
Citation: Qie, X.; Kang, C.; Zong, G.;

Chen, S. Trajectory Planning and

Simulation Study of Redundant

Robotic Arm for Upper Limb

Rehabilitation Based on Back

Propagation Neural Network and

Genetic Algorithm. Sensors 2022, 22,

4071. https://doi.org/10.3390/

s22114071

Academic Editors: Dongwook Rha

and Kyoungchul Kong

Received: 25 April 2022

Accepted: 26 May 2022

Published: 27 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Trajectory Planning and Simulation Study of Redundant
Robotic Arm for Upper Limb Rehabilitation Based on Back
Propagation Neural Network and Genetic Algorithm
Xiaohan Qie , Cunfeng Kang * , Guanchen Zong and Shujun Chen

Department of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China;
qiexiaohan@emails.bjut.edu.cn (X.Q.); zongguanchen@emails.bjut.edu.cn (G.Z.); sjchen@bjut.edu.cn (S.C.)
* Correspondence: kangcunfeng@bjut.edu.cn

Abstract: In this study, a Back Propagation (BP) neural network algorithm based on Genetic Algorithm
(GA) optimization is proposed to plan and optimize the trajectory of a redundant robotic arm for
the upper limb rehabilitation of patients. The feasibility of the trajectory was verified by numerical
simulations. First, the collected dataset was used to train the BP neural network optimized by
the GA. Subsequently, the critical points designated by the rehabilitation physician for the upper
limb rehabilitation were used as interpolation points for cubic B−spline interpolation to plan the
motion trajectory. The GA optimized the planned trajectory with the goal of time minimization, and
the feasibility of the optimized trajectory was analyzed with MATLAB simulations. The planned
trajectory was smooth and continuous. There was no abrupt change in location or speed. Finally,
simulations revealed that the optimized trajectory reduced the motion time and increased the motion
speed between two adjacent critical points which improved the rehabilitation effect and can be
applied to patients with different needs, which has high application value.

Keywords: upper limb rehabilitation robotic arm; back propagation neural network; genetic algorithm;
trajectory planning

1. Introduction

Multi−Degree−Of−Freedom (MDOF) robotic arms and automation systems have
been widely used in the field of welding and the tools used for welding were often installed
on the end of the robotic arm, to replace the worker to complete some complex welding
process. The welding action of the robotic arm and the corresponding various parameters
have a great impact on the welding effect of the robotic arm. Kang et al. [1] proposed a
control algorithm for weaving welding of circular trajectories based on the principle of
spatial transformation, which can effectively solve the problem of discontinuities at the
sharp corners of the weld, and found that the strategy can generate more accurate circular
trajectories. Kang et al. [2] optimized the important parameters of the high−frequency
welding process through finite element simulation. In addition, an automated chemical
synthesis system was developed to perform chemical experiments [3]. However, the appli-
cation of robotic arms in the biomedical field has only recently emerged. Bodner et al. [4]
experimentally evaluated the suitability of the da Vinci surgical robot for thoracic surgery,
proving that it was possible to safely perform thoracic surgery.

There are many factors that can cause damage to the upper limb. For example,
stroke [5], prolonged smartphone use [6], and sports−related injuries [7]. Our upper limb
rehabilitation robotic arm is not only for a specific type of disease, but also for all patients
who need upper limb rehabilitation. Stroke is only used as a typical case to be illustrated in
this study. Patients who have had a stroke are difficult to cure in a short time, and most
of them require continuous care for rehabilitation [8]. This places a high demand on the
number of health care workers. However, most countries have limited medical personnel

Sensors 2022, 22, 4071. https://doi.org/10.3390/s22114071 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114071
https://doi.org/10.3390/s22114071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5222-2674
https://orcid.org/0000-0001-9153-0792
https://doi.org/10.3390/s22114071
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114071?type=check_update&version=1

Sensors 2022, 22, 4071 2 of 20

to meet the needs of a large number of patients with disabilities. In response to the lack
of medical staff, a wearable point−of−care system was proposed and researched to the
continuously monitor patients’ vital signs and implements round−the−clock treatment
protocols [9]. As for the rehabilitation of stroke patients, studies show that upper extremity
motor restoration treatments, such as constraint−induced movement therapy and robotics,
was effective in improving patients’ conditions [10].

All of the above causes can lead to loss of partial function of the upper limb in normal
people. This will limit the movement of the upper limb to some extent, and in severe cases,
the upper limb will not even be able to move on its own. As a result, there is a need to
develop upper limb rehabilitation robotic arms to assist physicians in the rehabilitation of
patients’ upper limb. Richardson et al. [11] developed a 3DOF pneumatic robot for physical
therapy of the upper limb, and the device was experimentally shown to have great appli-
cability. Johnson et al. [12] developed a 5DOF system for patient upper limb orthopedics
with three control modes to perform different modes of orthopedic rehabilitation on the
patient. Gao et al. [13] designed a virtual reality−based upper limb rehabilitation robot that
avoided the problem of the large size of traditional MDOF rehabilitation robots and used a
gyroscope to control a lightweight MDOF exoskeleton. However, the above−mentioned
robotic arms with less than 6DOF all have a low flexibility of movement, which makes it
difficult to meet the requirements in avoiding obstacles, or scenarios with special require-
ments for robot joint angles. It also fails to meet the requirements of different patients
for rehabilitation. Compared to other lower degree−of−freedom robotic arms, our 7DOF
upper limb rehabilitation robotic arm has more degrees of freedom to treat patients with
different levels and causes of injury to adopt more positions for rehabilitation. Therefore,
in this study, a 7DOF redundant robotic arm with a greater motion flexibility was selected
for upper limb rehabilitation, which helped different patients to perform rehabilitation
training in a more flexible way.

In the present, the application of machine learning and deep learning has become more
and more widespread. For engineering applications, a hybrid gradient boosting method
combining standard statistical and machine learning models was performed to predict
engineering failures [14], and fatigue damage of turbine blades was assessed by a deep
learning regression hierarchy strategy [15]. On the control side, tuning of the proportional
integral derivative controller was performed by a machine learning search method [16],
and the proportional integral derivative controller was optimized by the Genetic Algorithm
(GA) [17]. Furthermore, there are extensive opportunities for machine learning−assisted
physical therapy in the future [18].

However, solving the inverse kinematic solution of a MDOF robotic arm by the
conventional methods was complicated but not highly accurate. Therefore, the machine
learning algorithms were used to solve the inverse kinematic solution of the robotic arm.
Tejomurtula et al. [19] proposed a solution based on a structured neural network that allows
fast training of the network to obtain results. However, the accuracy of the method was
still not high enough when applied to certain precision tasks. Nearchou [20] proposed a
modified GA to optimize the end−effector position using a GA to achieve simultaneous
minimization of end−effector position error and robot joint displacement. However,
this method also has some limitations, such as poor reliability of the results and long
computation time when calculating the complex problems. Köker [21] designed a method
for redundant robotic arms that can improve the computational accuracy by optimizing
the results of the floating−point part of the neural network training using a GA, and found
that the error of the neural network was much reduced by the GA. In the present study, the
“Köker’s idea” was used to calculate the inverse kinematic solution of a redundant robotic
arm for the upper limb rehabilitation using a neural network algorithm optimized by the
GA, which improved the accuracy of calculation results and avoided the disadvantages of
GA and neural network to some extent.

