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Abstract: The transport processes of marine suspended sediments are important to the material cycle
and the shaping of seafloor topography. Existing sediment monitoring methods are limited in their
use under high concentration conditions, and are not effective in monitoring and capturing sediment
in 3D directions, and there is an inability to accurately explain sediment transport processes. To
infer the transport process of suspended sediments, this study proposed a time-series vector in situ
observation device. An accompanying time-series analytic method was developed for sediment
transport fluxes. The correlation between the internal and external flow velocities of the capture tube
was established through indoor tests, and then the applicability of the device was verified by the
correlation between the theoretical capture quality and the actual capture quality, and the analytic
formula of the flux was refined. The proposed observation technique can be used for in situ long-term
observation and sampling of marine suspended sediments under conventional and even extreme sea
conditions, achieving accurate time-series suspended sediment capture and high-resolution transport
flux analysis. The technique thus provides a more effective means for scientific research into the
dynamics of seafloor sedimentation, the mechanisms of ocean carbon sinks, and the processes of the
carbon cycle.

Keywords: marine suspended sediments; transport processes explanation; accompanying transport
fluxes analytic formula; time-series vector

1. Introduction

Large river estuaries transport large amounts of sediment to the ocean each year [1,2].
These marine sediments are deposited far from the estuary and distributed deep into the
oceans. Their transport processes and pathways have important effects on the environment
and evolution of estuarine and marine landscapes [3,4].

Sediment transport mechanisms and flux changes are an important part of the current
international sediment source-to-sink research program, where riverine sediments undergo
complex dynamics in the seafloor boundary layer and generate multiple types of seafloor,
sediment flow, and dispersion forms [5–10]. Research into the resuspension and transport
of sediments due to ocean dynamics usually relies on in situ observations synchronized
at multiple stations, which are costly and unable to describe the transport process. The
mechanisms of ocean carbon sinks and the carbon cycle have received international atten-
tion with the proposal of the concept of “carbon peaking and carbon neutrality.” Coastal
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areas bury 80% of continental organic carbon and account for one quarter of global ocean
primary production. When ocean sediments are re-suspended, the buried carbon particles
are re-released into seawater. At a local or regional scale, the geomorphological dynamics
of river basins and coastal zones resulting from erosion, transport and deposition of par-
ticles, and the associated transport of nutrients and contaminants, require investigating
sediment transport. The lack of effective means and methods for observing carbon particle
resuspension has made it difficult to calculate the carbon fluxes released from the seafloor
to seawater, which has hindered the development of research on global ocean carbon sink
mechanisms [11–14].

Methods commonly used in marine sediment observation include in situ sampling,
satellite remote sensing, moored sediment traps, and in situ observation from seated
platforms [15–17].

In situ sampling can directly obtain field samples and accumulation status, which can
provide an overall understanding of the concentration of suspended sand in a certain area
and facilitate direct analysis of the spatial distribution of sediments with real reliability.
However, the method is cumbersome and inefficient and cannot be monitored continuously
in real time; only scattered turbidity data can be obtained, and peak data may be lost
in the observation, which does not allow for detailed study of the dynamic processes of
suspended sediment [18].

Remote sensing technologies can provide global coverage of surface land and water
regions over the whole Earth’s surface; hyperspectral remote sensing as a proven technology
can be used in identifying and mapping spectrally active materials in applications. Numerical
models gained an acceptable level of representativeness to be new a model involved in co-
hesive sediment transport process studies and hydro- and geo-sciences phenomena [19–23].
The sediment transport model can be calibrated and validated by observed hydrological data
and remote sensing results, to investigate the impacts of the sediment, including sediment
movement, sediment source, dispersion range, transport direction, and sand content inter-
pretation of water bodies [24–26]. However, the numerical modeling of sediment transport
is prevented from achieving a high level of predictability by the difficulties in estimating
poorly known model parameters. Furthermore, the satellite remote sensing is only suitable
for macroscopic monitoring of large areas; it has limited ability to estimate the suspended
sediment concentration at certain water depths, and it cannot accurately monitor the sediment
transport process in the benthic boundary layer, making it difficult to further investigate the
causal factors and mechanisms of sediment transport [27].

