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Abstract: It is hard to directly deploy deep learning models on today’s smartphones due to the
substantial computational costs introduced by millions of parameters. To compress the model, we
develop an `0-based sparse group lasso model called MobilePrune which can generate extremely
compact neural network models for both desktop and mobile platforms. We adopt group lasso
penalty to enforce sparsity at the group level to benefit General Matrix Multiply (GEMM) and
develop the very first algorithm that can optimize the `0 norm in an exact manner and achieve the
global convergence guarantee in the deep learning context. MobilePrune also allows complicated
group structures to be applied on the group penalty (i.e., trees and overlapping groups) to suit
DNN models with more complex architectures. Empirically, we observe the substantial reduction of
compression ratio and computational costs for various popular deep learning models on multiple
benchmark datasets compared to the state-of-the-art methods. More importantly, the compression
models are deployed on the android system to confirm that our approach is able to achieve less
response delay and battery consumption on mobile phones.

Keywords: mobile computing; model compression; pruning network; deep learning; convolutional
neural network

1. Introduction

Deep neural networks (DNNs) have achieved tremendous success in many real-world
applications. However, the computational cost of DNN models significantly restricts their
deployment on platforms with limited computational resources, such as mobile devices.
To address this challenge, numerous model compression algorithms have been proposed
to reduce the sizes of DNN models. The most popular solution is to prune the weights
with small magnitudes by adding `0 or `1 penalties [1–4]. The non-zero weights selected
by these methods are randomly distributed and do not reduce the memory consumption
due to the matrix operations widely adopted in nowadays deep learning architectures
as shown in Figure 1(b.2). The implementation of such a non-structured sparse matrix in
cuDNN [5], which is the Basic Linear Algebra Subroutines library used by deep learning
models, has similar memory consumption as the original matrix without pruning, as
shown in Figure 1(b.2),(c.2). To overcome the problem, structured pruning models [6–9] are
proposed to enforce group sparsity by pruning a group of pre-defined variables together.
By tying the weights connecting to the same neuron together, these approaches are able
to prune a number of hidden neurons to reduce the sizes of weight matrices and benefit
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General Matrix Multiply (GEMM) used in cuDNN as shown in Figure 1(b.3),(c.3). However,
one of the main problems of the structured methods is that they do not consider and take
advantage of the hardware accelerator architectures.

In this paper, we observe three key factors that could lead to an extremely compact
deep network. First, we observe that most modern deep learning architectures rely on
the General Matrix Multiply (GEMM) functions implemented in the cuDNN package. We,
therefore, propose a new network compression algorithm to harmonize the group selections
in the structured penalty and the implementation of GEMM in cuDNN as well as the
hardware accelerator using sparse systolic tensor array [10,11]. Figure 1 demonstrates the
basic rationale of our observation. In comparison to the pruned model in Figure 1(c.3),(c.4)
needs additional sparsity within the remaining groups, which could be utilized by the
sparse systolic tensor array for hardware acceleration.

The second observation is that recent studies [12,13] have demonstrated that `0 norm
is the best sparsity-inducing penalty compared to lasso `1 [14], elastic net [15], SCAD [16],
and MCP [17] models. Remarkably, even current `0 optimization techniques can not
achieve the global optimal solution, these `0-based methods with sub-optimal solutions still
significantly outperform other sparsity norms, which can be solved to global optima [13,18].
Hence, the community has shown great interest in using `0 norm to compress the large-scale
DNN models [8,19–24]. However, some `0-based DNN pruning approaches [8,25,26] rely on
different relaxation strategies to conquer the non-convex and non-differentiable challenges,
which does not fully exploit the strength of `0 regularization. The other methods [19–23]
rely on the alternating direction method of multipliers (ADMM) whose global convergence
has not been proved so far when applied to `0 norm optimization [27–29].

Third, most of these algorithms are designed originally for mobile platforms, as the
computational resources are relatively rich for desktop applications. However, few of
them have been deployed on real mobile systems to test the running time and energy
consumption to verify their assumptions.
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Figure 1. Observations of different strategies’ pruned filter matrix for hardware acceleration with
software implementation of convolution in cuDNN. (a) General Matrix Multiply (GEMM) is ap-
plied in cuDNN. (b) Different strategies such as no pruning, individual sparsity, column-wise group
sparsity, and both individual sparsity and column-wise group sparsity on pruning the filter matrix.
(c) The pruned filter matrix implemented in cuDNN and determined whether it can be used for
hardware acceleration or not.

Therefore, we develop the very first algorithm in this paper, named MobilePrune,
which is able to solve the optimization of `0 sparse group lasso regularization in an exact
manner. The main technical contribution is that we solve the proximal operators for
`0 sparse group lasso, where groups in the group lasso term could have overlapping
group structure and tree structure [30]. From the theoretical point of view, we prove
our algorithm always converges to the critical point (local optimal point) under mild
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conditions. In addition, we conduct extensive experiments on multiple public datasets and
find MobilePrune achieves superior performance at sparsifying networks with both fully
connected and convolutional layers. More importantly, we deploy our system on the real
android system on several mobile devices and test the performance of the algorithm on
multiple Human Activity Recognition (HAR) tasks. The results show that MobilePrune
achieves much lower energy consumption and higher pruning rate while still retaining
high prediction accuracy. Besides a powerful network compression algorithm, this work
also provides a valuable platform and mobile dataset for further work to evaluate their
methods in a very real scenario.

The rest of this paper is organized as follows. Section 2 provides the relevant back-
ground and related work. In Section 3, we give a brief overview of the proposed Mo-
bilePrune methods. In Section 4, we discuss the detailed information of the proposed
methods and algorithms. In Section 5, we describe how the experiments are set up and
evaluate the proposed methods from different perspectives. Section 6 discusses the future
work and summarizes the paper.

2. Related Work
2.1. Sparsity for Deep Learning Models

Many pruning algorithms for deep learning models achieve slim neural networks
by introducing sparse-inducing norms to the models. `1 regularization [31–33] and `0
regularization [8] were applied to induce sparsity on each individual weight. However,
such individual sparsity has arbitrary structures, which cannot be utilized by software
and hardware. Wei et al. [24] applied group sparsity to prune filters or channels, which
can reduce the matrix size used in GEMM in cuDNN. Because the pruned models are
compatible with cuDNN, they achieved large speedups. There are methods [34,35] aiming
to find sparse models at both individual and group levels, which is similar to our goal.
However, they all used `1 norm to induce individual sparsity in addition to group sparsity.
We have performed a comprehensive comparison and demonstrated that our MobilePrune
method is the best in inducing sparsity at both individual and group levels for pruning
deep learning models in Section 5.

2.2. Learning Algorithms for `0 Norm

Recent studies [12,13] demonstrate that `0 norm is the best sparsity-inducing penalty
comparing to lasso `1 [14], elastic net [15], SCAD [16], and MCP [17] models. Remarkably,
even current `0 optimization techniques cannot achieve the global optimal solution, these
`0-based methods with sub-optimal solutions still significantly outperform `1 and elastic
net models, which can be solved to global optima [13,18]. Therefore, the machine learning
community has shown great interest in using `0 norm to compress the large-scale DNN
models [8,19–24]. However, some `0-based DNN pruning approaches [8,25] rely on dif-
ferent relaxation strategies to conquer the non-convex and non-differentiable challenges,
which does not fully exploit the strength of `0 regularization. The other methods [19–23]
rely on the alternating direction method of multipliers (ADMM) whose global convergence
has not proved so far when applied to `0 norm optimization [27–29].

2.3. Software & Hardware Compatibility

In this paper, we aim to design an algorithm to make the pruned DNN models
compatible with cuDNN library [5] and hardware accelerator architecture that uses the
sparse systolic tensor array [11,36]. cuDNN is the GPU-accelerated library used in deep
learning models [5]. As shown in Figure 1a, convolution used in the convolutional neural
network is lowered to matrix multiplication. Therefore, the size of the filter matrix can be
reduced when inducing group sparsity column-wise as shown in Figure 1(b.3),(b.4), which
can reduce the memory of the DNN models to achieve practical performance improvement.
The systolic tensor array is an efficient hardware accelerator for structured sparse matrix
as shown in Figure 1(c.4). Specifically, each column in Figure 1(c.4) is sparse. To achieve a
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pruned DNN model that is compatible with cuDNN and the systolic tensor array, sparsity
needs to be induced on both the group level and within-group level. We will show how we
achieve this in the following sections.

3. Overview

The central idea of MobilePrune is to compress the deep learning model in a way
that is compatible with the architecture of data organization in the memory by combining
`0 regularization and group lasso regularization. The group lasso regularization helps to
keep important groups of weights that benefit cuDNN, while `0 regularization helps to
achieve additional sparsity within those important groups that are needed for hardware
acceleration. Figure 2 provides an overview of the proposed MobilePrune method. As
illustrated in Figure 2a–c, the group lasso penalty will remove all the weights together with
the ith neuron if it is less important for the prediction and if a group is selected, the `0
penalty further removes the weights with small magnitudes within the group. Note that
zeroing out the weights connected to the ith neuron results in removing the ith neuron and
all the associated weights entirely. We will discuss more detail information in next section.
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Figure 2. Overview of the proposed MobilePrune method. (a) Group sparsity for weights of a
neuron for fully connected layers. (b) Sparsity on individual weights for fully connected layers.
(c) Pruning strategy for fully connected layers and their effect where sparsity is induced on both neuron-
wise groups and individual weights. (d) Group and individual sparsity for convolutional layers.
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4. Methods

Our main objective is to obtain a sparse deep neural network with a significantly less
number of parameters at both individual and group levels by using the proposed novel
combined regularizer: `0 sparse group lasso.

