test model performance. The training data contains
1014 non-defective and 734 defective samples. In the test data, there were 150 defective and
255 non-defective samples. A total of 2153 3D ball joint socket product images were used
in the dataset. A detailed description of the dataset is given in Table 2.
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Table 2. Detailed description of the acquired 3D ball joint socket dataset. The dataset was di-
vided into training and test sets with 80% and 20%, respectively. OK—non-defective products,
NG—defective products.

Dataset Folders
Class Names and Number of Images

OK NG

Train set 1014 734
Test set 255 150

Total 1269 884

5. Experiments and Results
5.1. Experimental Setup

We developed our proposed model using TensorFlow open-source framework [34],
and the Python programming language [35]. The developed model was trained on an
NVIDIA GeForce RTX 3090 GPU which has 24 GB of graphic memory. The detail specifica-
tions of software and hardware are listed in Table 3.

Table 3. Environment specifications used to develop and test models.

Software Specifications Hardware Specifications

OS: Windows 11 Pro CPU: Intel Core i7-9700CPU @ 3.00 GHz RAM: 32 GB
Tools: TensorFlow 2.6, Python 3.8 GPU: NVIDIA GeForce RTX 3090

The 3D ball joint dataset is divided into 80% for training and 20% for testing. The
training set was used to train our proposed convolutional neural network (CNN) with
spatial and channel attention (SCA), the model and test set was used to verify the model
performance after training. Training parameters were set as follows: input image dimension
was 380 × 380 × 3 (height × width × channel), training iterations was set to 100, learning
rate was set to 0.001, number of images in each batch was set to 128, and momentum was
0.99. The Adam optimization algorithm was used to optimize model parameters during
training. The categorical cross entropy loss function was used to measure the prediction
error of the model.

5.2. Evaluation of Model Testing Performance

Generally, classification model performance is measured using statistical metrics, such
as confusion matrix, classification accuracy, precision, recall, and F1 score. Statistical metrics
are computed from the model prediction and ground truth labels. A detailed descriptions
of these metrics are described below.

True positive (TP) indicates the number of correctly predicted positive data samples.
False positive (FP) indicates the data samples which the model predicted as positive but
they belong to the negative class. True negative (TN) shows the number of samples for
which model prediction and actual class labels are matched. False negative (FN) indicates
that the predicted values of the model are negative, while actual class values of the samples
are positive.

Accuracy =
TP + TN

TP + FP + FN + TN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1− score =
2× TP

2× TN + FP + FN
(11)
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Accuracy is the percentage of correctly classified objects. It can be defined as the ratio
between the number of correctly predicted samples to the total number of samples. The
accuracy factor is not enough to measure the performance and efficiency of a model. Hence,
additional measurement factors are used, such as precision in Equation (9), which is a
proportion of all correctly predicted positives to all predicted positives. Precision reflects
how reliable the model is in identifying positive samples. Recall in Equation (10) indicates
the proportion of all correctly predicted positives to all real positives. Recall measures
the model’s ability to detect positive samples. F1-score in Equation (11) will give us the
harmonic mean of precision and recall. We can think of it mathematically, F1 score is the
weighted average of precision and recall.

5.3. Experimental Results

Our proposed classification framework is practically evaluated using the test set of
the 3D ball joint socket dataset to demonstrate the model efficiency and robustness. We
developed four different CNN models in order to evaluate the proposed CNN with spatial
and channel attention (SCA). We conducted experiments to classify the 3D ball joint socket
product into defective and non-defective classes. The prediction performances of all four
CNN models are shown in Figure 4.
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Figure 4. Classification performance comparison of our developed CNN models. All CNN models
were trained to classify the 3D ball joint socket product into defective and non-defective categories.

The first CNN model (Figure 4, model-1) consists of the feature extraction block
(FEB) and the fully connected network (FCN). This model used as the baseline model for
analyzing the effectiveness of other CNN models together with attention modules. The
second model (Figure 4, model-2) was built using FEB and channel attention (CA) followed
by FCN. This model was developed to verify the effectiveness of the CA mechanism. The
third model (Figure 4, model-3) has the same design as the second model, but CA has been
replaced by spatial attention (SA). Finally, to determine if CA and SA features complement
each other when combined, we developed the CNN model (Figure 4, model-4) using the
FEB and SCA, followed by the FCN.