Anchor sediment traps are a commonly used direct measurement tool, and they
were first used in studies of seafloor organic matter transport and ocean carbon sinks [28].
Sediment traps are divided into vertical sediment traps and horizontal sediment traps.
The vertical sediment trap is capable of in situ collection of naturally deposited particu-
late matter within a certain area of the water. In the field of marine geology, sediment
traps are commonly used to carry out research on sediment dynamics and erosion and
siltation processes. By collecting sediments that settle from top to bottom, a sediment
deposition sequence is formed, and subsequently physicochemical indices, such as parti-
cle size composition, mineral composition, and chemical composition, are obtained in
indoor experiments. These conventional traps with upward openings can be used to
study the nature of settling sediment debris with multi-layered ocean fluxes, but they
cannot be used to examine the impact from horizontal sediment transport [29,30]. In
terms of horizontal traps, such as a pressure-difference bedload sampler, portable traps,
streamer sediment trap, and cage-shaped sediment trap can capture sediments that
are transported horizontally. However, conventional traps that can perform horizontal
sediment measurements fail to resolve the temporal and spatial variability of sediment
transport fluxes and cannot effectively analyze the transport mechanisms of marine
suspended sediments [31–34].
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As the most important indirect estimation method of the sediment transport process,
the sit-down observation platform allows the researcher to choose the type of instrument
on board, such as an optical back scattering sensor (OBS), acoustic back scattering sensor
(ABS), laser particle analyzer (LPA), or acoustic doppler current profiler (ADCP). The
researcher can indirectly estimate the suspended sand concentration through the acoustic
and optical equipment on board, but this method cannot be used to directly capture and
analyze sediment samples [35–38].

The following Table 1 is a comparison of the mainstream monitoring techniques for
sediment transport processes.

Table 1. Comparison of mainstream monitoring technologies for sediment transport processes.

Monitoring
Technology Category Range Precision Timeliness Samples Platform

sample
measurement

No
restrictions low low Single

sample yes

OBS low high high no yes
ABS low high high no yes

ADCP low high high no yes
satellite remote

sensing
No

restrictions low high no yes

sediment traps No
restrictions high high Complex

samples no

From field investigations, it has been found that some extreme sea conditions such as
storm surges, which carry large amounts of sediment deposits and produce high concen-
trations of mudflows on the seafloor, cause significant erosion of the shoreline and play a
major role in controlling the transport of seafloor sediments [39–42]. These extremes have
greatly increased the difficulty of accurately observing sediment transport and affected
the analysis of sediment transport mechanisms and stratigraphic records [43–45]. New
horizontal traps are limited to shallow areas or areas with low flow velocities, and so they
cannot be used for observation in extreme environments. The seated-bottom observation
platform is ineffective in extreme environments with extremely high turbidity, complex
species, and rapid changes, such as storm surges, due to the restrictive range and operating
principle of various observation instruments.

No technical means exist to effectively combine the advantages of a seated-bottom
observation platform and a sediment trap, which would allow for time-series vector
observation of sediment transport at high suspended sand fluxes and for the capture of
sediment samples for indoor analysis. This paper proposes a time-series 3D sediment trap
for monitoring transport fluxes (3D trap). It is an in situ sediment trap for marine suspended
sediments. The study also establishes an analytic formula for a multi-level sediment
transport flux time series based on flow velocity and suspended sand concentration.