4.1. `0 Sparse Group Lasso

We aim to prune a generic (deep) neural network, which includes fully connected
feed-forward networks (FCN) and convolutional neural networks (CNN). Assuming the
generic neural network has N neurons in FCN and M channels in CNN. Let Wi denote the
outgoing weights of the ith neuron in FCN and T j represent the 3D tensor of all filters in
the jth channel, which can come from different layers. The training objective for the neural
network is given as follows:

min
W,T

: L(W, T;D) + Ωη
λ(W) + Γα

β,γ(T) (1)

where W = {W1, . . . , WN}, T = {T1, . . . , TM}, D = {xi, yi}P
i=1 is a training dataset with P

instances, L is an arbitrary loss function parameteized by W and T, Ωη
λ(W) and Γα

β,γ(T)
represent the `0 sparse group lasso penalties for neurons and channels, respectively. Specif-
ically, Ωη

λ(W) is defined as

Ωη
λ(W) =

N

∑
i=1

(η‖Wi‖0 + λ‖Wi‖g) (2)

where η ≥ 0 and λ ≥ 0 are regularization parameters. Let n(i) represent the set of outgoing
edge weights of neuron i. Then, ‖Wi‖0 = ∑j∈n(i) ‖Wi

j‖0 (Wi
j is the jth outgoing edge

weight of neuron i; ‖Wi
j‖0 = 0 when Wi

j = 0 and ‖Wi
j‖0 = 1 otherwise) computes the

number of the non-zero edges in Wi and ‖Wi‖g =
√

∑j(Wi
j∈n(i))

2 aggregates the weights

associated with the ith neuron as a group. The core spirit of Equation (2) is illustrated in
Figure 2a–c, the group lasso penalty ‖Wi‖g tends to remove all the weights together with
the ith neuron if it is less important. If a group is selected, the `0 penalty further removes
the weights with small magnitudes within the group. Group sparsity ‖Wi‖g can help
remove neurons in the neural network, which reduces the size of the neural network and
further improve efficiency. Individual sparsity ‖Wi‖0 helps to achieve additional sparsity
within the remaining neurons. Such structured sparsity can be used by the systolic tensor
array [10,11]. The other regularization term Γα

β,γ(T) is defined as following,

Γα
β,γ(T) =

M

∑
j=1

(α‖T j‖0 + β‖T j‖g + γ ∑
h,w
‖T j

:,h,w‖g), (3)

where α, β, and γ are non-negative regularization parameters. Equation (3) defines a
hierarchical-structured sparse penalty in which structure is guided by the memory organi-
zation of GEMM using cuDNN [5]. As demonstrated in Figure 2d, the pruning strategy
encoded in Equation (3) explicitly takes advantage of the GEMM used in cuDNN. ‖T j‖g

enforces the group sparsity of all the filters applied to the jth channel and ‖T j
:,h,w‖g enforces

the group sparsity across the filters on the same channel and ‖T j‖0 = ∑ f ∑h ∑w ‖Tf ,h,w‖0
prunes the small weights within the remaining channels and filters. Equation (3) can help
to achieve an extremely compact model as Figure 1(c.4). Therefore, the computation can be
accelerated at both software and hardware levels.

4.2. Exact Optimization by PALM

In this subsection, we first briefly review the general PALM (Proximal Alternating
Linearized Minimization) framework used in our MobilePrune algorithm. Then, we
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introduce how we modify PALM to efficiently optimize the `0 sparse group lasso for neural
network compression. PALM is designed to optimize a general optimization problem
formulated as:

min
W,T

: F(W, T) + Φ1(W) + Φ2(T). (4)

where F(W, T) is a smooth function and Φ1(W) and Φ2(T) do not need to be convex
or smooth, but are required to be lower semi-continuous. The PALM algorithm applies
proximal forward–backward algorithm [37] to optimize Equation (4) with respect to W and
T in an alternative manner. Specifically, at iteration k+ 1, the temporal values of W(k+1) and
T(k+1) for the proximal forward–backward mapping are derived by solving the following
sub-problems,

W(k+1) ∈ min
W

:

{
ck

2

∥∥∥W −U(k)
i

∥∥∥2

F
+ Φ1(W)

}
, (5)

T(k+1) ∈ min
T

:

{
dk

2

∥∥∥T −V(k)
i

∥∥∥2

F
+ Φ2(T)

}
, (6)

where U(k+1)
i = W(k)

i − 1
ck∇W F(W(k), T(k)) and V(k+1)

i = T(k)
i − 1

dk∇T F(W(k+1), T(k)). Ad-
ditionally, ck and dk are positive constants. This optimization process has been proven to
converge to a critical point when functions F, Φ1, and Φ2 are bounded [37]. We further
extend the convergence proof in [37] and prove that the global convergence of PALM holds
for training deep learning models under mild conditions. The detailed proof can be found
in Appendix A.

To optimize Equation (1), we define two proximal operators for the two penalty terms
as the following,

π
η
λ(y) ≡ arg min

x

{
1
2
‖x− y‖2

2 + Ωη
λ(x)

}
, (7)

θα
β,γ(y) ≡ arg min

x

{
1
2
‖x− y‖2

2 + Γα
β,γ(x)

}
. (8)

Here, functions Ωη
λ(·) and Γα

β,λ(·) take vectors as inputs, which are equivalent to

Equations (2) and (3) once we vectorize Wi and T j. The overall optimization process of
MobilePrune is described in Algorithm 1. Once we can efficiently compute the optimal
solution of π

η
λ(·) and θα

β,λ(·), the computational burden mainly concentrates on the partial
derivative calculation of functions H(·) and F(·), which is the same as training a normal
DNN model.

Algorithm 1 The framework of MobilePrune Algorithm.

Initialize (Wi)0, ∀i, (T j)0, ∀j and Lr.
for k = 0, 2, . . . do

for i = 1, 2, . . . , N do
Hi

k = ∇Wi
k
L
(

Wi
k, W j 6=i

k , Tk

)
.

Wi
k+1 ∈ π

η/Lr
λ/Lr

(
Wi

k −
1
Lr

Hi
k

)
by solving Equation (7).

end for
for j = 1, 2, . . . , M do

Fj
k = ∇T j

k
L(Wk+1, T j

k, Tl 6=j
k ).

T j
k+1 ∈ θα/Lr

β/Lr ,γ/Lr

(
T j

k −
1
Lr

Fj
k

)
by solving Equation (8).

end for
end for
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4.3. Efficient Computation of Proximal Operators

To the best of our knowledge, π
η
λ(y) and θα

β,γ(y) defined in Equations (7) and (8) are

novel proximal operators that have not been attempted before. Solving π
η
λ(y) and θα

β,γ(y)
is the key to apply MobilePrune in Algorithm 1. Therefore, this subsection elaborates the
algorithmic contributions we made to efficiently calculate π

η
λ(y) and θα

β,γ(y).

4.3.1. Proximal Operator π
η
λ(·)

The difficulty of solving π
η
λ(y) in Equation (9) is that both ‖x‖g and ‖x‖0 are not

differentiable when the vector x = 0. Furthermore, ‖x‖0 calculates the number of non-
zeros in the vector x ∈ Rn and there are C(n, 0) + C(n, 1) + · · · + C(n, n) = 2n (C(n, k)
computes the number of non-zero patterns in x where k elements in x are not zeros) possible
combinations, which indicates the brute-force method needs 2n computations to find the
global optimal solution. However, here we prove that the π

η
λ(y) in Equation (9) can be

efficiently solved by a O(n log(n)) algorithm in a closed from. We illustrate the algorithm
in Algorithm 2 and prove its correctness in Theorem 1. To the best of our knowledge, it is
the first efficient algorithm that can calculate this novel proximal operator.

Theorem 1. The proximal operator π
η
λ(y) can be written as

π
η
λ(y) ≡ arg min

x

{
f (x) :=

1
2
‖x− y‖2

2 + λ‖x‖g + η‖x‖0

}
(9)

The optimal solution of this proximal operator can be computed by Algorithm 2.

Algorithm 2 Efficient calculation of π
η
λ(y)

Input: A sorted vector y, such that |y1| ≥ |y2| ≥ . . .
Output: x∗

for i = 0, . . . , n do
if ‖−→yi ‖g ≤ λ then

Ui =
1
2‖y‖2

2
else

Ui = − 1
2 (‖
−→yi ‖g − λ)2 + iη + 1

2‖y‖2
2

end if
end for
Compute k = arg minj Uj

if Uk ≥ 1
2‖y‖2

2 then
x∗ = 0

else
x∗ = (‖−→yk ‖g − λ)

−→yk
‖−→yk ‖g

end if

Proof. Without loss of generality, we assume y = [y1, y2, . . . , yn]
T ∈ Rn is an ordered

vector, where |y1| ≥ |y2| ≥ · · · ≥ |yn|. Then, we define −→yk = [y1, y2, . . . , yk, 0, . . . , 0], where
the top k elements with largest absolute values are kept and all the rest elements are set to
zeroes. We define another set Φk = {x|‖x‖0 = k, x ∈ Rn} to represent all n-dimensional
vectors with exact k non-zero elements. For any x = [x1, x2, . . . , xn]T ∈ Φk, we further
define a mask function e : ei = 1{xi = 0} to reveal the non-zero locations of x.
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Since we do not know how many non-zero elements remain in the optimal solution
of Equation (9), we need to enumerate all possible k and solve n + 1 sub-problems for all
xk ∈ Φk with k = 0, . . . , n. For each k, the sub-problem is defined as

min
xk∈Φk

f (xk) :=
1
2
‖xk − y‖2

2 + Ωη
λ(xk)

⇔ min
xk∈Φk

1
2
‖xk − yk‖2

2 +
1
2
‖yk‖2

2 + Ωη
λ(xk)

(10)

Based on Lemma A4 in Appendix A.2, we observe that if ‖yk‖g ≤ λ, then xk∗ = 0 and

f (xk∗) = 1
2‖y‖2

2. If ‖yk‖g > λ, then xk∗ = (‖yk‖g − λ) yk

‖yk‖g
and the value of the objective

function can be computed as

f (xk∗) =
1
2
‖xk∗ − yk‖2

2 +
1
2
‖yk‖2

2 + Ωη
λ(xk∗)

=− 1
2
(‖yk‖g − λ)2 + ηk +

1
2
‖y‖2

2.
(11)

Equation (11) tells us f (xk∗) is a function of yk. The task of calculating the
minimum value of function f (xk∗) is transformed into solving another optimization
− 1

2 (‖yk‖g − λ)2 + ηk + 1
2‖y‖2

2 with respect to yk, which is equivalent to ask which of the
k components of y can achieve the minimum value of f . Since we assume ‖yk‖g > λ,
the optimal solution is clearly to select the top k components with the largest value from
y. Therefore we have −→yk = arg minyk − 1

2 (‖yk‖g − λ)2 + ηk + 1
2‖y‖2

2 and the corresponding

xk∗ = (‖−→yk ‖g − λ)
−→yk
‖−→yk ‖g

. Furthermore, the objective function value is − 1
2 (‖
−→yk ‖g − λ)2 +

ηk + 1
2‖y‖2

2. Hence, problem (10) has a closed-form solution.

As shown in Algorithm 2, the heaviest computation is to sort the input vector y,
therefore, the time complexity for solving Equation (9) is O(n log(n)).