The primary purpose of the last model is to analyze and represent the effectiveness
of the SCA module when it is all combined. The output from the model are the class
probabilities taken from the SoftMax layer. The final model prediction class was determined
based on the class with the highest prediction probability. Following that, an accuracy score
was computed using the final predicted class and the original labels. We can see from the
results that SA features in model-3, provided better classification accuracy compared with
CA features in model-2. This implies that SA features are more efficient than CA features
in the task of 3D ball joint inspection. The results of model-4 indicated the efficiency of
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the SCA module for product classification using input images. The highest performance
was achieved using the proposed model-4 among the other CNN models, which indicates
that the combination of the SA and CA modules together with FEB and FCN in the CNN
models is significant for obtaining high accuracy. The confusion matrix for classification
of products into non-defective (OK) and defective (NG) categories is given in Figure 5.
The results were obtained from the model predictions and the actual labels for the 3D ball
joint socket test dataset. The best accuracy of 99% was achieved in the OK class and 97%
classification accuracy was achieved for NG class. Table 4 presents the statistical factors
obtained from the model prediction for defect classification using test data. The highest
precision value achieved 98%, recall, and F1-score values achieved 99%, respectively. The
average classification accuracy was achieved at 98%.
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Table 4. A classification report of the proposed CNN model with SCA to demonstrate preci-
sion, recall, F1-score, and accuracy results. OK and NG indicate the non-defective and defective
samples, respectively.

Class Category Precision Recall F1-Score Number of Images

OK 0.98 0.99 0.99 255
NG 0.98 0.97 0.98 150

Accuracy 0.98

6. Discussion and Comparative Analysis

Defect inspection of industrial products requires specific inspection methods depend-
ing on factors such as product material, product shape complexity, and defect types. When
the product material is shiny metal, light reflection will be the first issue in developing a
product inspection system. Defect type, such as small or tiny defects, makes the defect
inspection task challenging. Moreover, product shape complexity is one of the main factors
to consider in choosing the right algorithm for product inspection. Various works have
been conducted on surface inspection algorithms [36–39]. The majority of the developed
inspection algorithms attempt to detect defects on the product’s surface. Furthermore, the
shape of 3D industrial products is typically complex, creating a variety of challenges that
require a unique approach to solve problems. To efficiently inspect the defects of 3D ball
joint socket products, we developed a new method that uses five 2D cameras to capture all
the inspection surfaces of the product as shown in Figure 2. There are two main advantages
of the proposed method: (a) 2D cameras are significantly cheaper than 3D cameras. As a
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result, the cost for developing an inspection system will be reduced, (b) the processing time
of 2D images is considerably short compared to 3D camera data. Consequently, the speed
of the inspection system will be increased significantly. Inspection time in our system is six
seconds for a single product using 2D industrial cameras.