When the robotic arm is in motion, the robotic arm must move along a predetermined
trajectory and ensure smoothness and continuity of the motion at the robot’s end. Therefore,

Sensors 2022, 22, 4071 3 of 20

it is necessary to ensure that the location or speed of the joints did not change abruptly,
which eliminated the large errors in the robotic arm and the patients were prevented from
receiving additional injuries. That is why we need to perform trajectory planning [22].
Tian et al. [23] proposed a GA to search for effective and optimal solutions in the task
trajectory. Gasparetto et al. [24] used a fifth−order B−spline curve for motion trajectory
planning and verified the effectiveness of the method via simulation. Sometimes the
planned trajectory does not meet the intended requirements, which requires optimization
of the trajectory to meet the requirements. Ahuactzin et al. [25] used a GA to optimize
the planned trajectory. Therefore, in this study, we planned the rehabilitation trajectory of
the robotic arm with the cubic B−spline interpolation method and optimized the planned
trajectory by the GA.

To ensure the accuracy and smoothness of the rehabilitation process of the upper
limb, the eight critical points in the rehabilitation process were collected from rehabilitation
physicians to plan the motion trajectory of the end of the 7DOF redundant upper limb
rehabilitation of the robotic arm. To improve the accuracy of the inverse kinematic solution
of the robotic arm, as well as the trajectory planning, an algorithm of Back Propagation
(BP) neural network optimized by GA was used to calculate the inverse kinematic solution
of the robotic arm. The results were used for trajectory planning with the cubic B−spline
interpolation method and the trajectory was optimized on the basis of GA for time mini-
mization, which increased the speed of motion between two adjacent critical points and
improved the effectiveness of rehabilitation.

2. Back Propagation Neural Network Algorithm Based on Genetic Algorithm Optimization

The eight critical points were selected by the rehabilitator for the patient’s rehabil-
itation process in the same two−dimensional plane. The motion trajectory consisting
of these eight critical points did not guarantee the continuity of speed at the end of the
rehabilitation robotic arm, so the corresponding trajectory planning was required to ensure
its rehabilitation effect.

In this section, the iterative algorithm of the GA optimized BP neural network was
used to find the inverse kinematic solution of the robotic arm. Figure 1 shows the sketch
of the robotic arm model. The BP neural network algorithm has the advantages of simple
structure and easy implementation. However, it is time−consuming training, easy to fall
into local optimum, and no ideal regulation to follow in the selection of the number of
nodes in the hidden layer, which makes it impossible to determine the appropriate network
structure. Therefore, the weights and thresholds of the neural network was iteratively
calculating by a GA. The calculated results were then substituted into the neural network,
and the collected dataset was used to train the neural network to acquire the optimal neural
network. Finally, the above problem was solved using the optimal network for inverse
kinematic computation.

We have fabricated and built a redundant robotic arm for upper limb rehabilitation
and have performed some test works on it. Figure 2 shows the SolidWorks model and
physical object. The following studies are all based on the upper limb rehabilitation of the
7DOF redundant robotic arm.

2.1. Principles of Back Propagation Neural Network and Genetic Algorithm
2.1.1. Back Propagation Neural Network

The BP neural network is a multilayer feedforward neural network trained according
to a back−transmission error algorithm, and Figure 3 schematically shows the structure
of the neural network of the input layer, hidden layer, and output layer. Each layer
contains many neurons inside, and the computational unit in the neuron is the activation
function. The activation functions commonly used in network computation are the Sigmoid
function [26] and Tansig function [27]. During the operation of the network, data are
transmitted sequentially with the input layer, hidden layer, and output layer. When the
data reach the output layer they are then transmitted back, thus correcting errors in the

Sensors 2022, 22, 4071 4 of 20

network. The network calculation process contains two types of parameters: weights and
thresholds. The magnitude of the values affects the error of the network.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 20

Figure 1. Sketch of a redundant robotic arm for 7 Degree−Of−Freedom upper limb rehabilitation.

We have fabricated and built a redundant robotic arm for upper limb rehabilitation
and have performed some test works on it. Figure 2 shows the SolidWorks model and
physical object. The following studies are all based on the upper limb rehabilitation of the
7DOF redundant robotic arm.

Figure 2. SolidWorks model and physical correspondence diagram. (a) Front; (b) Left; (c) Diagonal.

2.1. Principles of Back Propagation Neural Network and Genetic Algorithm
2.1.1. Back Propagation Neural Network

The BP neural network is a multilayer feedforward neural network trained according
to a back−transmission error algorithm, and Figure 3 schematically shows the structure of
the neural network of the input layer, hidden layer, and output layer. Each layer contains
many neurons inside, and the computational unit in the neuron is the activation function.
The activation functions commonly used in network computation are the Sigmoid func-
tion [26] and Tansig function [27]. During the operation of the network, data are transmit-
ted sequentially with the input layer, hidden layer, and output layer. When the data reach
the output layer they are then transmitted back, thus correcting errors in the network. The
network calculation process contains two types of parameters: weights and thresholds.
The magnitude of the values affects the error of the network.

Figure 1. Sketch of a redundant robotic arm for 7 Degree−Of−Freedom upper limb rehabilitation.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 20

Figure 1. Sketch of a redundant robotic arm for 7 Degree−Of−Freedom upper limb rehabilitation.

We have fabricated and built a redundant robotic arm for upper limb rehabilitation
and have performed some test works on it. Figure 2 shows the SolidWorks model and
physical object. The following studies are all based on the upper limb rehabilitation of the
7DOF redundant robotic arm.

Figure 2. SolidWorks model and physical correspondence diagram. (a) Front; (b) Left; (c) Diagonal.

2.1. Principles of Back Propagation Neural Network and Genetic Algorithm
2.1.1. Back Propagation Neural Network

The BP neural network is a multilayer feedforward neural network trained according
to a back−transmission error algorithm, and Figure 3 schematically shows the structure of
the neural network of the input layer, hidden layer, and output layer. Each layer contains
many neurons inside, and the computational unit in the neuron is the activation function.
The activation functions commonly used in network computation are the Sigmoid func-
tion [26] and Tansig function [27]. During the operation of the network, data are transmit-
ted sequentially with the input layer, hidden layer, and output layer. When the data reach
the output layer they are then transmitted back, thus correcting errors in the network. The
network calculation process contains two types of parameters: weights and thresholds.
The magnitude of the values affects the error of the network.

Figure 2. SolidWorks model and physical correspondence diagram. (a) Front; (b) Left; (c) Diagonal.

Sensors 2022, 22, 4071 5 of 20

Sensors 2022, 22, x FOR PEER REVIEW 5 of 20

Figure 3. Schematic diagram of Back Propagation neural network structure.

The network contains two stages in the calculation, the phase of forwardly transmis-
sion of the signal and backwardly transmission of the error. Before training the neural
network, the target value of the final output result should be set first. In the process of
training the neural network, the size of the weights and thresholds are constantly revised,
and the actual value of the output is constantly close to the preset target value, and the
optimal neural network was finally obtained.

The first step is the web forward transmission. Let the nodes in the input layer of the
network be numbered j (j = 1, 2, …, v), the nodes in the hidden layer of the network are
assigned numbers n (n = 1, 2, …, u), and the nodes in the output layer of the network are
given numbers k (k = 1, 2, …, z). The signal passes the data through the input layer to the
hidden layer. The input Nn of the nth node of the input layer is given by Equation (1):

1

v

n jnj n
j

N w x b
=

= + (1)

where bn is the threshold of the nth node in the hidden layer, wnj is the weight of the jth
node in the input layer to the nth node in the hidden layer, and xj is the input value of the
jth node in the input layer. Substituting Equation (1) into the activation function fh in the
hidden layer, the output of the nth node of the hidden layer is given as follows:

h
1

v

n j nnj
j

y f w x b
=

 
= + 

 
 (2)

Using the output of the hidden layer as the input of the output layer, the input of the
kth node in the output layer is obtained as follows:

1

u

nk kn k
n

N w y a
=

= + (3)

where ak is the threshold value of the kth node of the output layer, wkn is the weight of the
nth node in the input layer to the kth node in the output layer, and yn is the output value
of the nth node of the hidden layer. Finally, the output equation for the kth node of the
output layer was obtained by substituting the Equation (3) into the activation function fo
of the output layer:

()ok kQ f N= (4)

The second step is the network back transmission. When the forward transmission
of the signal was completed, the network will calculate the output error of the neurons in
each layer in reverse from the output layer. Then the error gradient descent method was

Figure 3. Schematic diagram of Back Propagation neural network structure.