4.3.2. Proximal Operator θα
β,γ(y)

Similar as π
η
λ(y), θα

β,γ(y) is the solution of the following optimization problem:

min
x

:κ(x) :=
1
2
‖x− y‖2

2 + α‖x‖0 + β‖x‖g + γ
d

∑
i=1
‖xGi‖g

s.t.
d⋃

i=1

Gi = {1, 2, . . . , n}, Gi ∩ Gj = ∅, ∀i, j

(12)

where we assume x, y ∈ Rn. Gi ⊆ {1, . . . , n}, i is the index of a group and d represents the
number of groups. Note that the grouping structures specified in Equation (12) is a special
case of the grouped tree structures [30], where ‖x‖g is the group lasso for the root of the
tree and all the ‖xGi‖g are the group lasso terms of its children. Notice that groups from the
same depth on the tree do not overlap and furthermore ‖x‖0 = ∑d

i=1 ‖xGi‖0. To simplify
the notation, assuming ‖x‖0 6= 0 we define h(x) = 1

2‖x− y‖2
2 + β‖x‖g that is a convex and

differentiable and rewrite the problem as

min
x

: h(x) +
d

∑
i=1

Ωα
γ(xGi )

s.t. x 6= 0,
d⋃

i=1

Gi = {1, 2, . . . , n}, Gi ∩ Gj = ∅, ∀i, j ∈ {1, . . . , d},
(13)
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where ∑d
i=1 Ωα

γ(xGi ) = ∑d
i=1 α‖xGi‖0 + γ‖xGi‖g. We can use the proximal method [38]

to find a solution x† of Equation (13). In the proximal method, we need to estimate the
Lipschitz constant L(x) = 1 + β

‖x‖g
and the partial derivative ∇xGi

h(x) = (1 + β
‖x‖g

)xGi −
yGi . In addition, we need to use Algorithm 2 to solve πα

γ(·) for each group xGi . After
obtaining x†, we can find the solution of Equation (12) by comparing κ(0) with κ(x†). If
κ(0) ≤ κ(x†), then the local optimal solution of Equation (12) is x∗ = 0, otherwise, x∗ = x†.
We elaborate the algorithm for the proximal operator θα

β,γ(y) in the Algorithm 3. The major
computation cost is the proximal method, therefore, the convergence rate of Algorithm 3 is
O(1/k) [38].

Algorithm 3 Efficient calculation of θα
β,γ(y)

Input: L0 and x0

Output: x∗

for l = 0, 1, 2, . . . , k do
Let Ll = 1 + β

‖xl‖g
and u = xl

Gi
− 1
Ll∇xGi

h(xl), then compute xl
Gi
∈ πα/Ll

γ/Ll (u), ∀i by

applying Algorithm 2.
end for
if κ(0) ≤ κ(xk) then

x∗ = 0
else

x∗ = xk

end if

5. Experimental Setup and Results
5.1. Performance on Image Benchmarks

In this subsection, we compared our proposed MobilePrune approach with other
state-of-the-art pruning methods in terms of prune rate, computational costs, and test
accuracy. We mainly compared our methods with structured pruning methods because
DNN models pruned by non-structure pruning methods could not obtain practical speedup
as shown in Figure 1. Notably, we only compared the results that can be reproduced by
the source codes provided by the competing methods. First, we briefly summarized
their methodology. PF [32] and NN slimming [33] were simple magnitude-based pruning
methods based on l1 norm. BC [9], SBP [7], and VIBNet [39] cast the DNN pruning into
probabilistic Bayesian models. C-OBD [40], C-OBS [2], Kron-OBD [40,41], Kron-OBS [2,41],
and EigenDamage [42] are Hessian matrix-based methods. `0 norm penalized method [8]
and group lasso penalized method [24] are also well-known methods.

In our experiments, we use NVIDIA Corporation as the GPU and the number of
cores of the CPU is 12. All the baseline models were trained from scratch via stochastic
gradient decent(SGD) with a momentum of 0.9. We trained the networks for 150 epochs on
MNIST and 400 epochs on CIFAR-10 and Tiny-ImageNet with an initial learning rate of
0.1 and weight decay of 5 × 10−4. The learning rate is decayed by a factor of 10 at 50, 100
on MNIST and at 100, 200 on CIFAR-10 and Tiny-ImageNet, respectively. The details of
hyper-parameters for all experiments are summarized in Appendix B. We also provide the
computational efficiency of our methods in Appendix C.

5.1.1. MNIST Dataset

We first applied MobilePrune to prune the LeNet-300-100 and LeNet-5 [7–9] models
on the MNIST dataset [43]. LeNet-300-100 is a fully-connected neural network model with
three layers and 267 K parameters. LeNet-5 is comprised of two [20, 50] convolutional layers
and two [800, 500] fully-connected layers with 431K parameters. Here, we compared with
the state-of-the-art structured network compression algorithms [7–9] in terms of pruned
accuracy, remaining parameters, pruned architecture, and FLOPs of the pruned models.
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As shown in the top half of the MNIST dataset of Table 1, our model achieves the
least number of neurons after pruning the LeNet-300-100 model and the lowest drop
of the prediction accuracy 0.01% compared to other methods. More importantly, our
pruned model achieves the lowest FLOPs. Note that the architecture of our pruned model
is as compact as L0-sep [8], but is extremely sparse with only 5252 weights left. This
additional sparsity would be critical when applying hardware acceleration [10,11] to our
pruned model.

In addition, we compared with SSL on pruning the first two convolutional layers as
done in [24] in Table A2. SSL has the same group lasso penalty term as ours but without
`0 norm regularization. As shown, our method decreases the sizes of the filters from 25
and 500 to 16 and 65, respectively, which dramatically lowers the FLOPs. In addition, the
non-zero parameters in those remaining filters is very sparse in our model.

Table 1. Comparison of pruned models with state-of-the-art methods on different datasets – MNIST,
CIFAR-10, and Tiny-ImageNet, respectively. (We highlight our MobilePrune results and mark the
best performance as blue among different methods for each model in each dataset).

Dataset Model Methods Base/Pruned
Accuracy (%)

Original/Remaining
Parameters (Mil) FLPOs (Mil)

MNIST

BC-GNJ [9] 98.40/98.20 267.00/28.73 28.64
BC-GHS [9] 98.40/98.20 267.00/28.17 28.09

LeNet-300-100 L0 [8] -/98.60 - 69.27
L0-sep [8] -/98.20 - 26.64

MobilePrune 98.24/98.23 267.00/5.25 25.79

SBP [7] -/99.14 - 212.80
BC-GNJ [9] 99.10/99.00 431.00/3.88 282.87
BC-GHS [9] 99.10/99.00 431.00/2.59 153.38

LeNet-5 L0 [8] -/99.10 - 1113.40
L0-sep [8] -/99.00 - 390.68

MobilePrune 99.12/99.11 431.00/2.31 113.50

CIFAR-10

Original [44] -/92.45 15.00/- 313.5
PF [32] -/93.40 15.00/5.4 206.3

VGG-like SBP [7] 92.80/92.50 15.00/- 136.0
SBPa [7] 92.80/91.00 15.00/- 99.20

VIBNet [39] -/93.50 15.00 /0.87 86.82
MobilePrune 92.96/92.94 15.00/0.60 77.83

C-OBD [40] 95.30/95.27 7.42/2.92 488.85
C-OBS [2] 95.30/95.30 7.42/3.04 378.22

ResNet32 Kron-OBD [40,41] 95.30/95.30 7.42/3.26 526.17
Kron-OBS [2,41] 95.30/95.46 7.42/3.23 524.52

EigenDamage [42] 95.30/95.28 7.42/2.99 457.46
MobilePrune 95.29/95.47 7.42/2.93 371.30

NN slimming [33] 61.56/40.05 20.12/5.83 158.62
C-OBD [40] 61.56/47.36 20.12/4.21 481.90
C-OBS [2] 61.56/39.80 20.12/6.55 210.05

Tiny-
ImageNet VGG-19 Kron-OBD [40,41] 61.56/44.41 20.12/4.72 298.28

Kron-OBS [2,41] 61.56/44.54 20.12/5.26 266.43
EigenDamage [42] 61.56/56.92 20.12/5.21 408.17

MobilePrune 61.56/56.27 20.12/4.05 407.37

The bottom half of the MNIST dataset in Table 1 shows the performance comparison
on pruning the LeNet-5 model. The LeNet-5 model pruned by our method achieves the
lowest FLOPs (113.50 K) with the smallest predicting accuracy drop 0.01%. Moreover,
our pruned model also has the smallest number of weights (around 2310). In addition,
we compared with SSL on pruning the first two convolutional layers as done in [24]. SSL
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has the same group lasso penalty term as ours, but without `0 norm regularization. More
details about SSL can be found in Appendix C.2. As shown, our method decreases the
sizes of the filters from 25 and 500 to 16 and 65, respectively, which dramatically lowers the
FLOPs. In addition, the non-zero parameters in those remaining filters are very sparse in
our model.

5.1.2. CIFAR-10 Dataset

We further evaluated our method on pruning more sophisticated DNN architec-
tures, VGG-like [44] and ResNet-32 [42,45] and widen the network by a factor of 4,
on CIFAR-10 [46]. Similarly, we compared with the state-of-the-art structured pruning
methods [2,7,32,39–42] in terms of various metrics. As shown in the middle of Table 1,
the pruned VGG-like model obtained by our method achieves the lowest FLOPs with the
smallest test accuracy drop. Similar to previous results, our pruned model is able to keep
the smallest number of weights in comparison to other methods, the key for hardware
acceleration [10,11]. As presented in Table 1, the pruned ResNet-32 model achieved by our
method outperforms other pruned models in terms of pruned test accuracy and FLOPs. In
addition, in terms of the remaining weights, our pruned model is at the same sparsity level
as C-OBD [40] while our pruned accuracy outperforms C-OBD by a large margin.

5.1.3. Tiny-ImageNet Dataset

Besides the experiments on MNIST and CIFAR-10 datasets, we further evaluated
the performance of our method on a more complex dataset, Tiny-ImageNet [47], using
VGG-19 [48]. Tiny-ImageNet is a subset of the full ImageNet, which consists of 100,000
images for validation. There are 200 classes in Tiny-ImageNet. We compared our method
with some state-of-the-art methods [2,33,40,42] in Table 1. As shown in Table 1, the test
accuracy of the pruned model derived from our method outperforms all the other methods
by a significant margin, about 10%, except EigenDamage. Our proposed method obtains
the same-level test accuracy as EigenDamage. However, our method achieves a much
sparser DNN model with 1.16 million fewer weights than EigenDamage. Meanwhile, our
pruned model achieves lower FLOPs.