Lighting effects of the captured image from the camera depend on factors such as
outside lights source and product material. The material of the 3D ball joint socket is metal
and some parts of the product have high light reflectance compared to other parts as shown
in Figure 6. Thus, light reflection from the product will not be the same in all parts of the
product. Therefore, balancing the light source and intensity will be the issue. When the
intensity of the light source is high then light reflection from the shiny parts of the product
will be high compared to less light-reflective parts. If the light source intensity is low, then
capturing the less light-reflective parts of the product will be difficult. In both conditions,
detection of the product defects will be very hard. To solve this issue, first we reduced the
light intensity to a certain value to make sure that there is no light reflection from the shiny
parts of the product. Second, we applied the gamma correction method in order to increase
the brightness of the captured image. After applying gamma correction, all parts of the
product will be clearly visible without any light reflection.
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The performance of the product defect inspection system is reliant on various factors
such as defect type and inspection algorithm. Small defects of the product (Figure 3a) make
the defect inspection challenging. To efficiently detect small defects every step from the
selection of good quality cameras to the final decision-making algorithm in the inspection
process needs to be developed correctly. To inspect the 3D ball joint socket, five cameras
capture different parts of the product with different size. The next step is resizing different
sized images into the same size to process in the defect detection algorithm. Choosing
the right size for the resized image is crucial to increase the performance of the inspection
system. Figure 7 shows the resized image size impact on the small defect of the 3D ball
joint socket. Resized image quality becomes noticeably poor when the difference between
the original image and resized image size is quite big (Figure 7a). As a result, small defects
of the product almost disappear in the resized image and make the defect detection task
much harder. Two main factors were considered when choosing the right resized image
size, namely, the recognition rate of the defect inspection algorithm and computation
resources. Image size of 380 × 380 (height × width) (Figure 7b) was selected from the
extensive experiments which maintains the balance between the model performance and
computation resources.
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For the purpose of accurately separating defect products from good quality products,
we developed the convolutional neural network (CNN) consisting of convolutional, max
pooling, and fully connected layers. Our CNN model without spatial and channel attention
(SCA) (Figure 4 model-1) achieved 80% average accuracy rate on testing data. Even though
this model detected medium and big sized defect types (Figure 3b,c), it cannot detect most
of the small defects (Figure 3a) on the product, because this model processed all extracted
feature maps with equal importance to the target. To fix this issue, we developed a CNN
with channel attention (CA) mechanism (Figure 4, model-2). Channel attention is located
between FEB and FCN. The main function of channel attention is learning the importance
of each feature map to the target during training. Model-2 achieved 85% average accuracy
rate which is 5% higher compared to model-1. Even though the CNN with CA detected
small defects with higher accuracy than model-1, there was still misclassification of small
defects of the product. That is because the CA selects only important feature maps among
all extracted feature maps; however it does not pay attention to which areas of the selected
feature maps are important. To increase the recognition rate of small defects, we developed
a CNN with spatial attention (SA) mechanism (Figure 4 model-3), and CA was replaced
with SA. One of the main reasons that SA improves the recognition rate of small defect
types is that it learns to find the most important part of the extracted feature map to
the target. Model-3 detected defects with 91% average accuracy rate which is 11% and
6% higher than model-1 and model-2, respectively. From the experiments, it was clear
that both CA and SA increased the performance of the CNN. In order to know whether
CA and SA complement each other or not, we developed the CNN model with SCA
(Figure 4, model-4). Model-4 classified defect and good products with average 98% accuracy
rate. Model-4 achieved 18% higher classification accuracy than model-1. Experiments
proved that CA and SA mechanisms complemented each other and increased the detection
rate of defect products. Model-4 was used in a 3D ball joint socket defect inspection system
and deployed to the factory for automatically inspection of defective products.
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Moreover, to analyze our model performance with other existing methods we com-
pared our CNN model with SCA with two different attention mechanisms and pre-trained
CNN models using the 3D ball joint socket dataset. The result of comparing the perfor-
mance of the proposed model and other existed methods is shown in Figure 8.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 20 
 

 

selects only important feature maps among all extracted feature maps; however it does 
not pay attention to which areas of the selected feature maps are important. To increase 
the recognition rate of small defects, we developed a CNN with spatial attention (SA) 
mechanism (Figure 4 model-3), and CA was replaced with SA. One of the main reasons 
that SA improves the recognition rate of small defect types is that it learns to find the most 
important part of the extracted feature map to the target. Model-3 detected defects with 
91% average accuracy rate which is 11% and 6% higher than model-1 and model-2, 
respectively. From the experiments, it was clear that both CA and SA increased the 
performance of the CNN. In order to know whether CA and SA complement each other 
or not, we developed the CNN model with SCA (Figure 4, model-4). Model-4 classified 
defect and good products with average 98% accuracy rate. Model-4 achieved 18% higher 
classification accuracy than model-1. Experiments proved that CA and SA mechanisms 
complemented each other and increased the detection rate of defect products. Model-4 
was used in a 3D ball joint socket defect inspection system and deployed to the factory for 
automatically inspection of defective products. 

Moreover, to analyze our model performance with other existing methods we 
compared our CNN model with SCA with two different attention mechanisms and pre-
trained CNN models using the 3D ball joint socket dataset. The result of comparing the 
performance of the proposed model and other existed methods is shown in Figure 8. 

 
Figure 8. Proposed model performance comparison with existing methods. Squeeze-and-excitation 
networks (SEB) [40], self-attention generative adversarial networks (Self-A) [41]. 

Squeeze-and-excitation block (SEB) [40] squeezes the learned feature maps in order 
to gather global spatial information to form a channel descriptor. Global average pooling 
operation is used to obtain channel-wise statistics. Two fully connected layers are used to 
learn the hidden relationship between feature map channels and a sigmoid activation 
function is used to give the importance score for each feature map channels. These learned 
important scores are multiplied with the input feature map to form channel-wise attention 
feature maps. As a result, the network learns to give different importance scores for each 
extracted feature map instead of considering every feature channel with equal 
importance. Thus, this model gave 91% average classification accuracy which is 11% 
higher than our model-1 because of additional SEB attention. However, only SEB attention 
is not good enough to inspect defects with high precision because it only tries to learn 
channel-wise attention. It lacks capturing spatial importance. 