The network contains two stages in the calculation, the phase of forwardly transmis-
sion of the signal and backwardly transmission of the error. Before training the neural
network, the target value of the final output result should be set first. In the process of
training the neural network, the size of the weights and thresholds are constantly revised,
and the actual value of the output is constantly close to the preset target value, and the
optimal neural network was finally obtained.

The first step is the web forward transmission. Let the nodes in the input layer of the
network be numbered j (j = 1, 2, . . . , v), the nodes in the hidden layer of the network are
assigned numbers n (n = 1, 2, . . . , u), and the nodes in the output layer of the network are
given numbers k (k = 1, 2, . . . , z). The signal passes the data through the input layer to the
hidden layer. The input Nn of the nth node of the input layer is given by Equation (1):

Nn =
v

∑
j=1

wnjxj + bn (1)

where bn is the threshold of the nth node in the hidden layer, wnj is the weight of the jth
node in the input layer to the nth node in the hidden layer, and xj is the input value of the
jth node in the input layer. Substituting Equation (1) into the activation function f h in the
hidden layer, the output of the nth node of the hidden layer is given as follows:

yn = fh

(
v

∑
j=1

wnjxj + bn

)
(2)

Using the output of the hidden layer as the input of the output layer, the input of the
kth node in the output layer is obtained as follows:

Nk =
u

∑
n=1

wknyn + ak (3)

where ak is the threshold value of the kth node of the output layer, wkn is the weight of the
nth node in the input layer to the kth node in the output layer, and yn is the output value of
the nth node of the hidden layer. Finally, the output equation for the kth node of the output

Sensors 2022, 22, 4071 6 of 20

layer was obtained by substituting the Equation (3) into the activation function f o of the
output layer:

Qk = fo(Nk) (4)

The second step is the network back transmission. When the forward transmission of
the signal was completed, the network will calculate the output error of the neurons in each
layer in reverse from the output layer. Then the error gradient descent method was used to
adjust the weights and thresholds of each layer. Firstly, the Mean Square Error (MSE) Ep, of
a single sample datum p was calculated by the following equation:

Ep =
1
2

z

∑
k=1

(Tk −Qk)
2 (5)

where Tk is the expected value of the kth node. Using the gradient descent method to
find the weight and threshold correction amount of the output layer and the hidden layer,
respectively. The specific equations are shown in Equations (6)–(9), where ∆wkn and ∆wnj
represent the weight correction of the output layer and the hidden layer, respectively,
∆ak and ∆bn denote the threshold correction of the output layer and the hidden layer,
respectively.

∆wkn = −η
∂E

∂wkn
= η

P

∑
p=1

z

∑
k=1

(
Tp

k −Qp
k

)
× fo

′(Nk)× yn (6)

∆ak = −η
∂E
∂ak

= η
P

∑
p=1

z

∑
k=1

(
Tp

k −Qp
k

)
× fo

′(Nk) (7)

∆wnj = −η
∂E

∂wnj
= η

P

∑
p=1

z

∑
k=1

(
Tp

k −Qp
k

)
× fo

′(Nk)× wkn × fh
′(Nn)× xj (8)

∆bn = −η
∂E
∂bn

= η
P

∑
p=1

z

∑
k=1

(
Tp

k −Qp
k

)
× fo

′(Nk)× wkn × fh
′(Nn) (9)

where η is the learning rate of the network, and P is the number of training samples.

2.1.2. Genetic Algorithm

GA is to generate a new population by continuously searching to select the optimal
solution, the specific process is similar to the process of human genetic evolution. The
specific process of GA is the selection and initialization of the population, fitness function,
selection, crossover, mutation, getting new individuals, and judging whether the new
individuals meet the required conditions. If they do not meet the conditions, then return
to the selection operator to continue the search for the optimal solution. If they meet the
conditions, then the optimal solution is the output. Individuals are often encoded by binary
encoding, multiparameter cascade encoding, and floating−point encoding. The encoding
methods have their characteristics and were adapted to different practical application
scenarios. During the operation process, the individuals were selected and crossed between
two operators. The individuals themselves are affected by the variation operators.

2.2. Computational Procedure of Back Propagation Neural Network Algorithm Based on Genetic
Algorithm Optimization

In the present study, the process of the BP neural network algorithm based on GA
optimization has four steps. Figure 4 shows the flow chart of the computation.

Sensors 2022, 22, 4071 7 of 20
Sensors 2022, 22, x FOR PEER REVIEW 7 of 20

Figure 4. Computational flow chart.

In the first step, a dataset was created, and each joint angle was divided equally into
180 parts in its range of motion. The corresponding end location matrices were solved
using the forward kinematic equations, and these matrices were transformed to corre-
spond joint matrices. The 180 datasets were generated and stored as the elements of the
input and output layers in the neural network, respectively. In the second step, a
three−layer BP neural network model was built. The number of input layer neurons I was
set to 12, the number of output layer neurons O was set to 7, and the number of hidden
layer neurons H was calculated according to the empirical Equation (10). The number of
neurons in the hidden layer was calculated to be 14 and the Pureline function [28] was
selected as the activation function for the input and output layers in this study. The train-
ing times of the network were set to 1000, the training target was set to 0.0001, and the
learning rate was set to 0.1.

H I +O α= + (10)

where α is a regulation constant with a default value range of 1 to 10. The third step is to
establish a GA model. This model used binary coding, the range of the weight threshold
value was limited between −5 to 5, and the individual precision was set to 0.01. According
to Equation (11), L was 9.967, and was rounded to 10, thus the individual binary coding
length was 10. The primitive population was then determined, and the number of weights
was equal to the number of neurons in the input layer multiplied by the number of neu-
rons in the hidden layer, plus the number of neurons in the hidden layer multiplied by
the number of neurons in the output layer. The number of thresholds was equal to the
number of neurons in the hidden layer, plus the number of neurons in the output layer.
The network contains 287 weights and thresholds, of which 266 were weights and 21 were
thresholds on the basis of the number of neurons in the three layers of the neural network.
Forty groups of individuals were randomly generated as the parents and a matrix of size
40 × 2870 was formed and then was substituted into the neural network. The errors calcu-
lated by the neural network after bringing in the matrix were sorted to create the fitness
function. Finally, the individuals were updated iteratively by three operators of selection,
crossover, and variation until the set number of genetic generations was completed. As
seen in Figure 5, with continuous evolutionary inheritance, the two norm error decreases
in steps, and finally, the weights and thresholds with the smallest errors are output.

2log 1b aL
esp

 −= + 
 

 (11)

where L is the number of binary codes, a is the lower bound for individual values, b is the
upper bound on the value taken by an individual, and esp is the accuracy of the individual.

Figure 4. Computational flow chart.