5.2. Performance on Human Activity Recognition Benchmarks

To demonstrate the efficacy and effectiveness of our proposed MobilePrune method,
we perform a series of compassion studies with other state-of-the-art pruning methods such
as `0 norm, `1 norm, `2 norm, group lasso, and `1 sparse group lasso for all three datasets—
WISDM [49,50], UCI-HAR [51,52], and PAMAP2 [53–55]. We evaluate the pruning accuracy
and pruning rate of weights (parameters) and nodes for our proposed MobilePrune ap-
proach and all other state-of-the-art pruning methods using the same learning rate (0.0001)
and the same number of epochs (150) for all three datasets. The pruning thresholds are
0.015, 0.005, 0.01 for the pruning methods in the WISDM, HCI-HAR, and PAMAP2 datasets,
respectively. In addition, we evaluate the computational cost and battery consumption for
our proposed method with all other state-of-the-art pruning methods as well. The details
of the dataset descriptions and the hyper-parameters for all experiments are summarized
in Appendix D.

5.2.1. Performance on the Desktop

We use Google Colab [56] to build a PyTorch backend on the above datasets. The GPU
for Google Colab is NVIDIA Tesla K80 and the number of cores of the CPU for Google
Colab is 2. As shown in Table 2, if we only use `0 norm penalty or `2 norm penalty, there is
no effect on neurons or channels pruning as expected for all three datasets. Similarly, if we
only employ group lasso penalty, the pruned model still has more weights or nodes left.
For the UCI-HAR dataset, `1 norm penalty and `1 sparse group lasso penalty cannot sparse
down the model while for the other two datasets, these two penalties could achieve better
sparsity, but cannot be better than MobilePrune approach. There exists a trade-off between
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the pruned accuracy and the pruning rate. As can be seen in Table 2, our MobilePrune
method still has high pruned accuracy even if there are not too many parameters and
nodes left. In addition, we compare our MobilePrune method with `1 sparse group lasso
penalty. The `0 sparse group lasso model still significantly outperforms the `1 sparse group
lasso model in weights and nodes pruning, which demonstrates its superiority in pruning
CNN models.

Table 2. Comparison of pruning method on the desktop with state-of-the-art methods for pruning accuracy,
pruning rate and response delay on HAR datasets—WISDM, HCI-HAR, and PAMAP2, respectively. (We
highlight our MobilePrune results and mark the best performance as blue among different penalties
for each dataset).

Dataset Penalty Base/Pruned
Accuracy (%)

Parameter
Nonzero (%)

Parameter
Remaining

(%)

Node
Remaining

(%)

Base/Pruned
Response
Delay (s)

Time Saving
Percentage

(%)

WISDM

l0 norm 94.72/94.79 63.36 100.00 100.00 0.38/0.39 0.00
l1 norm 94.30/93.84 13.58 46.26 68.16 0.38/0.24 36.84
l2 norm 94.61/94.54 56.28 90.46 95.12 0.38/0.35 7.89

Group lasso 94.68/94.32 48.23 89.73 94.73 0.38/0.35 7.89
l1 sparse

Group lasso 94.81/94.79 17.91 53.41 73.83 0.41/0.26 36.59

MobilePrune 94.97 / 94.65 9.52 28.03 52.52 0.50/0.17 66.00

UCI-HAR

l0 norm 91.52/91.48 88.49 100.00 100.00 0.84/0.80 4.76
l1 norm 90.46/90.33 81.58 98.47 99.22 0.81/0.82 0.00
l2 norm 91.01/90.94 88.35 100.00 100.00 0.79/0.80 0.00

Group lasso 90.80/90.84 82.91 100.00 100.00 0.83/0.78 6.02
l1 sparse

Group lasso 91.11/91.04 81.21 97.70 98.83 0.84/0.80 4.76

MobilePrune 90.06/89.96 23.00 46.83 68.75 1.01/0.43 57.43

PAMAP2

l0 norm 93.15/93.07 69.27 100.00 100.00 0.41/0.41 0.00
l1 norm 95.22/95.29 1.46 7.28 19.73 0.40/0.08 80.00
l2 norm 92.08/ 92.09 65.32 94.93 97.27 0.41/0.39 4.88

Group lasso 93.30/ 93.28 61.78 100.00 100.00 0.41/0.41 0.00
l1 sparse

Group lasso 96.87/97.20 2.67 9.72 26.17 0.40/0.10 75.00

MobilePrune 96.89/96.95 1.26 3.72 10.74 0.51/0.05 90.20

We also calculate the response delay and time saving percentage for all the above
methods on the desktop platform. Response delay is the time needed for the desktop to
run the pre-trained model after the raw input signal is ready. Here in Table 2, the response
delay results are obtained after running 200 input samples. As can be seen in Table 2,
MobilePrune could save up to 66.00%, 57.43%, 90.20% on response delay on WISDM,
HCI-HAR, and PAMAP2 datasets, respectively.

Overall, if we apply MobilePrune method, the pruned CNN models can still achieve
the best sparsity in terms of both neurons (or channel) and weights without loss of per-
formance. Additionally, the results in Table 2 show that our MobilePrune method could
achieve 28.03%, 46.83%, 3.72% on weight (parameter) sparsity, and 52.52%, 68.75%, and
10.74% on node sparsity for the WISDM, UCI-HAR, and PAMAP2 datasets, respectively.

5.2.2. Performance of Mobile Phones

We evaluate the computational cost and battery consumption for our proposed Mo-
bilePrune approach with all other state-of-the-art pruning methods. In order to obtain the
final results about how these models perform on today’s smartphone, we implement an
Android Application using Android Studio on Huawei P20 and OnePlus 8 Pro. PyTorch
Android API [57] is used here for running trained models on Android devices. Currently,
the Android devices only support running machine learning models by using CPU only.
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For the Huawei P20, the CPU is Cortex-A73. For the OnePlus 8 Pro, it is using Octa-Core as
its CPU. We also use the Batterystats tool and the Battery Historian script [58] to test the
battery consumption.

Table 3 shows the response delay results and battery usage for our proposed method
and all other state-to-the-arts pruning methods. Response delay is the time needed for
the smartphone’s system to run the pre-trained model after the raw input signal is ready.
Here, in Table 3, the response delay results are obtained after running 200 input samples
and the battery consumption results are obtained after running 2000 input samples for
each penalty in all three datasets. For the HCI-HAR dataset, our MobilePrune approach
could save up to 40.14%, 22.22% on response delay and 34.52%, 19.44% on battery usage
for Huawei P20 and OnePlus Pro 8, respectively, while the other pruning methods stay
almost the same compared to the uncompressed version. For the WISDM and PAMAP2
datasets, `0 norm penalty, `2 norm penalty, and group lasso penalty cannot sparse down the
model, and therefore they cannot provide any savings in both response delay and battery
consumption. `1 norm and `1 sparse group lasso methods could provide better time saving
and battery consumption saving compared to those three penalties, but they still cannot
perform better than the MobilePrune method, which saves 61.94% and 88.15% in response
time, and 37.50% and 36.71% in battery consumption for WISDM and PAMAP2 dataset,
respectively, on Huawei P20. Additionally, it also saves 52.08% and 77.66% in response
time, and 32.35% and 37.93% in battery consumption for WISDM and PAMAP2 dataset,
respectively, on OnePlus 8 Pro. Overall, results in Table 3 demonstrate MobilePrune’s
superiority in pruning HAR CNN models for battery usage and computational cost on
today’s smartphone.

Table 3. Comparison of pruning method on the mobile devices with other state-of-the-art prun-
ing methods for computational cost and battery usage on HAR dataset—WISDM, HCI-HAR,
and PAMAP2, respectively. (We highlight our MobilePrune results and mark the best performance as
blue among different penalties for each device in each dataset).

Dataset Device Penalty
Base/Pruned

Response
Delay (s)

Time Saving
Percentage (%)

Based/Pruned
Device Estimated
Battery Use (%/h)

Battery Saving
Percentage (%)

WISDM

l0 norm 1.40/1.27 9.29 0.71/0.70 1.41

Huawei P20

l1 norm 1.33/0.71 46.62 0.74/0.65 12.16
l2 norm 1.28/1.21 5.47 0.74/0.77 0.00

Group lasso 1.27/1.27 0.00 0.74/0.77 0.00
l1 sparse Group

lasso 1.25/0.81 35.20 0.74/0.68 8.11

MobilePrune 1.34/0.51 61.94 0.72/0.45 37.50

OnePlus 8 Pro

l0 norm 0.57/0.49 14.04 0.34/0.32 5.88
l1 norm 0.48/0.34 29.17 0.35/0.30 14.29
l2 norm 0.48/0.40 16.67 0.34/0.34 0.00

Group lasso 0.49/0.45 8.16 0.34/0.35 0.00
l1 sparse Group

lasso 0.48/0.33 31.25 0.35/0.30 14.29

MobilePrune 0.48/0.23 52.08 0.34/0.23 32.35

HCI-HAR

l0 norm 1.43/1.43 0.00 0.84/0.84 0.00

Huawei P20

l1 norm 1.42/1.42 0.00 0.85/0.84 1.18
l2 norm 1.43/1.43 0.00 0.84/0.84 0.00

Group lasso 1.43/1.43 0.00 0.84/0.82 2.38
l1 sparse Group

lasso 1.42/1.41 0.70 0.85/0.82 3.53

MobilePrune 1.42/0.85 40.14 0.84/0.55 34.52

OnePlus 8 Pro

l0 norm 0.53/0.53 0.00 0.35/0.35 0.00
l1 norm 0.54/0.51 5.56 0.37/0.36 2.70
l2 norm 0.54/0.53 1.85 0.37/0.37 0.00

Group lasso 0.53/0.52 1.89 0.36/0.36 0.00
l1 sparse Group

lasso 0.53/0.52 1.89 0.36/0.36 0.00

MobilePrune 0.54/0.42 22.22 0.36/0.29 19.44
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Table 3. Cont.

Dataset Device Penalty
Base/Pruned

Response
Delay (s)

Time Saving
Percentage (%)

Based/Pruned
Device Estimated
Battery Use (%/h)

Battery Saving
Percentage (%)

PAMAP2

l0 norm 2.64/2.72 0.00 0.76/0.79 0.00

Huawei P20

l1 norm 2.74/0.45 83.58 0.79/0.53 32.91
l2 norm 2.67/2.56 4.12 0.78/0.78 0.00

Group lasso 2.67/2.68 0.00 0.78/0.78 0.00
l1 sparse Group

lasso 2.69/0.55 79.55 0.79/0.57 27.85

MobilePrune 2.70/0.32 88.15 0.79/0.50 36.71

OnePlus 8 Pro

l0 norm 0.94/0.93 1.06 0.88/0.88 0.00
l1 norm 0.93/0.25 73.12 0.87/0.55 36.78
l2 norm 0.93/0.91 2.15 0.88/0.87 1.14

Group lasso 0.94/0.95 0.00 0.89/0.89 0.00
l1 sparse Group

lasso 0.95/0.29 69.47 0.88/0.59 32.95

MobilePrune 0.94/0.21 77.66 0.87/0.54 37.93

5.3. Ablation Studies

To demonstrate the efficacy and effectiveness of the `0 sparse group lasso penalty, we
performed a series of ablation studies on various DNN models. As shown in Table 4, if we
only use `0 norm penalty, there is no effect on a neuron or channel pruning as expected.
Similarly, if we only employ the group lasso penalty, the pruned model still has more
weights left. However, if we apply `0 sparse group lasso, we can achieve pruned DNN
models that are sparse in terms of both neurons (or channel) and weights. In addition,
we compare our `0 sparse group lasso model with `1 sparse group lasso [59] on pruning
DNN models. Table 4 shows their comparison on pruning various DNN models. More
details can be found in Appendix A.3 and Appendix C. As shown in Table 4 and the
results in supplementary, the `0 sparse group lasso model significantly outperforms the
`1 sparse group lasso model in all aspects, which demonstrates its superiority in pruning
DNN models.