The convolution operation processes the information in a local neighborhood 
because of the small receptive field. It lacks modeling long-range information in the 

Figure 8. Proposed model performance comparison with existing methods. Squeeze-and-excitation
networks (SEB) [40], self-attention generative adversarial networks (Self-A) [41].

Squeeze-and-excitation block (SEB) [40] squeezes the learned feature maps in order
to gather global spatial information to form a channel descriptor. Global average pooling
operation is used to obtain channel-wise statistics. Two fully connected layers are used
to learn the hidden relationship between feature map channels and a sigmoid activation
function is used to give the importance score for each feature map channels. These learned
important scores are multiplied with the input feature map to form channel-wise attention
feature maps. As a result, the network learns to give different importance scores for each
extracted feature map instead of considering every feature channel with equal importance.
Thus, this model gave 91% average classification accuracy which is 11% higher than our
model-1 because of additional SEB attention. However, only SEB attention is not good
enough to inspect defects with high precision because it only tries to learn channel-wise
attention. It lacks capturing spatial importance.

The convolution operation processes the information in a local neighborhood because
of the small receptive field. It lacks modeling long-range information in the images. The
self-attention (Self-A) mechanism [41] helps the convolution operation to model long-range
information by attending to all spatial regions of the input image. The self-attention module
computes attention value at a specific location as a weighted sum of the spatial features at
all positions. When the convolution operation is combined with the self-attention module,
the neural network has the ability to process information not only with local receptive
field but also paying attention globally. As a result, when we added Self-A block to our
model-1 architecture, it recognized defect products with 9% higher accuracy rate compared
to model-1. Although this attention mechanism lacks ability to capture channel-wise
importance in the extracted feature maps during processing, our proposed CNN with SCA
model outperformed all other models.

We fine-tuned the pretrained Resnet50 [42] and EfficientNet-B4 [43] CNN models and
tested them using the 3D ball joint test dataset. The results of the pretrained CNN models
were 92% and 94%, respectively. We also compared processing time as shown in Figure 9a,
and number of parameters of each model as shown in Figure 9b. The classification accuracy
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of both pretrained CNN models was over 90% for the 3D ball joint test dataset because these
pretrained networks were well designed for the task of image classification and proved
their efficiency in ImageNet [44] dataset. However, it is hard to apply them in real time
inspection processes because of their large number of parameters and long processing time.
Figure 10 shows the final defect inspection system deployed at the factory.
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7. Conclusions

In this work, we developed and proposed a defect inspection system that uses a 2D
convolutional neural network (CNN) with spatial and channel attention (SCA) mechanisms
to efficiently classify 3D ball joint socket products into defect and good categories. In our
developed system, five 2D industrial cameras were used to capture all parts of the 3D shape
product in order to detect defects in a product. Gamma correction is applied to all captured
images before feeding to the CNN with SCA. The main purpose of gamma correction is to
fix the issue of light reflection from the product surface. During the development process of
defect inspection system, we developed and experimented with four different CNN models
to accurately classify defective and good quality products. The CNN model with SCA
achieved 98% average testing accuracy rate which was the highest among other developed
models. The rest of the models detected big and medium sized defect types with high
accuracy, however, the recognition rate on small defect types was low. Additionally, in
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order to analyze proposed model performance, we compared model accuracy, parameters,
and processing time with other attention mechanisms and pretrained CNN models. As a
result of comparison attention mechanisms, such as squeeze-and-excitation block (SEB) and
self-attention mechanism (Self-A), shows lower accuracy comparing to pretrained CNN
models and the proposed CNN model with SCA. Although the pretrained CNN models
achieved over 90% accuracy, it is hard to apply these models in fast real-time processing
due to their large number of parameters and long processing time. Our proposed CNN
model with SCA extracts useful features from the input image using a feature extraction
block (FEB), and then channel attention detects the most relevant feature maps for the
target while spatial attention finds the most important regions in the extracted feature map
for the target, and then both attention features are combined to make a robust feature vector
as well as detect defective products. Our proposed model detected defective products with
97% accuracy rate, while the recognition rate of good products was 99%.

In the future, we will collect more defective samples from the factory during the
production and processing in our developed system. With efficient data samples, we will
retrain and improve the recognition rate of our proposed model.
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