In the first step, a dataset was created, and each joint angle was divided equally into
180 parts in its range of motion. The corresponding end location matrices were solved
using the forward kinematic equations, and these matrices were transformed to correspond
joint matrices. The 180 datasets were generated and stored as the elements of the input
and output layers in the neural network, respectively. In the second step, a three−layer BP
neural network model was built. The number of input layer neurons I was set to 12, the
number of output layer neurons O was set to 7, and the number of hidden layer neurons
H was calculated according to the empirical Equation (10). The number of neurons in the
hidden layer was calculated to be 14 and the Pureline function [28] was selected as the
activation function for the input and output layers in this study. The training times of the
network were set to 1000, the training target was set to 0.0001, and the learning rate was set
to 0.1.

H =
√

I + O + α (10)

where α is a regulation constant with a default value range of 1 to 10. The third step is to
establish a GA model. This model used binary coding, the range of the weight threshold
value was limited between −5 to 5, and the individual precision was set to 0.01. According
to Equation (11), L was 9.967, and was rounded to 10, thus the individual binary coding
length was 10. The primitive population was then determined, and the number of weights
was equal to the number of neurons in the input layer multiplied by the number of neurons
in the hidden layer, plus the number of neurons in the hidden layer multiplied by the
number of neurons in the output layer. The number of thresholds was equal to the number
of neurons in the hidden layer, plus the number of neurons in the output layer. The network
contains 287 weights and thresholds, of which 266 were weights and 21 were thresholds on
the basis of the number of neurons in the three layers of the neural network. Forty groups
of individuals were randomly generated as the parents and a matrix of size 40 × 2870
was formed and then was substituted into the neural network. The errors calculated by
the neural network after bringing in the matrix were sorted to create the fitness function.
Finally, the individuals were updated iteratively by three operators of selection, crossover,
and variation until the set number of genetic generations was completed. As seen in
Figure 5, with continuous evolutionary inheritance, the two norm error decreases in steps,
and finally, the weights and thresholds with the smallest errors are output.

L = log2

(
b− a
esp

+ 1
)

(11)

Sensors 2022, 22, 4071 8 of 20

where L is the number of binary codes, a is the lower bound for individual values, b is the
upper bound on the value taken by an individual, and esp is the accuracy of the individual.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 20

Figure 5. Two norms error curve.

In the fourth step, the optimal weights and thresholds obtained by the GA were sub-
stituted into the built BP neural network model. The first 150 sets of the dataset were used
for the training of the network, and the last 30 sets were used to verify the network train-
ing results. As seen in Figure 6, with the number of training sessions increasing, the MSE
decreased continuously. The curve of the train and test set has almost the same trend, thus
the network meets the requirement.

Figure 6. Mean Square Error curve of optimal neural network.

To verify the error of the trained network, the angles of the seven joints were divided
into 500 parts and substituted into the trained network to analyze the error. The maximum
error between the solved data and the original data is 0.002 rad. As shown in Tables 1 and
2, 10 sets of angle information were selected in the table. One was the original radian da-
taset, and the other was the radian dataset solved by the trained network. By comparing
the original radian data and the radian data, the error was very small. After verifying the
training results of the network, the collected data of eight critical points were input to the
trained network. The network outputs the angles of each joint, thus completing the calcu-
lation of the inverse kinematic solution of the 7DOF robotic arm

Table 1. Original radian data.

Group Joint #1 (rad) Joint #2 (rad) Joint #3 (rad) Joint #4 (rad) Joint #5 (rad) Joint #6 (rad) Joint #7 (rad)
1 −1.4765 0.1257 0.0768 −1.8431 −1.4451 −0.5515 −0.5515
2 −1.4718 0.1319 0.0806 −1.8392 −1.4388 −0.5486 −0.5486
3 −1.4671 0.1382 0.0845 −1.8354 −1.4326 −0.5456 −0.5456
4 −1.4624 0.1445 0.0883 −1.8315 −1.4263 −0.5426 −0.5426

Figure 5. Two norms error curve.

In the fourth step, the optimal weights and thresholds obtained by the GA were
substituted into the built BP neural network model. The first 150 sets of the dataset were
used for the training of the network, and the last 30 sets were used to verify the network
training results. As seen in Figure 6, with the number of training sessions increasing, the
MSE decreased continuously. The curve of the train and test set has almost the same trend,
thus the network meets the requirement.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 20

Figure 5. Two norms error curve.

In the fourth step, the optimal weights and thresholds obtained by the GA were sub-
stituted into the built BP neural network model. The first 150 sets of the dataset were used
for the training of the network, and the last 30 sets were used to verify the network train-
ing results. As seen in Figure 6, with the number of training sessions increasing, the MSE
decreased continuously. The curve of the train and test set has almost the same trend, thus
the network meets the requirement.

Figure 6. Mean Square Error curve of optimal neural network.

To verify the error of the trained network, the angles of the seven joints were divided
into 500 parts and substituted into the trained network to analyze the error. The maximum
error between the solved data and the original data is 0.002 rad. As shown in Tables 1 and
2, 10 sets of angle information were selected in the table. One was the original radian da-
taset, and the other was the radian dataset solved by the trained network. By comparing
the original radian data and the radian data, the error was very small. After verifying the
training results of the network, the collected data of eight critical points were input to the
trained network. The network outputs the angles of each joint, thus completing the calcu-
lation of the inverse kinematic solution of the 7DOF robotic arm

Table 1. Original radian data.

Group Joint #1 (rad) Joint #2 (rad) Joint #3 (rad) Joint #4 (rad) Joint #5 (rad) Joint #6 (rad) Joint #7 (rad)
1 −1.4765 0.1257 0.0768 −1.8431 −1.4451 −0.5515 −0.5515
2 −1.4718 0.1319 0.0806 −1.8392 −1.4388 −0.5486 −0.5486
3 −1.4671 0.1382 0.0845 −1.8354 −1.4326 −0.5456 −0.5456
4 −1.4624 0.1445 0.0883 −1.8315 −1.4263 −0.5426 −0.5426

Figure 6. Mean Square Error curve of optimal neural network.

To verify the error of the trained network, the angles of the seven joints were divided
into 500 parts and substituted into the trained network to analyze the error. The maximum
error between the solved data and the original data is 0.002 rad. As shown in Tables 1 and 2,
10 sets of angle information were selected in the table. One was the original radian dataset,
and the other was the radian dataset solved by the trained network. By comparing the
original radian data and the radian data, the error was very small. After verifying the
training results of the network, the collected data of eight critical points were input to
the trained network. The network outputs the angles of each joint, thus completing the
calculation of the inverse kinematic solution of the 7DOF robotic arm

Sensors 2022, 22, 4071 9 of 20

Table 1. Original radian data.

Group Joint #1 (rad) Joint #2 (rad) Joint #3 (rad) Joint #4 (rad) Joint #5 (rad) Joint #6 (rad) Joint #7 (rad)

1 −1.4765 0.1257 0.0768 −1.8431 −1.4451 −0.5515 −0.5515
2 −1.4718 0.1319 0.0806 −1.8392 −1.4388 −0.5486 −0.5486
3 −1.4671 0.1382 0.0845 −1.8354 −1.4326 −0.5456 −0.5456
4 −1.4624 0.1445 0.0883 −1.8315 −1.4263 −0.5426 −0.5426
5 −1.4577 0.1508 0.0922 −1.8277 −1.4200 −0.5397 −0.5397
6 −1.4530 0.1571 0.0960 −1.8239 −1.4137 −0.5367 −0.5367
7 −1.4483 0.1634 0.0998 −1.8200 −1.4074 −0.5337 −0.5337
8 −1.4436 0.1696 0.1037 −1.8162 −1.4012 −0.5308 −0.5308
9 −1.4388 0.1759 0.1075 −1.8123 −1.3949 −0.5278 −0.5278
10 −1.4341 0.1822 0.1114 −1.8085 −1.3886 −0.5248 −0.5248

Table 2. Radian data solved by the trained network.