Table 4. Alation studies on various network models. (We mark the best performance as blue among
different penalties for each model).

Network Model Penalty Base/Pruned
Accuracy (%)

Original/Remaining
Parameters (Mil) FLOPs Sparsity (%)

LetNet-300
`0 norm 98.24/98.46 267 K/57.45 K 143.20 21.55

Group lasso 98.24/98.17 267 K/32.06 K 39.70 12.01
`1 sparse group lasso 98.24/98.00 267 K/15.80 K 25.88 5.93
`0 sparse group lasso 98.24/98.23 267 K/5.25 K 25.79 1.97

LetNet-5
`0 norm 99.12/99.20 431 K/321.0 K 2293.0 74.48

Group lasso 99.12/99.11 431 K/8.81 K 187.00 2.04
`1 sparse group lasso 99.12/99.03 431 K/9.98 K 183.83 2.32
`0 sparse group lasso 99.12/99.11 431 K/2.31 K 113.50 0.54

VGG-like
`0 norm 92.96/93.40 15 M/3.39 M 210.94 22.6

Group lasso 92.96/92.47 15 M/0.84 M 78.07 5.60
`1 sparse group lasso 92.96/92.90 15 M/0.61 M 134.35 4.06
`0 sparse group lasso 92.96/92.94 15 M/0.60 M 77.83 4.00

ResNet-32
`0 norm 95.29/95.68 7.42 M/6.74 M 993.11 90.84

Group lasso 95.29/95.30 7.42 M/3.03 M 373.09 40.84
`1 sparse group lasso 95.29/95.04 7.42 M/5.66 M 735.12 76.28
`0 sparse group lasso 95.29/95.47 7.42 M/2.93 M 371.30 39.49

VGG-19
`0 norm 61.56/61.99 138 M/19.29 M 1519.23 13.98

Group lasso 61.56/53.25 138 M/5.93 M 683.99 4.30
`1 sparse group lasso 61.56/53.97 138 M/0.21 M 1282.82 0.15
`0 sparse group lasso 61.56/56.27 138 M/4.05 M 407.37 2.93

6. Conclusions

In this work, we proposed a new DNN pruning method MobilePrune, which is able
to generate compact DNN models that are compatible with both cuDNN and hardware
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acceleration. MobilePrune compress DNN models at both group and individual levels
by using the novel `0 sparse group lasso regularization. We further developed a global
convergent optimization algorithm MobilePrune based on PALM to directly train the
proposed compression models without any relaxation or approximation. Furthermore, we
developed several efficient algorithms to solve the proximal operators associated with `0
sparse group lasso with different grouping strategies, which is the key computation of our
MobilePrune. We have performed empirical evaluations on several public benchmarks.
Experimental results show that the proposed compression model outperforms existing state-
of-the-art algorithms in terms of computational costs and prediction accuracy. MobilePrune
has a great potential to design slim DNN models that can be deployed on dedicated
hardware that uses a sparse systolic tensor array. More importantly, we deploy our system
on the real android system on both Huawei P20 and OnePlus 8 Pro, and the performance
of the algorithm on multiple Human Activity Recognition (HAR) tasks. The results show
that MobilePrune achieves much lower energy consumption and higher pruning rate while
still retaining high prediction accuracy.

There are other options to further compress the neural network models such as Neural
Logic Circuits and Binary Neural Networks, which all use binary variables to represent
inputs and hidden neurons. These two models are orthogonal to our methods, which means
our pruning model could be adopted on Neural Logic Circuits, Binary Neural Networks
and other neural network architectures designed for mobile systems. We will explore which
mobile neural network could be better integrated with our network compression model in
the future.
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Appendix A

Appendix A.1. The Convergence Analysis of Applying PALM Algorithm to Deep Learning Models

For simplicity, we prove the convergence of the PALM algorithm on a neural network
that only has fully connected layers, and the regularization is added on the weight matrix
of each layer. The proof can be easily extended to DNN models with regularization added
on each neuron and DNN with convolutional layers.

Given a feed-forward neural network with N− 1 hidden layers, there are di neurons in
the i-th layer. Let d0 and dN represent the number of neurons in the input and output layers,
respectively. Therefore, the input data can be presented by X := {x1, . . . , xn} ∈ Rd0×n and
the output data can be denoted as Y := {y1, . . . , yn} ∈ RdN×n. Let Wi ∈ Rdi×di−1 be the
weight matrix between the (i − 1)-th layer and the i-th layer. Here, in order to simplify
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https://github.com/yuboyubo/CNNCompressionl0


Sensors 2022, 22, 4081 16 of 30

the notation, we let Wi absorb the bias of the i-th layer. We denote the collection of Wi as
W = {Wi}N

i=1. The DNN model training problem can be formulated as

min
W

: R(W; X, Y) + ∑
i

ri(Wi), (A1)

where R(W; X, Y) = 1
n ∑n `(Φ(W; xi), yi), and `(·) is the loss function. Φ(W; xi) =

σN(WNσN−1(...W2σ1(W1xi))) is the DNN model with N layers of model parameter W
and σi is the activation function for neurons in the i-th layer. ri is the regularization function
applied to Wi. We make the assumptions for our DNN model as follows:

Assumption A1. Suppose that the DNN model satisfies the following assumptions:

1. The regularization functions ri, i = 1, . . . , N are lower semi-continuous.
2. The derivatives of the loss function ` and all activation functions σi, i = 1, . . . , N are bounded

and Lipschitz continuous.
3. The loss function `, activation function σi, ∀i, and the regularization function ri, ∀i are either

real analytic or semi-algebraic [37], and continuous on their domains.

Remark A1. The DNN model that satisfies the assumptions made in Assumption A1 could have
squared, logistic, hinge, cross-entropy, or soft-max loss function and smooth activation functions,
such as sigmoid, or hyperbolic tangent, and `1 norm, `2 norm, or `0 norm regularization term, and
the assumption requires the activation functions to be smooth. Then, activation function, such as
rectified linear unit(ReLU), does not satisfy the requirement. However, we can use the Softplus
activation function or Swish activation function to replace ReLU.

Since R(W; X, Y) depends on weight matrices Wi, i = 1, . . . , N between the DNN
layers, we rewrite (A1) as the following format in terms of only the independent variables

min
W1,...,WN

: Ψ(W) := H(W1, . . . , WN) + ∑
i

ri(Wi), (A2)

where H is exactly the same as R in (A1), but appears in a different form. We propose
Algorithm A1 to solve (A2) and prove the convergence via the following theorem. In
Algorithm A1, we use the proximal operator proxσ

t (x) at each step, which is defined as

proxσ
t (x) = arg min

u

{
t
2
‖u− x‖+ σ(u)

}
. (A3)

Theorem A1. Suppose Assumption A1 holds. As in [37], the sequence Wk = (Wk
1 , . . . , Wk

N)
generated by Algorithm A1 converges to the critical point of (A2) if the following conditions hold:

1. Ψ(W) is a Kurdyka-Lojasiewicz (KL) function.
2. The partial gradient ∇Wi H, ∀i is Lipschitz continuous and there exist positive constants li, li

such that ck
i ∈ (li, li), k = 1, 2, . . . .

3. ∇WH(W1, . . . , WN) has Lipschitz constant on any bounded set.

Proof. For the first condition, utilizing Proposition 1 and Lemma 3–6 in [60], we can easily
prove that under our assumption Ψ(W) is a KL function. For Equation (1) in the main text,
it is also a KL function because `0 and group lasso are semi-algebraic [60,61]. We will add
the simple proof in the Appendix.

According to our model assumption and Remark 1 in [62], we can show that Ψ(W) is a
KL function. For the second condition, based on our model Assumption A1 and Lemma A1
provided in the following, we know that ∇Wi H, ∀i is Lipschitz continuous. In addition, in
Algorithm A1, we use backtracking strategy to estimate Li at each iteration, therefore, there
exist li = L0

i and li = L̄i, such that ck
i ∈ (L0

i , L̄i), k = 1, 2, . . . .
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For the last condition, based on Lemma A3 provided in the following, we have
∇WH(W1, . . . , WN) is Lipschitz continuous for any bounded set.

Algorithm A1 PALM Algorithm for Deep Learning Models

Initialize η > 1, L0
1, . . . , L0

N , and W0
1 , . . . , W0

N .
for k = 1, 2, . . . do

for i = 1 to N do
Find the smallest ik such that with L̄i = ηik Lk−1

i

‖∇Wi H(Wk−1
i )−∇Wi H(Wk

i )‖ ≤ L̄i‖Wk−1
i −Wk

i ‖ (A4)

Set ck
i = ηik Lk−1

i and compute

Wk
i = proxri

ck
i

{
Wk−1

i − 1
ck

i
∇Wi H(Wk−1

i )

}
(A5)

end for
end for

Lemma A1. According to Assumption A1, the derivatives of the loss function and all the activation
functions used in function R in (A1) are bounded and Lipschitz continuous, then ∇Wi H = ∇Wi R
is also bounded and Lipschitz continuous.

Proof. The partial derivative of Wi can be written as

∇Wi H = ∇Wi R =
∂`

∂Φ
· ∂Φ

∂σN
. . .

∂σi+1

∂σi
· ∂σi

∂Wi
. (A6)

From Assumption A1, we know both the derivatives of the loss function ∂`
∂Φ and the

derivatives of any activation function ∂σi+1
∂σi

, ∀i are bounded and Lipschitz continuous. Based
on Lemma A2 and (A6), we know the multiplication of bounded and Lipschitz continuous
functions is still bounded and Lipschitz continuous. Therefore, ∇Wi H is bounded and
Lipschitz continuous.