The 3D trap facilitates long-term in situ monitoring of marine suspended sediment
transport fluxes under extreme sea conditions. It is therefore complementary to the current
mainstream indirect and low-concentration observation methods, such as acoustic and optical
methods. Complemented by indoor experimental analysis of sediment samples obtained at
each moment, the 3D trap enables the physical and chemical properties of sediments to be
obtained to complete in situ, long-term, 3D, and dynamic observation of marine suspended
sediment transport mechanisms. It can also reveal the spatial and temporal distribution
characteristics of marine sediment transport processes and their controlling factors. Moreover,
it can be used to explain the dynamic evolution mechanism and characteristics of transported
sediments in a quantitative manner. Furthermore, it gives the key dynamics of scientific
research processes such as erosion and siltation, material transport, and elemental cycling,
and so on. It also provides a new perspective and technical means for the study of sediment
from source to sink and the reduction of the marine carbon sink mechanism.
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2. Design of the 3D Trap
2.1. Structural Design

The 3D trap is different from vertical sediment traps. Its main structure consists
of a sediment-trapping system, observation system, control cabin, platform frame, and
subsidence-compensation system. The bottom of the 3D trap is a circular sit-down observa-
tion platform with a penetrating pin that can be inserted into the seabed after being placed
on the seafloor to ensure the stability of the whole system and facilitate sediment capture
from multi-directional transport sources on the seafloor. The Schematic of 3D trap is shown
in the Figure 1.
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Figure 1. Schematic of the 3D trap.

As shown in Figure 1, the 3D trap includes three suspended sand traps with equal
depth gradient distribution in all four directions of the observation base. In the center of
the base is a control module, which includes an acquisition controller, nine-axis sensing
components (triaxial accelerometer, triaxial gyroscope, triaxial magnetometer), a wave
and tide meter, and a battery pack for storing and reading monitoring data or sensing the
attitude and orientation of the base. The weight of the connection between the base and the
suspended sand trap is adjustable. The trap is equipped with an adjustable weight and
center of gravity. It relies on the operating vessel for deployment.

Figure 2 shows the suspended sand-capture pipe, including a water flow pipe and a
sinker pipe. The front end of the water flow pipe has a horizontal water inlet; the rear end
has a vertical downward outlet. The vertical outlet was set downward to ensure that the
turbidity flow does not return by gravity after flowing through the capture tube, and the
vertical capture tube wall blocks the reverse turbidity flow so that it does not back up the
capture tube. The middle of the water flow pipe is fitted with a sediment-filter screen tilted
in the direction of the inlet. The sinker is fixed vertically below the screen, sealed at the
bottom and open at the top, and connected to the water flow pipe.

2.2. Sensors

The sensors in the 3D trap include a current meter and a turbidimeter. The current
meter is used to monitor the average velocity vector values of the flow field inside the
device. Other functions have not yet been considered. There are various requirements for
the current meter: it needs to be relatively small and portable so that it can be installed
inside the device; it needs to have a self-contained monitoring system to store long-term
in-situ monitoring data; it needs to be high-pressure resistant so that it can be placed in the
subsea boundary layer; and it must be able to provide continuous monitoring. It is proposed
that the device use the JFE brand INFINITY-EM small self-capacitating electromagnetic
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current meter. Its indicators meet the monitoring requirements and have high suitability
for the whole device.
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Figure 2. Structure of the capture tube.

The turbidimeter is used to monitor the turbidity of sediment carried by the internal
flow field of the device. Other functions have not yet been considered. The turbidimeter
needs to be small and portable; it must include a self-capacitating monitoring system;
it should be resistant to high pressure; and it should provide monitoring continuity. It
is proposed that the device use the RBR brand RBRsolo3 Tu miniature turbidimeter. Its
indicators meet the monitoring requirements and have a high fit for the whole device.

These sensors will continue to be updated, and the sensors will be continually selected
for optimal solutions to ensure that the requirements of the in-situ long-term monitoring
device are met.

2.3. Analytic Formula for Sediment Transport Fluxes

Based on the catcher design, the sediment screen can intercept the sediment that is
flowing through the flow pipe and toward the settling pipe for deposition by the force of
gravity. The principle of action is shown in Figure 3.