Group Joint #1 (rad) Joint #2 (rad) Joint #3 (rad) Joint #4 (rad) Joint #5 (rad) Joint #6 (rad) Joint #7 (rad)

1 −1.4772 0.1253 0.0763 −1.8426 −1.4448 −0.5510 −0.5508
2 −1.4723 0.1314 0.0802 −1.8389 −1.4385 −0.5481 −0.5480
3 −1.4674 0.1376 0.0841 −1.8352 −1.4322 −0.5452 −0.5452
4 −1.4625 0.1438 0.0881 −1.8315 −1.4259 −0.5424 −0.5423
5 −1.4576 0.1500 0.0920 −1.8278 −1.4196 −0.5395 −0.5395
6 −1.4527 0.1561 0.0959 −1.8241 −1.4133 −0.5366 −0.5367
7 −1.4478 0.1632 0.0998 −1.8204 −1.4071 −0.5337 −0.5338
8 −1.4429 0.1685 0.1038 −1.8167 −1.4008 −0.5309 −0.5310
9 −1.4380 0.1747 0.1077 −1.8130 −1.3945 −0.5280 −0.5282
10 −1.4331 0.1809 0.1116 −1.8093 −1.3882 −0.5251 −0.5254

We found the following methods for solving the inverse kinematic solution of the
robotic arm in other articles: Jacobian transpose [29], neural network [30], Multiple Popula-
tion Genetic Algorithm (MPGA) [31], Firefly Algorithm (FA), and Artificial Bee Colonies
(ABC) [32]. The results of the comparison between these methods and the methods in this
study are shown in Table 3. The comparison results in the table showed that the method
used in this study had a higher accuracy than the other methods of calculation.

Table 3. Comparison of robotic arm inverse kinematics solution methods.

Method Degree of Freedom Maximum Error Mean Square Error

This study 7DOF 0.002 rad Approx. 1 10−6

Jacobian transpose [29] 3DOF Approx. 1 27 mm
Neural network [30] Planar two and three−link manipulators Approx. 1 0.1 rad Between 10−2 and 10−3

MPGA 2 [31] 6DOF The error is of order 10−2

FA 3 [32] 7DOF 6.538 × 10−2 mm 1.4547 × 10−5

ABC 4 [32] 7DOF 0.5475 mm 1.1105 × 10−6

1 Approximately. 2 Multiple Population Genetic Algorithm. 3 Firefly Algorithm. 4 Artificial Bee Colonies.

3. Trajectory Planning of Redundant Robotic Arm for Upper Limb Rehabilitation

In this section, the rehabilitation curve was planned by the cubic B−spline interpo-
lation method. The B−spline curve has the qualities of local support, composite and
convex envelope compared with other curves, which can quickly obtain the calculation
results. Thus, the cubic B−spline interpolation method was used to plan the rehabilitation
trajectory. The inverse kinematic solution of the eight critical points was solved by the
above GA−optimized BP neural network algorithm. The critical points were planned
into a complete rehabilitation curve by B−spline interpolation in the Cartesian coordinate
system, and the kinematic analysis of each joint was performed in the joint space to verify
the smoothness of the trajectory motion.

Sensors 2022, 22, 4071 10 of 20

3.1. Derivation of Cubic B−Spline Interpolation

During trajectory planning using the cubic B−spline interpolation method, the set of
position points passed by each joint was known, and the planning of robotic arm trajectory
was realized by back−calculating the control vertices of the B−spline curve to find the
angle variables of each joint as a function of time.

The equation of the cubic B−spline curve function for each joint of the robot arm with
the angle variable θ at time t is shown as follows:

θi(t) = A0(t)Vi−1 + A1(t)Vi + A2(t)Vi+1 + A3(t)Vi+2 (12)

The first−order and second−order derivatives of Equation (12) could be obtained
for the joint angular speed and joint angular acceleration for the time in Equation (13),
where the value of time t ranges from 0 to 1, A is the basis function, V is the control vertex.
The variable i (i = 1, 2, . . . , m) indicated the ith section of the curve, whose corresponding
control vertices were numbered Vi−1, Vi, Vi+1, Vi+2, and four adjacent control vertices
constituted a set of control points.{ .

θi(t) =
.
A0(t)Vi−1 +

.
A1(t)Vi +

.
A2(t)Vi+1 +

.
A3(t)Vi+2..

θi(t) =
..
A0(t)Vi−1 +

..
A1(t)Vi +

..
A2(t)Vi+1 +

..
A3(t)Vi+2

(13)

From the previous sections, the B−spline curve has continuity, and the end of the ith
segment of the curve was continuous with the start of the (i + 1)th segment of the curve,
which yields Equation (14):

θi(1) = θi+1(0) (14)

Substituting Equation (14) into Equation (12), Equation (15) was obtained:

A0(1) = A3(0) = 0, A1(1) = A0(0), A2(1) = A1(0), A3(1) = A2(0) (15)

From the continuity of the first−order and second−order derivatives of the B−spline
curve, the following equation could be derived:

.
θi(1) =

.
θi+1(0),

..
θi(1) =

..
θi+1(0) (16)

Substituting Equation (16) into Equation (13) yielded the following results:{ .
A0(1) =

.
A3(0) = 0,

.
A1(1) =

.
A0(0),

.
A2(1) =

.
A1(0),

.
A3(1) =

.
A2(0)..

A0(1) =
..
A3(0) = 0,

..
A1(1) =

..
A0(0),

..
A2(1) =

..
A1(0),

..
A3(1) =

..
A2(0)

(17)

Furthermore, according to the normality of the B−spline curve, the following equation
could be obtained:

A0(t) + A1(t) + A2(t) + A3(t) = 1 (18)

In this study, the cubic B−spline curve interpolation method was used, so the equation
basis function was set as follows, where ai, bi, ci, and di are the four coefficients assumed:

Ai(t) = ai + bit + cit2 + dit3 (19)

Combining Equations (12) to (19), an expression for the cubic B−spline curve equation
for the joint angle at a given time in the joint space of the robot arm was obtained:

θi(t) =
1
6
(1− 3t + 3t2 − t3)Vi+1 +

1
6

t3Vi+2 +
1
6
(4 + 3t3 − 6t2)Vi +

1
6
(1 + 3t + 3t2 − 3t3)Vi+1 (20)

Sensors 2022, 22, 4071 11 of 20

By solving the first and second−order derivatives of Equation (20), the equations of
angular velocity and angular acceleration was obtained as follows:

.
θi(t) = −

1
2
(1− t)2Vi−1 +

1
2

(
3t3 − 4t

)
Vi +

1
2

(
−3t2 + 2t + 1

)
Vi+1 +

1
2

t2Vi+2 (21)

..
θi(t) = (1− t)Vi−1 + (3t− 2)Vi +

1
2
(−3t + 1)Vi+1 + tVi+2 (22)

To clarify the relation between the variables of Equation (20), it was rewritten in the
form of a matrix with the following expression:

θi(t) =
1
6

[
1 t t2 t3

]
1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1




Vi−1
Vi

Vi+1
Vi+2

 (23)

The value of the control vertex Vi was unknown, and the control vertex was found
by inputting the joint coordinates of the robotic arm. The points on the trajectory of the
actuators were known, and the joint angle was obtained by the inverse kinematics. Taking
joint #1 as an example, the curve passed through points P1, P2, . . . , Pm, and the two
adjacent points were planned by a section of the cubic B−spline curve. A total of m − 1
segments of the B−spline curve existed. In addition, because of the continuity of the curve,
Equation (24) could be obtained:

θi+1(1) = θi(0) =
1
6

Vi−1 +
2
3

Vi +
1
6

Vi+1 = Pi (24)

The equation containing m data points described the geometry of the curve or surface
and m + 2 control point vertices. To ensure the smoothness and continuity of the curve, two
constraints were added as V0 = Vm and V1 = Vm+1. Thus Equation (24) was transformed
into the form of a matrix:

1 4 1 1
1 4 1

. . .
1 4 1

1 1 4
4 1 1





V0
V1

. . .
Vm−3
Vm−2
Vm−1


= 6



P1
P2

. . .
Pm−2
Pm−1

Pm


(25)

The system of equations had m equations and unknown quantities, which was solved
for a unique set of solutions. The values of the control vertices V0 to Vm−1 was obtained by
this solution set. Subsequently, all the control vertices V0 to Vm+1 were derived by the two
constraints. Thus, the solution was completed for each section of the trajectory B−spline
curve equation.