Lemma A2. If fi : RN → R, ∀i is bounded | fi(X)| < Mi, ∀i and Lipschitz continuous ‖ fi(X)−
fi(Y)‖ ≤ Li‖X−Y‖, then their multiplication f1(X) f2(X)... fn(X) is still Lipschitz continuous.

Proof. We first prove that the multiplication of two bounded Lipschitz continuous func-
tions is still Lipschitz continuous as follows.

‖ f1(X) f2(X)− f1(Y) f2(Y)‖ = ‖ f1(X) f2(X)− f1(X) f2(Y) + f1(X) f2(Y)− f1(Y) f2(Y)‖
≤ ‖ f1(X) f2(X)− f1(X) f2(Y)‖+ ‖ f1(X) f2(Y)− f1(Y) f2(Y)‖
≤ | f1(X)|L2‖X−Y‖+ | f2(Y)|L1‖X−Y‖
≤ (M1L2 + M2L1)‖X−Y‖.

(A7)

We can then extend the above to the multiplication of multiple functions and prove
the lemma.

Lemma A3. If ∇Wi H, ∀i ∈ {1, . . . , N} is bounded and Lipschitz continuous, ∇WH is also
Lipschitz continuous.

Proof. Lemma A1 has shown that ∇Wi H, ∀i ∈ {1, . . . , N} is bounded and Lipschitz con-
tinuous. Here we want to show that ∇WH is Lipschitz continuous on any bounded set.
Define vec(W) = [vec(W1)

T , . . . , vec(WN)
T ]T as a vector where vec() vectorizes a matrix

by stacking its columns. Specifically, there exists a constant M > 0, such that for any W, Ŵ
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‖∇WH−∇ŴH‖2 =‖∇vec(W)H−∇vec(Ŵ)H‖
2

=
∥∥∥[(∇vec(W1)

H)T , . . . , (∇vec(WN)H)T ]− [(∇vec(Ŵ1)
H)T , . . . , (∇vec(ŴN)H)T ]

∥∥∥2

=∑
i

∥∥∥(∇vec(Wi)
H)T − (∇vec(Ŵi)

H)T
∥∥∥2

≤∑
i

L2
i

∥∥∥vec(Wi)− vec(Ŵi)
∥∥∥2

≤L2
max ∑

i

∥∥∥vec(Wi)− vec(Ŵi)
∥∥∥2

=L2
max

∥∥∥W− Ŵ
∥∥∥2

,

(A8)

where Lmax is the largest Lipschitz constant among L1, . . . , LN . Then, we define M = Lmax
and we have

‖∇WH−∇ŴH‖ ≤ M
∥∥∥W− Ŵ

∥∥∥, (A9)

as desired.

Theorem A2. The sequence generated by Algorithm A1
{
(Wk

1 , . . . , Wk
N)
}

converges to a critical
point (W∗1 , . . . , W∗N) of Equation (A2) at least in the sub-linear convergence rate, i.e. there exists
some ω > 0, such that

‖(Wk
1 , . . . , Wk

N)− (W∗1 , . . . , W∗N)‖ ≤ ωk
1−θ

2θ−1 , (A10)

where θ ∈ ( 1
2 , 1).

Proof. Based on Theorem 2 in [63] and Theorem 6.4 in [61], we can prove the above
theorem.

Appendix A.2. The Lemma Used in the Proof of Theorem 1

Lemma A4. The proximal operator associated with the Euclidean norm ‖ · ‖ has a closed form
solution:

arg min
x

1
2
‖x− y‖2 + λ‖x‖ = max(‖y‖ − λ, 0)

y
‖y‖ , (A11)

where x ∈ Rn and y ∈ Rn are both n-dimensional vectors.

This is a known result and has been used in previous study [64].

Appendix A.3. The Algorithm for `1 Sparse Group Lasso

In Section 5.3, we conduct experiments regarding `1 norm sparse group Lasso for
comparison with our proposed `0 sparse group lasso. Here, we elaborate the `1 norm
sparse group Lasso algorithm. We first consider the following proximal operator associated
with `1 overlapping group Lasso regularization:

πλ1
λ2
(v) = arg min

x∈Rn

{
gλ1

λ2
(x) ≡ 1

2
‖x− v‖2 + λ1‖x‖1 + λ2

k

∑
i=1

∥∥xGi

∥∥}, (A12)

where the regularization coefficients, λ1 and λ2, are non-negative values, i = 1, 2, . . . , k,
Gi ⊆ {1, 2, . . . , n} denotes the indices corresponding to the i-th group. According to
Theorem 1 in [59], πλ1

λ2
(·) can be derived from the following πλ1

0 (·) and we present this
conclusion in Lemma A5.



Sensors 2022, 22, 4081 19 of 30

Lemma A5. Let u = sgn(v)�max(|v| − λ1, 0), and

π0
λ2
(u) = arg min

x∈Rn

{
hλ2(x) ≡

1
2
‖x− u‖2 + λ2

g

∑
i=1

∥∥xGi

∥∥}. (A13)

Then, πλ1
λ2
(v) = π0

λ2
(u) holds.

According to Lemma A4, it is easy to verify that given xGi ∩ xGj = ∅, the optimal xGi

minimizing hλ2(x) is given by

xGi = max(‖uGi‖ − λ2, 0)
uGi

‖uGi‖
, (A14)

where i = 1, 2, . . . , k. For the fully connected layers, we define the `1 overlapping group
Lasso regularizer as

Ψ(W) =
Q

∑
q=1

ψλ1
λ2
(W:,q) =

Q

∑
q=1

λ1‖W:,q‖1 + λ2‖W:,q‖

= λ1‖W‖1 +
Q

∑
q=1

λ2‖W:,q‖,
(A15)

where W:,q represents the output weights of the q-th neuron of W. According to Lemma A5,
let Ŵ = sgn(W)�max(|W| − λ1, 0), and then ψλ1

λ2
(W:,q) can be reduced to ψ0

λ2
(Ŵ:,q), which

can be solved via (A14) as follows.

W:,q = max(‖Ŵ:,q‖ − λ2, 0)
Ŵ:,q

‖Ŵ:,q‖
(A16)

For the convolutional layers, we denote the `1 overlapping group Lasso regularizer as

Φ(T) =
Nc

∑
c=1

φ
βa
βb
(T:,c,:,:) =

Nc

∑
c=1

βa‖T:,c,:,:‖1 + βb

Nh

∑
h=1

Nw

∑
w=1
‖T:,c,h,w‖

= βa‖T‖1 +
Nc

∑
c=1

Nh

∑
h=1

Nw

∑
w=1

βb‖T:,c,h,w‖,
(A17)

Likewise, let T̂:,c,:,: = sgn(T:,c,:,:) �max(|T:,c,:,:| − βa, 0), and then φ
βa
βb
(T:,c,:,:) can be

reduced to φ0
βb
(T̂:,c,:,:), which can be solved via (A14) as follows.

T:,c,h,w = max(‖T̂:,c,h,w‖ − βb, 0)
T̂:,c,h,w

‖T̂:,c,h,w‖
(A18)

By incorporating (A15) and (A17) into our model, the `1 norm sparse group Lasso
regularized problem can be formulated as

min
W

: L(W ; X, Y) +
N f

∑
i=1

Q

∑
q=1

ψλ1
λ2
(W(i)

:,q ) +
Nl

∑
j=1

Nc

∑
c=1

φ
βa
βb

(
T(j)

:,c,:,:

)
. (A19)

We elaborate the DNN_PALM algorithm associated with `1 norm sparse group lasso in
Algorithm A2, in which the partial derivatives are denoted as H(W(i)

:,q ) = ∇W(i)
:,q

L(W(i)
:,q ) and

F(T j
:,c,h,w) = ∇T j

:,c,h,w
L(T j

:,c,h,w) for fully connected layers and convolutional layers, respectively.
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Algorithm A2 DNN_PALM Algorithm for `1 norm Group Lasso

Initialize µ > 1, L0
i > 0, (W(i))0, ∀i and L0

j > 0, (T(j))0, ∀j.
for k = 1, 2, . . . do

for i = 1 to N f do

Let ωk−1 = (W(i)
:,q )

k−1 and ωk = (W(i)
:,q )

k, ∀q.
Find the smallest L = µbLk−1

i , b ∈ N, such that ‖H(ωk−1)−H(ωk)‖ ≤ L‖ωk−1 −ωk‖, where
ωk is computed via (A16).

end for
for j = 1 to Nl do

for c = 1 to Nc do
Let γk−1 = (T j

:,c,h,w)
k−1 and γk = (T j

:,c,h,w)
k, ∀h, w.

Find the smallest L = µbLk−1
j , b ∈ N, such that ‖F(γk−1)− F(γk)‖ ≤ L‖γk−1− γk‖, where

γk is computed via (A18).
end for

end for
end for

Appendix B

Appendix B.1. Iterative Method

Iterative pruning [4] is another effective method for obtaining a sparse network while
maintaining high accuracy. As iterative pruning is orthogonal to our method, we can
couple the two methods to obtain even better performance per number of parameters used;
specifically, we replace the usual weight decay regularizer used in [4] with our `0 sparse
group lasso regularizer. In practice, we find that, empirically, the iterative method is able to
achieve better performance. All results reported in the paper are from the iterative method.

Appendix B.2. Hyper-Parameter Settings

In our experiments, all the baseline models were trained from scratch via stochastic
gradient decent(SGD) with a momentum of 0.9. We trained the networks for 150 epochs on
MNIST and 400 epochs on CIFAR-10 and Tiny-ImageNet with an initial learning rate of
0.1 and weight decay of 5e-4. The learning rate is decayed by a factor of 10 at 50, 100 on
MNIST and at 100, 200 on CIFAR-10 and Tiny-ImageNet, respectively.

The experimental settings regarding hyper-parameters for all DNN models we used in
the paper are summarized in Table A1. We employ iterative pruning strategy to prune all the
models. Namely, the pruning process and the retraining process are performed alternately.

Table A1. List of hyper-parameters and their values(“-” denotes “not applicable”).