Each direction of the trapping system includes three trap ports at different elevations.
These are used to collect suspended sand from different layers in the respective direc-
tion. The suspended sediment transported by the water through the observation point in
different directions at different levels is then captured in a 3D manner.

With a current meter and a turbidimeter inside the current tube, the suspended
sediment concentration SSC(d,h,i) and velocity Vc(d,h,i) of the water flowing through the
current tube can be continuously collected and recorded during the observation period.
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An analytic formula can be established for the sediment transport flux based on flow
velocity, the suspended sand concentration at the trap mouth, and the total amount of
sediment captured by the trap:

Q(d,h,t) =
1

S× k ∑t
i=t−k Vc(d,h,i) × SSC(d,h,i) (1)

where d is the sediment transport direction, h is the depth from the bottom, t is the correspond-
ing moment, k is the time interval, S is the opening area of the suspended sand-capture tube,
Vc is the flow rate in the tube, and Q is the flux of sediments at different d, h, t.

Because this is a new method proposed by the author, the method can be considered
applicable from low-flow, low turbidity to high-flow, and high turbidity waters where
laterally transported sediments can be captured by the device. In addition, the use of the
analytical method is based on certain assumptions, as shown in the assumptions in Table 2.

Table 2. Assumptions table.

Factors Assumptions

Flow Rate Controlled by protective curtain within measurable interval
Turbidity Continuous inside and outside the capture tube

Space Plenty enough to ensure that the device does not seriously
affect the flow field

Sediment
particle size Most particle sizes larger than the selected screen aperture

Capacity Sufficient for long-term in situ monitoring

2.4. Research Methodology

A flowchart of the methodology is given here to see the overall research idea more
clearly. As shown in the Figure 4.
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3. Experimental Evaluation

To test the feasibility of the device’s design and analytic formula, laboratory flume
simulation experiments were conducted. The aim of these experiments was to establish
and refine the quantitative relationship between sediment flux analysis (based on flow rate
and suspended sand concentration) and captured sediment samples to verify the device.
The tests mainly verified the rationality of the structure of Figure 3, and when considering
the feasibility of the complete unit, only additional verification of the effect of the overall
unit on the flow field is needed.

After the experimental scenario was set up with the relevant equipment, the calibration
of the relationship between turbidity and suspended sand concentration was performed
to determine the conversion between the turbidimeter parameters and the experimental
parameters. Since the internal flow velocity of the equipment could not be measured directly
in the experimental test phase, the external iso-gradient flow velocity was measured instead.
Given the influence of the equipment structure on the difference between the internal and
external flow fields, the quantitative relationship between the two was verified by a water
tank test. After determining this relationship, the test was continued by adjusting the
flow rate and capturing several sets of samples. The capture mechanism of the water tank
device was verified by checking the sample volume, and the flux resolution equations were
refined by comparing the captured sample weights with the theoretical calculated values.
During this phase, indoor model tests were performed to ensure that parameters such
as the capture tube’s height-to-diameter ratio, roll-up area, mesh tilt, mesh aperture, and
head-on angle were consistent.

3.1. Experimental Layout

An indoor multi-stage recirculating flow-generating tank was used (Figure 5) [46]. It was
made of acrylic material with a thickness of 1 cm, and the joints were reinforced with steel plates
and coated with epoxy resin. The tank had dimensions of 180 cm (L)× 110 cm (W)× 50 cm (H).
Inside the tank were a flow-generation system and a scouring system. The flow-generation system
consisted of a rotating motor and its flow-generation paddle, which can control the simulated
scouring flow rate (0–50 cm/s). The scouring system consisted of a flume channel, a capture-tube
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placement tank, and an earth tank. Both tanks were 50 cm (L)× 40 cm (W)× 50 cm (H), and the
opening area of the capture tube was 8 cm× 8 cm.
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The measurement system consisted of a portable flowmeter and a turbidimeter (RBR
Canada/XR-620CTDTu). The measurement sensor of the flow meter and the OBS probe of
the turbidity meter were fixed directly above the bed of the sink in front of the opening
of the capture tube. They were used to measure the real-time changes of flow rate and
turbidity outside the capture tube.