3.2. Rehabilitation Trajectory Planning for Redundant Robotic Arm for Upper Limb Rehabilitation
3.2.1. Rehabilitation Trajectory Planning under Cartesian Space

Under the Cartesian space, the coordinates of the eight critical points, which were
solved by the inverse kinematic solution in Section 2, were transformed to the coordinates
under the Cartesian coordinate system by the forward kinematic solution. The trajectories
of the eight critical points after the forward kinematic solution were planned using the
cubic B−spline interpolation method derived above to form a complete section of the
spatial curve, as shown in Figure 7. The green line in the figure is the original rehabilitation
trajectory. The blue line is the optimized trajectory with an increasing movement range.
For people with upper limb disorders, there are many unreachable spatial locations. In this

Sensors 2022, 22, 4071 12 of 20

study, we assumed that the patient had a disability in the left upper limb, and the left side
of the patient corresponds to the negative direction of the Y−axis in the figure. However,
after a period of upper limb rehabilitation, the patient’s reachable range of the upper limb
increased. Therefore, the motion trajectory of the robotic arm needs to expand accordingly,
which is the reason why the trajectory optimization was needed.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 20

limb increased. Therefore, the motion trajectory of the robotic arm needs to expand ac-
cordingly, which is the reason why the trajectory optimization was needed.

Figure 7. Rehabilitation trajectory under Cartesian space.

3.2.2. Joint Kinematic Analysis of Redundant Robotic Arm for Upper
Limb Rehabilitation

Based on the trajectory planned with the cubic B−spline interpolation method under
the Cartesian space above, the kinematic analysis was performed for each joint under the
joint space to verify the feasibility of the trajectory. Take joint #1 as an example, its angles
at each of the pre−given critical points during the motion were: q = [81.40°, 118.09°, 128.92°,
117.92°, 82.55°, 42.88°, 38.98°, 42.42°]. Set the corresponding time interval according to the
angle difference between adjacent points, specific time intervals were: t = [8.0 s, 2.5 s, 2.5
s, 4.0 s, 4.0 s, 2.0 s, 2.0 s] and it took a total of 25 s to complete the rehabilitation trajectory.
As shown in Figure 8, the circles in the location curve represent the eight critical points,
and the cubic B−spline interpolation method is used to connect the eight critical points.
We wrote an algorithmic program based on MATLAB to calculate the speed and acceler-
ation of the joints. For the acceleration calculation, we only calculated the acceleration at
several locations during the motion and connected them with straight lines. In this study,
we mainly focus on the continuity of the speed curve and the curves passed all the preset
points and the cubic B−spline interpolation method was able to adapt to the complex joint
motion and completed the planning of the rehabilitation trajectory. The speed was main-
tained smoothly during the motion, which verified the stability of the rehabilitation ro-
botic arm motion.

Figure 7. Rehabilitation trajectory under Cartesian space.

3.2.2. Joint Kinematic Analysis of Redundant Robotic Arm for Upper Limb Rehabilitation

Based on the trajectory planned with the cubic B−spline interpolation method under
the Cartesian space above, the kinematic analysis was performed for each joint under the
joint space to verify the feasibility of the trajectory. Take joint #1 as an example, its angles at
each of the pre−given critical points during the motion were: q = [81.40◦, 118.09◦, 128.92◦,
117.92◦, 82.55◦, 42.88◦, 38.98◦, 42.42◦]. Set the corresponding time interval according to the
angle difference between adjacent points, specific time intervals were: t = [8.0 s, 2.5 s, 2.5 s,
4.0 s, 4.0 s, 2.0 s, 2.0 s] and it took a total of 25 s to complete the rehabilitation trajectory. As
shown in Figure 8, the circles in the location curve represent the eight critical points, and
the cubic B−spline interpolation method is used to connect the eight critical points. We
wrote an algorithmic program based on MATLAB to calculate the speed and acceleration
of the joints. For the acceleration calculation, we only calculated the acceleration at several
locations during the motion and connected them with straight lines. In this study, we
mainly focus on the continuity of the speed curve and the curves passed all the preset
points and the cubic B−spline interpolation method was able to adapt to the complex
joint motion and completed the planning of the rehabilitation trajectory. The speed was
maintained smoothly during the motion, which verified the stability of the rehabilitation
robotic arm motion.

Sensors 2022, 22, 4071 13 of 20Sensors 2022, 22, x FOR PEER REVIEW 13 of 20

Figure 8. Results of kinematic analysis of joint #1. (a) Location; (b) Speed; (c) Acceleration.

In addition to interpolation method of the cubic B−spline curve, we also used the
cubic polynomial interpolation, the five−polynomial interpolation, and the seven−polyno-
mial interpolation method to plan the motion trajectory of the robotic arm. In addition,
we performed trajectory planning as well as MATLAB simulation for each method fol-
lowing the procedure of cubic B−spline interpolation.

First is the cubic polynomial interpolation method, the simulation results are shown
in Figure 9.

Figure 9. Results of MATLAB simulation of cubic polynomial interpolation method. (a) Location;
(b) Speed; (c) Acceleration.

The second is the five−polynomial interpolation method, the simulation results are
shown in Figure 10.

Figure 8. Results of kinematic analysis of joint #1. (a) Location; (b) Speed; (c) Acceleration.

In addition to interpolation method of the cubic B−spline curve, we also used the cubic
polynomial interpolation, the five−polynomial interpolation, and the seven−polynomial
interpolation method to plan the motion trajectory of the robotic arm. In addition, we
performed trajectory planning as well as MATLAB simulation for each method following
the procedure of cubic B−spline interpolation.

First is the cubic polynomial interpolation method, the simulation results are shown
in Figure 9.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 20

Figure 8. Results of kinematic analysis of joint #1. (a) Location; (b) Speed; (c) Acceleration.

In addition to interpolation method of the cubic B−spline curve, we also used the
cubic polynomial interpolation, the five−polynomial interpolation, and the seven−polyno-
mial interpolation method to plan the motion trajectory of the robotic arm. In addition,
we performed trajectory planning as well as MATLAB simulation for each method fol-
lowing the procedure of cubic B−spline interpolation.

First is the cubic polynomial interpolation method, the simulation results are shown
in Figure 9.

Figure 9. Results of MATLAB simulation of cubic polynomial interpolation method. (a) Location;
(b) Speed; (c) Acceleration.

The second is the five−polynomial interpolation method, the simulation results are
shown in Figure 10.

Figure 9. Results of MATLAB simulation of cubic polynomial interpolation method. (a) Location;
(b) Speed; (c) Acceleration.

Sensors 2022, 22, 4071 14 of 20

The second is the five−polynomial interpolation method, the simulation results are
shown in Figure 10.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 20

Figure 10. Results of MATLAB simulation of five−polynomial interpolation method. (a) Location;
(b) Speed; (c) Acceleration.