Hyper-Parameter LeNet300 LeNet5 VGG-Like ResNet-32 VGG-19 Description

learning rate 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3 The learning rate used in retraining process
gradient momentum 0.9 0.9 0.9 0.9 0.9 The gradient momentum used in retraining process
weight decay 1 × 10−4 1 × 10−5 5 × 10−4 1 × 10−4 1 × 10−4 The weight decay factor used in retraining process

minibatch size 1 × 102 6 × 102 1 × 103 3 × 102 4 × 102 The number of training samples over which each SGD
update is computed during the retraining process

`0 norm factor 4 × 10−4 2 × 10−4 1 × 10−6 1 × 10−8 1 × 10−10 The shrinkage coefficient for `0 norm regularization
channel factor - 1 × 10−3 1 × 10−3–1 × 10−2 1 5 × 10−2 5 × 10−2 The shrinkage coefficient of channels for group Lasso
neuron factor 2 × 10−4 2 × 10−4 1 × 10−4 0 1 × 10−2 The shrinkage coefficient of neurons for group Lasso
filter size factor - 1 × 10−3 1 × 10−4 1 × 10−4 1 × 10−4 The shrinkage coefficient of filter shapes for group Lasso
pruning frequency
(epochs/minibatches) 10 10 1 2 1 No. of epochs(LeNet)/minibatches(VGGNet/ResNet) for

pruning before retraining
retraining epochs 30 30 20 30 15 The number of retraining epochs after pruning
iterations 74 102 63 2 66 The number of iterations for obtaining the final results

1 On VGG-like, the channel factor is adaptive and it is increased by 0.001 if its cross-entropy loss is not greater
than the loss before performing pruning for the current mini-batch. Its range is [0.001,0.01].
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Appendix C

Appendix C.1. Computational Efficiency

We want to mention that our main focus here is to compress DNN models via `0 sparse
group lasso. Our main contribution is to solve the corresponding optimizations. Speed is
not our primary focus. However, we still provide the run time of our methods as a reference.
We compared the run time of our MobilePrune with the baseline methods (original methods
without pruning involved), and we found the ratio of the run time of MobilePrune to the
run time of the baseline method is around 5 on average on the same machine.

Appendix C.2. Results about the SSL

Table A2. Results about learning filter shapes in LeNet-5. (We highlight our MobilePrune results).

Method Base/Pruned
Accuracy (%) Filter Size Remaining Filters Remaining

Parameters FLOPs (K)

Baseline - 25–500 20–50 500–25,000 2464
SSL [24] 99.10/99.00 7–14 1–50 - 63.82

MobilePrune 99.12/99.03 14–9 4–16 46–26 51.21

Appendix C.3. Additional Ablation Studies

In this section, we perform ablation studies to compare DNN models regularized
by the proposed `0 sparse group lasso and other DNN models that are regularized by its
individual components. Specifically, we compare DNN models regularized by the proposed
`0 sparse group lasso with DNN models regularized by `0 norm penalty (set group Lasso
penalty to 0) and DNN models regularized by group Lasso penalty (set `0 norm penalty
to 0), respectively. For fair comparison, for all regularized DNN models, we use the same
hyper-parameter setting.

From Table A3 to Table A6, we observe that `0 norm penalty has no effect on structured
pruning as expected and group Lasso penalty can effectively remove redundant structure
components. Furthermore, the combination of `0 norm and group Lasso (our proposed `0
sparse group lasso penalty) can yield sparser models at both structure level and individual
weight level. Notably, `0 norm can help group Lasso to remove more redundant structure
components. Therefore, better acceleration in terms of FLOPs can be obtained by applying
our proposed `0 sparse group lasso penalty. We want to mention that when we compute
FLOPs, we do not take the individual weight sparsity into account. However, based
on [11,65], lower FLOPs could be achieved by unitizing the sparsity on weight level on
dedicated architectures.

Table A3. Alation studies on LetNet-5 (Architecture: 20-50-800-500).

Penalty Base/Pruned
Accuracy (%)

Original/Remaining
Parameters (K)

Pruned
Architecture Filter Size FLOPs (K) Sparsity

(%)

`0 norm 99.12/99.20 431/321.00 20-50-800-500 25–500 2293.0 74.48
Group Lasso 99.12/99.11 431/8.81 4-19-301-29 25–99 187.00 2.04

`1 Group Lasso 99.12/99.03 431/9.98 4-17-271-82 23–99 183.83 2.32
`0 sparse group lasso 99.12/99.11 431/2.31 5-14-151-57 16–65 113.50 1.97

Table A4. Alation studies on VGG-like.

Penalty Base/Pruned
Accuracy (%)

Original/Remaining
Parameters (Mil) Pruned Architecture FLOPs

(Mil)

`0 norm 92.96/93.40 15/3.39 18-43-92-99-229-240-246-507-504-486-241-114-428-168 210.94
Group Lasso 92.96/92.47 15/0.84 17-43-89-99-213-162-93-42-32-28-8-5-429-168 78.07

`1 Group Lasso 92.96/92.90 15/0.61 17-43-92-99-229-240-246-323-148-111-41-39-159-161 134.35
`0 sparse group lasso 92.96/92.94 15/0.60 17-43-87-99-201-185-80-37-27-25-9-4-368-167 77.83
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Table A5. Alation studies on ResNet-32.

Penalty Base/Pruned Accuracy (%) Original/Remaining Parameters (Mil) FLOPs (Mil) Sparsity (%)

`0 norm 95.29/95.68 7.42/6.74 993.11 90.84
Group Lasso 95.29/95.30 7.42/3.43 393.09 45.95

`1 Group Lasso 95.29/95.04 7.42/5.66 735.12 76.28
`0 sparse group lasso 95.29/95.47 7.42/2.93 371.30 39.49

Table A6. Alation studies on VGG19.

Penalty Test Accuracy (%) Remaining Parameters (Mil) Pruned Architecture FLOPs (Mil)

Baseline 61.56 20.12 64-64-128-128-256-256-256-256-512-512-512-512-512-512-512-512 1592.53
`0 norm 61.99 19.29 45-64-114-128-256-256-256-256-512-511-512-509-512-512-512-512 1519.23

Group Lasso 53.25 5.93 23-61-80-128-122-114-164-253-255-322-412-462-23-93-129-512 683.99
`1 Group Lasso 53.97 0.21 29-64-109-128-254-246-254-256-510-509-509-509-512-512-484-512 1282.82

`0 sparse group lasso 56.27 4.05 19-48-57-102-79-83-100-179-219-273-317-341-256-158-116-512 407.37

Appendix C.4. Additional Comparison between `0 Sparse Group Lasso and `1 Norm Sparse
Group Lasso

In addition, we compare the proposed `0 sparse group lasso with `1 norm group
Lasso. The algorithm for DNN models with `1 norm group Lasso penalty is introduced
in Algorithm A2. For hyper-parameter setting, we use the same parameters as `0 sparse
group lasso penalty (as shown in Table A1) except the parameter for `1 norm. We search
the parameter of `1 norm in [0.0001, 0.01] and report the best results in terms of the pruned
test accuracy.

From Table A3 to Table A6, we find that `0 sparse group lasso penalized models
outperform `1 sparse group Lasso penalized models in terms of test accuracy and FLOPs.
For VGG19 model (Table A6), `1 sparse group Lasso penalized model can achieve the
fewest number of parameters, but the pruned test accuracy and FLOPs are much worse
than the `0 sparse group lasso penalized model.

Appendix C.5. The Effect of the Coefficient of `0 Norm Regularizer

In our proposed `0 sparse group lasso, `0 norm regularizer plays an important role of
facilitating pruning networks effectively and efficiently, which has been shown through the
results in ablation studies with and without `0 norm penalty. We further explore the effect of
the strength of the `0 norm coefficient on the pruning performance. We vary the shrinkage
strength for `0 norm penalty by a factor of 10 while keeping the other settings fixed.

As can be seen from Tables A7 and A8, the larger the `0 norm coefficient is, the
more parameters are pruned as expected. Additionally, there is a trade-off between the
shrinkage coefficients for `0 norm penalty and group Lasso penalty, which depends on the
practical demand.

Table A7. The effect of the coefficient of `0 norm penalty on VGG-like.

`0 Penalty
Coefficient

Base/Pruned
Accuracy (%)

Original/Remaining
Parameters (Mil) Pruned Architecture FLOPs (Mil)

1 × 10−4 92.96/89.77 15/0.06 17-43-83-99-161-105-57-28-24-15-11-4-104-157 56.43
1 × 10−5 92.96/92.19 15/0.30 16-43-85-99-171-155-75-33-23-18-10-3-264-167 66.82
1 × 10−6 92.96/92.94 15/0.60 17-43-87-99-201-185-80-37-27-25-9-4-368-167 77.83
1 × 10−7 92.96/92.54 15/0.74 17-43-87-99-213-188-91-40-26-27-9-4-400-168 81.64
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Table A8. The effect of the coefficient of `0 norm penalty on ResNet-32.

`0 Penalty Coefficient Base/Pruned Accuracy (%) Original/Remaining Parameters (Mil) FLOPs (Mil) Sparsity

1 × 10−6 95.29/95.11 7.42/2.06 330.90 27.76
1 × 10−7 95.29/95.33 7.42/2.72 369.36 36.66
1 × 10−8 95.29/95.47 7.42/2.93 77.83 39.49
1 × 10−9 95.29/95.44 7.42/3.02 372.98 40.70

Appendix D

Appendix D.1. Har Dataset Description

Appendix D.1.1. Wisdm Dataset

The WISDM dataset [49], publicly available in [50], includes six activities (walking,
jogging, walking upstairs, walking downstairs, sitting, and standing) that contain 3D
(x, y, z) raw signals collected from the smartphone’s accelerometer at a sampling rate of
20Hz. The total number of participants involved in the experiment is 36. These participants
performed certain daily activities with an Android phone in their front leg pockets. This
dataset has a total of 1,098,209 samples and each sample consists of a timestamp, a user
ID, an activity ID, and the acceleration (x, y, z) raw data. Here for this dataset, 3 features
are used—the gravitational acceleration (x, y, z) toward the center of the Earth. A sliding
window approach with a window size of 80 readings (4 seconds) is used for segmenting
the sequences with a 50% overlapping.

Appendix D.1.2. UCI-HAR Dataset

The UCI-HAR[51] dataset, publicly available in [52], includes six activities (walking,
walking upstairs, walking downstairs, sitting, standing, and jogging) that contains 3D
(x, y, z) raw signals extracted from the accelerometer and gyroscope of a smartphone at a
constant rate of 50 Hz strapped to the waist of a subject. These raw signals were applying
a noise filter to remove the noise first and then sampled in fixed-width sliding windows
of 2.56 s (128 readings). This dataset was collected from a group of 30 volunteers. And
all volunteers were instructed to follow an activity protocol and wore a Samsung Galaxy
S II smartphone on their waist. The dataset includes a total of 10,299 samples including
7352 training samples (71.39%) and 2947 testing samples (28.61%). The dimension for
each sample is 128 readings × number of features with a 50% overlapping. Here for this
dataset, 9 features are used—the acceleration signals (x, y, z) collected by the smartphone
accelerometer in standard gravity units, the body acceleration signals (x, y, z) obtained by
subtracting the gravity from the total acceleration, and the angular velocity vector (x, y, z)
measured by the smartphone gyroscope.