The equation proposed by Qin [47] for calculating the starting flow rate for each
particle size of non-uniform sand is as follows:

Uc√
γs−γ

γ gD
= 0.963

√
0.67 +

Dm

D

(
h

D90

)1/6
(2)

where Uc is the starting speed of sediment particles, γs is the unit weight of sediment particles,
γ is the unit weight of water, D is the sediment particle size, Dm is the average particle size,
D90 is the 90% of the particle size distribution number, and h is the water depth.

After a series of processes such as drying in a dryer, sieving soil in a vibrating sifter,
weighing on an electronic scale, and analysis by a particle size analyzer, we finally obtain
standard soil particles with an average particle size of 0.21 mm in the range of 0.15 to 0.25 mm.
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Since the particle size floating range was small at this time, the difference relationship between
its concentration inside and outside the capture tube can be ignored for the time being.

The water depth in the water tank was set at 13 cm. The speed of the flow in the water
tank was controlled between 10 cm/s and 40cm/s. The filter mesh aperture was set at
100 mesh (0.15 mm), and so the particle size was between 0.15 mm and 0.25 mm. The test
was carried out with five groups of flow rate of 15 cm/s, 20 cm/s, 25 cm/s, 30 cm/s, and
35 cm/s, and the parameters are set as shown in Table 3.

Table 3. Control of experimental conditions.

Experimental Factors Experimental Setup

Speed (cm/s) 15 20 25 30 35
Particle size (mm) 0.15~0.25 0.15~0.25 0.15~0.25 0.15~0.25 0.15~0.25

Screen pore size (mm) 0.15 0.15 0.15 0.15 0.15
Depth (cm) 13 13 13 13 13

3.2. Calibration of Turbidity in Relation to Suspended Sand Concentration

The equation to convert turbidity to suspended sand concentration was obtained by
an indoor calibration experiment. First, five groups of different masses of particulate matter
were selected and added to a fixed volume of water with sufficient stirring to prepare a
sequence of suspensions with increasing concentrations. The sensor was connected to the
matching Ruskin software via a USB cable, and the acquisition time and frequency of the
sensor were set up. The software was set to record the turbidity change of the water body
with a sampling frequency of 3 s each time. The turbidity of the suspension was measured
by using a turbidimeter to obtain four sets of corresponding data, and the data obtained
were compared with the known concentration of suspended sand, the results are shown in
Figure 6. A linear relationship between SSC and NTU was currently know [46], and the
relationship between the two is as follow:

NTU = (232.8± 6.6)SSC (3)
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3.3. Internal and External Flow-Rate Comparison Test

Given the small diameter of the capture tube, the internal capture screen, and the bend
structure at the end, the external flow field changes negligibly when flowing through the
capture tube. A screen of suitable pore size was installed at an angle inside the capture
tube to ensure that all sediments were trapped. There was a large difference between the



Sensors 2022, 22, 4137 10 of 16

internal and external flow rates, which causes a serious deviation from the actual catch in
the transport flux analysis by substituting external flow rates. A set of experiments was
therefore conducted to compare the internal flow velocity of the device with the external
flow velocity.

A single-point mechanical LB50-1C rotating cup flow meter was used to design and
process an opening at the top of the capture tube model, and the flowmeter measuring
probe was placed directly above the sink tube and sealed with an acrylic plate clamp and
waterproof tape to measure the flow velocity of the water body above the sink tube.