Finally, the simulation results of the seven−polynomial interpolation are shown in
Figure 11.

Figure 11. Results of MATLAB simulation of seven−polynomial interpolation method. (a) Location;
(b) Speed; (c) Acceleration.

The simulation results show that the location and speed of the trajectories planned
by these three methods were relatively stable and ensured the smoothness of the motion
of the robotic arm.

Figure 10. Results of MATLAB simulation of five−polynomial interpolation method. (a) Location;
(b) Speed; (c) Acceleration.

Finally, the simulation results of the seven−polynomial interpolation are shown in
Figure 11.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 20

Figure 10. Results of MATLAB simulation of five−polynomial interpolation method. (a) Location;
(b) Speed; (c) Acceleration.

Finally, the simulation results of the seven−polynomial interpolation are shown in
Figure 11.

Figure 11. Results of MATLAB simulation of seven−polynomial interpolation method. (a) Location;
(b) Speed; (c) Acceleration.

The simulation results show that the location and speed of the trajectories planned
by these three methods were relatively stable and ensured the smoothness of the motion
of the robotic arm.

Figure 11. Results of MATLAB simulation of seven−polynomial interpolation method. (a) Location;
(b) Speed; (c) Acceleration.

Sensors 2022, 22, 4071 15 of 20

The simulation results show that the location and speed of the trajectories planned by
these three methods were relatively stable and ensured the smoothness of the motion of
the robotic arm.

4. Optimization of Rehabilitation Trajectory of Redundant Robotic Arm for Upper
Limb Rehabilitation and Its Simulation Experiment
4.1. Optimization of Rehabilitation Trajectories with the Goal of Time Minimization

Since different patients have different needs for the upper limb rehabilitation, we need
to expand the applicable range of the redundant robotic arm for upper limb rehabilitation.
We can change certain parameters in the rehabilitation process using trajectory optimization
to achieve the purpose of expanding the applicable range. For example, we could change
the motion time of the end of the robotic arm between the critical points and thus change
the speed of the end movement. We could also modify the location of the critical points
and change the shape of the rehabilitation trajectory to meet the needs of different patients
for rehabilitation. The curve after trajectory planning consists of multiple cubic B−spline
curves that have been connected. Taking the total running time of the robot arm as the
optimization objective, the running time of each segment of the curve was set to ti. The
time of each part of the trajectory was optimized separately to obtain the final result. The
objective function was set as follows:

T = min
m−1

∑
i=1

ti (26)

where T is the total operating time of the robotic arm. For time−targeted optimization,
the motion time could not be reduced indefinitely and constraints needed to be added.
Kinematic constraints include speed, acceleration, and jerk (derivative of acceleration).

First is the speed constraint. The joint angular speed equation was derived from the
joint equation to the first−order derivative of time, the maximum angular speed of the
robotic arm in motion might be at any point on the interval when the robotic arm motion
time was at ti to ti+1, there was an expression as follows:

.
θ = max

{∣∣∣ .
θi

∣∣∣, ∣∣∣ .
θix

∣∣∣} (27)

where
.
θ is the maximum angular speed,

∣∣∣ .
θi

∣∣∣ is the absolute value of the angular speed at

moment ti, and
∣∣∣ .
θix

∣∣∣ is the maximum angular speed in the interval ti to ti+1. It was difficult
to solve the equation for the absolute maximum value, and the golden mean method was
used to solve the equation for the maximum value of

.
θmax. The constraint form was given

as follows: .
θ ≤

.
θmax (28)

The second is the acceleration constraint. The joint angular acceleration equation was
obtained from the joint angle equation by taking the second−order derivative of time and
solving for the maximum value in the same way as the speed constraint. The maximum
joint angular acceleration equation was solved as follows:

..
θ = max

{∣∣∣ ..θi

∣∣∣, ∣∣∣ ..θix

∣∣∣} (29)

where
..
θ is the maximum angular acceleration,

∣∣∣ ..θi

∣∣∣ is the absolute value of angular accel-

eration at moment ti, and
∣∣∣ ..θix

∣∣∣ is maximum angular acceleration in absolute value in the
interval ti to ti+1. The acceleration constraint form of the robotic arm was as follows:

..
θ ≤

..
θmax (30)

Sensors 2022, 22, 4071 16 of 20

The third is the jerk constraint. The joint angular jerk equation was solved for the
maximum joint angular acceleration equation by taking the third−order derivative of the
joint angle equation for a time and was given as follows:

...
θ = max{|

...
θ i|, |

...
θ ix|} (31)

where
...
θ is the maximum angular jerk, |

...
θ i| is add the absolute value of angular jerk at

moment ti, and |
...
θ ix| is the absolute maximum plus angular jerk in the interval ti to ti+1.

4.2. MATLAB Numerical Simulation of Redundant Robotic Arm for Upper Limb Rehabilitation

We assumed that the model had m joint angle values and the motion time between
each adjacent two points was ti, a GA was used to find the optimal solution for ti in the
model. In this study, the time interval matrix between two adjacent points was set as t
= [8.0 s, 2.5 s, 2.5 s, 4.0 s, 4.0 s, 2.0 s, 2.0 s, and 50 groups of individuals were randomly
generated at each given time. For each random individual, the fitness size f was assigned
by the following equation.

f =

{
1
ti

, When the constraint was satisfied
1

ti
max , Otherwise

(32)

The final results were calculated by the iterating depending on the iteration rules of the
GA. According to the application scenario of the upper limb rehabilitation, the maximum
joint angular speed Vmax in the algorithm was set to 15◦/s, the maximum joint angular
acceleration Amax was set to 20◦/s2, and the maximum joint angular jerk Imax was set to
100◦/s3. Under the condition of satisfying the kinematic constraints, the total motion time
of the robotic arm before the optimization was 25 s, which was reduced to 20.44 s after the
time optimization. The time comparison before and after track optimization is shown in
Table 4.

Table 4. Time comparison before and after track optimization.

Track Points Angle (◦) Specify Time (s) Optimized Time (s)

1~2 81.40~118.09 8.0 6.84
2~3 118.09~128.92 2.5 2.05
3~4 128.92~117.92 2.5 1.96
4~5 117.92~82.55 4.0 3.18
5~6 82.55~42.88 4.0 3.75
6~7 42.88~38.98 2.0 1.32
7~8 38.98~42.42 2.0 1.34

We wrote the above algorithm based on MATLAB. The kinematic analysis was per-
formed on the curve obtained by cubic B−spline interpolation for joint #1 of the robotic
arm and the trajectory optimized by the GA. As shown in Figure 12, the red line indicates
the unoptimized analysis results and the blue line represents the optimized results. The
results show that after optimization, the location and angular speed profiles of the joints
were smooth, and the rehabilitation movements were completed in a shorter period of time,
which expanded the range of applicability. In terms of safety, the patient had a certain
tolerance after a period of rehabilitation training. Only after the patient had received a
period of formal rehabilitation training, the time was shortened and the rehabilitation effect
was improved. In addition, even though the acceleration curve changed more than the
unoptimized curve, this change was still in a controlled range to ensure that the patient can
receive secondary injuries during the rehabilitation process.

Sensors 2022, 22, 4071 17 of 20
Sensors 2022, 22, x FOR PEER REVIEW 17 of 20

Figure 12. Comparison of joint #1 kinematic analysis before and after optimization. (a) Location; (b)
Speed; (c) Acceleration; (d) Jerk.

We have read the literature to the extent of our ability and describe the structure and
movement of the upper limb as follows [33].