Appendix D.1.3. PAMAP2 Dataset

The PAMAP2 dataset [53,54], publicly available in [55], contains data of different
physical activities, performed by 9 subjects wearing 3 inertial measurement units and a
heart rate monitor with a sampling rate of 100 Hz. According to the dataset’s protocol,
there are 12 physical activities—lying, sitting, standing, walking, running, cycling, nordic
walking, ascending stairs, descending stairs, vacuum cleaning, and rope jumping. All
the collected data above include two 3-axis accelerometer data, 3-axis gyroscope data,
3-axis magnetometer data, 3-axis orientation data, and temperature. This dataset has a
total of 3,850,505 samples and each sample has a timestamp, a user id, an activity id, and
the corresponding features. Here we pick 40 features listed by the dataset. Similar to the
WISDM dataset, a sliding window approach with a window size of 128 readings (1.28 s) is
used for segmenting the sequences with a 50% overlapping.
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Appendix D.2. 1D CNN Model

In general, sensor data, such as accelerometers and gyroscopes, can be classified as
time-series data. We can encode these time-series data as images to allow machines to
recognize human behavior virtually. Inspired by the recent successes of deep learning
techniques in computer vision, we convert sequence data into image data according to
Gramain Angular Field transform algorithm [66] to obtain a one-dimensional convolutional
neural network (1D CNN) model. The benefit of using CNNs for sequence classification is
that we can learn from the raw time series data directly, and this method does not require
domain expertise to manually engineer input features. This 1D CNN model can learn
an internal representation of the time series data and could achieve good performance to
models that fit on the version of the dataset with engineered features.

Similar to the general CNN model, the convolutional layer that uses the convolution
kernel for the input data is the most essential part in CNN. The convolution kernel works as
a filter and is activated by a non-linear activation function. In this paper, a sequential model
with a PyTorch backend is built via Google Colab [56] and 5 consecutive 1D convolutional
layers with 128 neurons each are selected. Each layer uses a ReLU activation function.
In order to compress this CNN model, we cannot add a 1D max-pooling because of the
random down-sampling. For the WISDM and PAMAP2 datasets, 10 convolution kernels
are used for each layer. For the UCI-HAR dataset, 5 convolution kernels are used. All these
values are selected based on tons of experiments. In addition, for the sake of efficiency, we
select the number of epochs to be 150 for all three datasets during the training stage.

Appendix D.3. Data Pre-Processing

In order to provide a certain data dimension and improve the performance of the
proposed 1D CNN Model, the above collected raw data need to be pre-processed as
the following.

Appendix D.3.1. Re-Scaling and Standardization

If we use the above datasets’ raw data directly to train our model, the final results may
cause training bias because of those large values. In order to remove such bias, standard-
izing a dataset is necessary. Standardizing a dataset involves re-scaling the distribution
of the values for each channel such that the mean is 0 and the standard deviation is 1, as
shown in Equation (A20):

Xij =
Xij −mean(Xi)

std(Xi)
(A20)

where i = 1, 2, . . . , n and n denotes the number of channels, j = 1, 2, . . . , m and m denotes
the number of elements in each channel.

Appendix D.3.2. Segmentation

As mentioned above, the input to the model consists of a data sequence extracted from
the raw sensor data. The data were recorded continuously in the data collection process.
In order to preserve the temporal relationship between the collected data points and their
corresponding activity, a sliding window approach is used to segment the collected data
points. For the HCI-HAR and PAMAP2 datasets, a fixed-length of 128 sliding windows
with an overlapping rate of 50% is applied. For the WISDM dataset, a fixed-length of 80
sliding windows with an overlapping rate of 50% is applied. After segmenting the raw
data, we obtain 27,455 samples for the WISDM dataset, 10,299 samples for the UCI-HAR
dataset, and 30,356 samples for the PAMAP2 dataset. Next, we select 80% data samples
randomly from WISDM and PAMAP2 datasets as the training samples while the remaining
20% data samples are the testing samples. For the UCI-HAR dataset, it is already split.
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Appendix D.3.3. K-Fold Cross-Validation

In order to improve the proposed model’s final performance, k-fold cross-validation is
used after the above segmentation step. The principle of the k-fold cross-validation method
is to split the input samples as the number of k groups. It can lead to a less biased or less
positive assessment of the ability of the model than other methods [67]. All the training
data samples are considered for both training and validation in a k-fold cross-validation
approach. First, we divide the training data samples into k equal subsets. Then, we pick one
subset as the validation set and the remaining k− 1 subsets as the training set. There are k
different ways to select the validation set, and therefore we have k different pairs of testing
and validation datasets. In this paper, we choose k = 5 and evaluate all the 5 different pairs
of testing and validation datasets for our proposed method and all state-of-the-art pruning
methods. The final training and validation dataset will be selected according to the final
performance with the testing data set.

Appendix D.4. Hyper-Parameters Tuning

Hyper-parameters have a great impact on the deep learning model performance. In
the following context, we will present how to select the training subset, validation subset
based on the 5-fold cross-validation before the training stage, how to pick the learning
rate during the training stage, how to select the model by the epochs during the training
stage, and how to pick pruning threshold to compress the final model. The experiments
are implemented on all three datasets and the model performance is evaluated by varying
several model parameters.

Appendix D.4.1. Cross-Validation Tuning

In order to improve the proposed model’s final performance, k-fold cross-validation is
used after segmenting the input samples. This approach can lead to a less biased or less
positive assessment of the ability of the model than other methods [67]. Table A9 shows
the results on the test set corresponding to different validation set choices. The pruned
accuracy results are obtained when we use the fold numbers 4, 5, and 1 as the validation
set based on both pruned accuracy and the nonzero parameters’ percent for the WISDM,
UCI-HAR, PAMAP2 datasets, respectively.

Appendix D.4.2. Learning Rate Tuning

The learning rate is a hyper-parameter that controls how much to change the model in
response to the estimated error each time the model weights are updated [68]. Table A9
demonstrates the experiment results of different learning-rate settings. For the WISDM
dataset, we observe that the best performance of pruned accuracy and parameter remaining
percentage is achieved when the learning rate equals 1.5× 10−4. For the UCI-HAR dataset,
when the learning rate is 2× 10−4, we obtain the best results of pruned accuracy and
parameter remaining percentage. For the PAMAP2 dataset, the best-pruned accuracy is
achieved when the learning rate is 1.5× 1.0−4. To make the experiment settings consistent
and comparable, we set the learning rate to be 1.0× 10−4 for all three datasets.
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Table A9. Impact of different cross-validation fold numbers and learning rates on the proposed `0

sparse group lasso approach on each HAR dataset—WISDM, UCI-HAR, and PAMAP2, respectively.
(We highlight our selection in both fold number and learning rate for each dataset).

Dataset Type Value Base/Pruned
Accuracy (%)

Parameter
Nonzero (%)

Parameter
Remaining (%)

Node
Remaining (%)

WISDM

Fold Number

1 93.52/92.68 11.64 32.49 57.42
2 94.88/93.70 10.03 30.35 55.08
3 94.45/93.48 9.45 27.97 52.13
4 94.97/94.65 9.52 28.03 53.52
5 93.52/92.68 11.64 32.49 57.42

Learning Rate

1.0 × 10−5 89.55/86.72 27.09 93.50 96.68
5.0 × 10−5 92.93/84.36 9.41 40.44 64.06
1.0 × 10−4 94.97 / 94.65 27.09 28.03 53.52
1.5 × 10−4 94.96/94.88 10.38 27.26 52.54
1.0 × 10−4 94.65/94.57 10.54 32.38 56.84

UCI-HAR

Fold Number

1 78.42/78.08 15.53 31.99 56.64
2 89.89/89.28 32.49 64.29 80.27
3 79.13/79.37 16.02 32.25 56.84
4 78.22/78.22 18.69 40.02 63.48
5 90.06/89.96 23.00 46.83 68.75

Learning Rate

1.0 × 10−5 85.27/85.51 77.98 94.66 97.27
5.0 × 10−5 89.38/89.24 16.69 85.77 92.58
1.0 × 10−4 90.06/89.96 23.00 46.83 68.75
1.5 × 10−4 90.94/90.91 16.69 31.04 56.45
2.0 × 10−4 90.40/90.43 13.24 29.10 54.10

PAMAP2

Fold Number

1 96.89/96.95 1.26 3.72 10.74
2 92.29/92.28 1.27 3.15 10.35
3 96.49/96.28 1.81 4.74 14.84
4 95.08/94.99 1.20 3.42 10.55
5 94.81/94.81 1.46 3.71 11.52

Learning Rate

1.0 × 10−5 93.63/85.80 7.93 28.61 49.22
5.0 × 10−5 94.25/93.89 3.90 11.81 28.32
1.0 × 10−4 96.89/96.95 1.26 3.72 10.74
1.5 × 10−4 96.57/96.62 1.12 2.36 7.62
2.0 × 10−4 94.89/94.99 0.68 2.02 7.62

Appendix D.4.3. Number of Epochs Tuning

The number of epochs is a hyper-parameter that defines the number of times that the
learning algorithm will work through the entire training dataset. Figure A1a–c show the
training accuracy, validation accuracy, and testing accuracy versus the number of epochs
for WISDM, UCI-HAR, and PAMAP2 datasets, respectively. For all three datasets, the
number of epochs is 150; however, we only pick the epoch number based on the highest
accuracy of the validation set for each dataset. The validation dataset is different from the
test dataset, but is instead used to give an unbiased estimate of our final model. Based on
the final results, the highest validation accuracy occurs at 150, 102, 113 epochs for WISDM,
UCI-HAR, and PAMAP2 datasets, respectively.
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(a) 

(b)

(c)

(d)

(e)

(f)

Figure A1. Impact of the different number of epochs (a–c) and prune thresholds (d–f) on the proposed
`0 sparse group lasso approach on each HAR dataset—WISDM (a,d), UCI-HAR (b,e), and PAMAP2
(c,f), respectively.

Appendix D.4.4. Prune Threshold Tuning

For all the pruning methods including `0 sparse group lasso, after pruning, the weights
cannot be exact zero due to the binary bits computation. Therefore, if weight is less
than a costumed prune threshold, we set the weight to be zero in those pruned models.
Figure A1d–f shows the experiment results of different prune threshold settings for WISDM,
UCI-HAR, and PAMAP2 datasets, respectively. For the WISDM dataset, we observe that
the best performance of pruned accuracy and parameter remaining percentage is achieved
when the threshold equals 0.015. For the UCI-HAR dataset, when the pruned threshold is
0.005, we obtain the best results of pruned accuracy and parameter remaining percentage.
For the PAMAP2 dataset, the best-pruned accuracy is achieved when the pruned threshold
is 0.01.
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