The experiments involved the following steps: Start the annular water flume, adjust
the flow rate in the flume by adjusting the speed of the flow-making paddle, and record
multiple sets of internal and external readings of two flowmeters at the same time to obtain
the relationship between the two, as shown in Figure 7. The relationship after fitting is as
follow, R2 = 0.994:

Vout = (0.0643± 0.0034)Vin +
(
−6.0377e−4 ± 1.0089e−4

)
Vin

2 (4)Sensors 2022, 22, x FOR PEER REVIEW 11 of 17 
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Figure 8 shows that the internal and external flow velocities are positively correlated in
general, and the difference between them gradually increases as the flow velocity increases.
The modified indoor test confirms that the flux equation is as follows:

Q(d,h,t) =
1

S× k ∑t
i=t−k [(0.0643± 0.0034)V′

c(d,h,i)
+
(
−6.0377e−4 ± 1.0089e−4

)
V′

c(d,h,i)
2]× SSC(d,h,i) (5)

V′
c(d,h,i)

is the external flow rate of the device; that is, the actual measured flow rate of the test.

3.4. Experimental Test of the Calibrated Sediment Transport Flux Formula

After all the preparatory tests were completed and the expected results were obtained,
the water tank test was conducted to verify and refine the analytic formula:

Q(d,h,t) =
1

S× k

t

∑
i=t−k

Vc(d,h,i) × SSC(d,h,i) (6)

The flume was laid out and the position of the trap was adjusted so that the head-on
flow of the trap tube faced the flow field. The sink tube was placed inside the flume at the
rear of the soil flume. The flow meter was fixed in front of the mouth of the trap tube by a
fixed device so that the rotor was located at the center of the trap tube. The turbidimeter
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was set in front of the flow meter, and also positioned at the center of the trap tube. The
experimental set up is shown in Figure 9.
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Figure 9. Flux analysis test.

After the tank was filled with water, the flow-making paddle was started. The flow rate
at the location of the capture tube was controlled at 15 cm/s, 20 cm/s, 25 cm/s, 30 cm/s, and
35 cm/s. A relatively constant state of turbidity was maintained to keep the flow rate constant
for 10 min. The moment when the specified flow rate started and ended was recorded. The
data from the turbidimeter is exported, the turbidimeter display for the corresponding time
period is found by the previously recorded start moment of the flow meter, and the integration
is performed for that time period. At the end of each collection, the capture tube was taken out
and left to stand for 3 min, and the tube was then removed to collect the deposited particles.
Three sets of parallel control tests were set up at each flow rate to obtain 15 sets of samples.
All samples were filtered, dried, and weighed on an electronic tray to obtain the weight of
fifteen sets of samples at five flow rates.

The turbidimeter was connected to the computer to upload the data for analysis. One
set of results is shown in Figure 10, where each group of data is collected from 0 to the end
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of 10 min time. We calculated the turbidity for the corresponding time period and obtained
the total turbidity value for that time period.
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After measurement, the theoretical value was compared with the actual catch value,
and the result is shown in Figure 11. The correspondence is as follow, R2 = 0.9975:

y = (1.059± 0.124)x− (0.008± 0.007)x2 (7)
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The theoretical capture quality corresponds well with the actual catch value, thus
confirming the validity of the analytic formula for sediment transport fluxes.

3.5. Discussion

The article first proposes a device, and then gives the structure diagram and design
idea of the device, as well as the supporting analytic: Formula (1) for sediment transport
fluxes. The conversion relationship between turbidity and suspended sand concentration
of the turbidimeter used was carried out by indoor tests, and the relationship is seen in
Formula (4). Finally, the validation test of the analytic formula was carried out, and the
analytic Formula (7) was verified and refined by comparing the theoretical capture quality
calculated by the analytical flux formula with the actual capture quality.

In the process of field application, the device needs to be used in extensive waters
because of its large size, which will have a serious impact on small space waters; since the
device can only capture sediment in a horizontal direction and in a fixed direction, it is
necessary to first detect the capture area and then deploy the device according to the needs
of engineering/research. Since the capture of the device relies mainly on the interception of
the screen, it is impossible to capture all the sediments, so the selection of the screen needs
to be based on the detection results and engineering/research needs; since the capture
capacity of the device is limited, the protective curtain needs to be adjusted continuously
during the capture process to control the cross-sectional area of the trap opening, and the
transport flux is adjusted proportionally.

The 3D trap is usually placed in two locations; one can be placed in the estuary, straits
and other high velocity/turbidity areas, in order to achieve the effective use of the device;
and one at an interval of more than 4000 m in the open water for deployment [48]. This
interval reference triangular mesh grid division with local mesh refinement can effectively
carry out the monitoring and feedback of regional sediment transport while ensuring the
feasibility of deployment and recovery.

Sediment is an important component of erosion and siltation, and a 3D trap can be
used to monitor the erosion and siltation in a marine environment and a lake and marsh
area, so as to prevent and control engineering disasters in advance and reduce engineering
economic losses caused by erosion. Many sediments belong to land-based debris and



Sensors 2022, 22, 4137 14 of 16

marine pollutants, which have serious impact on marine ecological environment. A 3D
trap can be used in the field of environmental protection to monitor sediments and in situ
invert their transport pathways and transport mechanisms, so as to control the sediment
pollution and reduce the loss of environmental benefits caused by sediment transport. A
3D trap can also be used in the field of carbon sink to analyze the process of sediment
resuspension and promote the research of carbon sink mechanisms.

In future applications, the steering module and the corresponding algorithm will be
added to the device to achieve the function of sediment capture by steering with the current.
The device will add a sedimentation compensation module to ensure the relative height
of the sedimentation tube is constant through the adaptive adjustment of the height of
the device, which could increase the accuracy of monitoring, and the amount of sediment
captured can be more accurately determined by adding turbidity meters both before and
after the capture tube.

4. Conclusions

This paper proposes a device called the 3D trap based on marine suspended sediment.
The device is equipped with an internal flow meter and turbidimeter and a settling tube
for processing captured sediment. When the particles enter the trap tube, they are settled
in the trap tube due to the action of the filter, and the sample taken is the actual catch. In
addition, a multi-level sediment transport flux time-series analytic formula was developed
based on flow rate and suspended sand concentration. The analytic formula uses real-time
counting by the turbidimeter and a flow rate meter to derive the theoretical sediment
capture quality. In addition, indoor tests were conducted to investigate the relationship
between the external flow velocity and the internal flow velocity of the structure, and the
flux analysis formula was refined based on the test results. Finally, the correlation between
the actual catch and the theoretical catch calculated by the refined analytic formula was
determined experimentally. The refined analytic formula for in situ sediment transport
fluxes based on in situ capture of suspended marine sediments was shown to be compatible
with the device.

(1) This study proposes a sediment capture and transport process time-series vector
observation device that can be used to conduct in situ long-term monitoring and
process reduction of lateral sediment transport flux under normal and even extreme
sea conditions. It can also capture sediment samples, providing a more effective
technical means for frontier scientific research into seafloor sediment dynamics and
material cycling processes.

(2) A set of analytic formulas for sediment transport fluxes based on flow velocity and
suspended sand concentration is established for the time-series vector observation
device. The non-negligible difference between external flow velocity and internal
flow velocity caused by the structure of the device is determined and the conversion
equation is proposed.

(3) The reliability of the analytical method for transport fluxes is verified, and the analytic
formula is refined through indoor experiments. The results verify the effectiveness
of the capture mechanism, which lays the foundation for the application of the time-
series vector observation device for sediment capture and transport processes.

The device can be used to monitor and capture sediment transport fluxes under
conventional and even extreme sea conditions. It can also be used to analyze and explain
sediment transport processes with high accuracy, providing a novel way to study sediment
resuspension caused by oceanic processes, in addition to being a more effective technical
means for scientific research into the dynamics of seafloor sedimentation, ocean carbon
sink mechanisms, and carbon cycle processes.
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