In terms of the upper limb structure, the upper limb consists of the shoulder girdle
and the arm. The shoulder girdle consists of the clavicle and the scapula. The shoulder
joint, which connects the arm to the scapula, is a multiaxial synovial ball and socket joint.
The humeral head was shaped as a ball which coincides with the spherical surface of the
glenoid cavity of the scapula, and the surfaces of the humeral head and cavity were cov-
ered with articular cartilage. In addition, the joint capsule was strengthened by muscles,
tendons, and ligaments such as the glenohumeral, coracohumeral, and coracoacromial
ligaments.

The arm was built of the humerus, ulna, radius bone, 8 carpal bones of the wrist, 5
metacarpal bones, and 14 phalanges of the fingers. The elbow consists of the humeroulnar,
humeroradial, and proximal radioulnar joints, which were surrounded by a common joint
capsule. The frontal stability was mainly ensured by the ulnar collateral ligament and the
radial collateral ligament. Patients with impaired upper limb function usually suffer from
wear and tear of the ligaments or joints of the upper limb. Therefore, the upper limb re-
habilitation robotic arm in this study treated the patient’s upper limb by helping the pa-
tient to perform upper limb movements through end−traction method of the robotic arm.

In terms of the upper limb movement, the upper limb skeletal movement was pro-
duced by the 43 muscles being connected to structures mentioned above. The shoulder
joint allows for abduction/adduction, flexion/extension, and internal/external rotation. At
the elbow joint, there is elbow flexion/extension and forearm supination/pronation. In the
wrist, there is flexion/extension and radial/ulnar deviation. However, because of the pres-
ence of the upper limb joints, there is a limited range of motion in each of these joints.
Therefore, the upper limb rehabilitation of the robotic arm in this study planned the reha-
bilitation trajectory by pre−given critical points, thus avoiding the rehabilitation trajectory
to reach the position where the patient’s upper limb cannot reach, which can ensure the
safety of the patient during the rehabilitation process.

This redundant robotic arm for upper limb rehabilitation is still in the stage of theo-
retical modeling, numerical simulation, development, and testing of the prototype. There-
fore, for safety reasons, it has not been commissioned and applied to patients yet. How-
ever, to obtain a better perceptual feedback on the human body, we had conducted pre-
liminary tests with the manufactured robotic arm on several patients with healthy upper
limb. These patients, with their sensitive upper limb perception, were able to provide bet-
ter feedback on the treatment effect of the upper limb rehabilitation of the robotic arm, the
comfort level during treatment (no sudden changes in force) and the continuity of the

Figure 12. Comparison of joint #1 kinematic analysis before and after optimization. (a) Location;
(b) Speed; (c) Acceleration; (d) Jerk.

We have read the literature to the extent of our ability and describe the structure and
movement of the upper limb as follows [33].

In terms of the upper limb structure, the upper limb consists of the shoulder girdle
and the arm. The shoulder girdle consists of the clavicle and the scapula. The shoulder
joint, which connects the arm to the scapula, is a multiaxial synovial ball and socket joint.
The humeral head was shaped as a ball which coincides with the spherical surface of the
glenoid cavity of the scapula, and the surfaces of the humeral head and cavity were covered
with articular cartilage. In addition, the joint capsule was strengthened by muscles, tendons,
and ligaments such as the glenohumeral, coracohumeral, and coracoacromial ligaments.

The arm was built of the humerus, ulna, radius bone, 8 carpal bones of the wrist, 5
metacarpal bones, and 14 phalanges of the fingers. The elbow consists of the humeroulnar,
humeroradial, and proximal radioulnar joints, which were surrounded by a common
joint capsule. The frontal stability was mainly ensured by the ulnar collateral ligament
and the radial collateral ligament. Patients with impaired upper limb function usually
suffer from wear and tear of the ligaments or joints of the upper limb. Therefore, the
upper limb rehabilitation robotic arm in this study treated the patient’s upper limb by
helping the patient to perform upper limb movements through end−traction method of
the robotic arm.

In terms of the upper limb movement, the upper limb skeletal movement was pro-
duced by the 43 muscles being connected to structures mentioned above. The shoulder
joint allows for abduction/adduction, flexion/extension, and internal/external rotation.
At the elbow joint, there is elbow flexion/extension and forearm supination/pronation.
In the wrist, there is flexion/extension and radial/ulnar deviation. However, because of
the presence of the upper limb joints, there is a limited range of motion in each of these
joints. Therefore, the upper limb rehabilitation of the robotic arm in this study planned
the rehabilitation trajectory by pre−given critical points, thus avoiding the rehabilitation
trajectory to reach the position where the patient’s upper limb cannot reach, which can
ensure the safety of the patient during the rehabilitation process.

This redundant robotic arm for upper limb rehabilitation is still in the stage of theoret-
ical modeling, numerical simulation, development, and testing of the prototype. Therefore,
for safety reasons, it has not been commissioned and applied to patients yet. However, to
obtain a better perceptual feedback on the human body, we had conducted preliminary
tests with the manufactured robotic arm on several patients with healthy upper limb. These
patients, with their sensitive upper limb perception, were able to provide better feedback
on the treatment effect of the upper limb rehabilitation of the robotic arm, the comfort

Sensors 2022, 22, 4071 18 of 20

level during treatment (no sudden changes in force) and the continuity of the rehabilitation
trajectory (continuous and smooth location and speed of the robotic arm). The rehabilitation
movement of the end traction was performed according to the planned trajectory in this
study, as shown in Figure 13.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 20

rehabilitation trajectory (continuous and smooth location and speed of the robotic arm).
The rehabilitation movement of the end traction was performed according to the planned
trajectory in this study, as shown in Figure 13.

Figure 13. Position and posture of the treated person and the robotic arm during the rehabilitation
process. (a) Location #1; (b) Location #2; (c) Location #3; (d) Location #4; (e) Location #5; (f) Location
#6; (g) Location #7; (h) Location #8.

The rehabilitation trajectory passed the eight critical points mentioned in this study,
and the positions and postures of the robotic arm and the treated person during the reha-
bilitation process corresponded to a to h in Figure 13. The feedback from the treated per-
son could better reflect the rehabilitation effect of the robotic arm, so that the trajectory of
the robotic arm could be adjusted and optimized accordingly before practical application.
For example, the trajectory optimization method with the goal of time minimization in
this study could change the speed during the motion and the magnitude of the force ap-
plied to the upper limb. Alternatively, the range and accuracy of the motion trajectory of
the robotic arm end could be adjusted by changing the location of the critical points and
adjusting the number of critical points. The test results show that the robotic arm did not
cause excessive compression on the upper limb during the rehabilitation process guided
by the end. The force and speed applied to the human upper limb were moderate, and the
end of robotic arm was relatively smooth during the movement, which could achieve the
effect of assisting in guiding the upper limb rehabilitation.

We will cooperate with the TCM rehabilitators from Beijing Red Medical Star Intelli-
gent Technology Development Company Limited in the future and use the robotic arm in
the actual rehabilitation process. We will discuss the effectiveness of the treatment and
the practical application in the next articles.

5. Conclusions
In this study, we proposed a BP neural network algorithm optimized by GA. Com-

pared with other algorithms, the computational results of this algorithm have better ac-
curacy. We used cubic B−spline interpolation method for trajectory planning and per-
formed numerical simulation with MATLAB. The results show that the location and speed
profiles of the planned curve were relatively smooth and could meet the needs of patient
rehabilitation. To further improve the rehabilitation effect, we optimized the planned tra-
jectory based on GA with the goal of time minimization, and the numerical simulation

Figure 13. Position and posture of the treated person and the robotic arm during the rehabilitation pro-
cess. (a) Location #1; (b) Location #2; (c) Location #3; (d) Location #4; (e) Location #5; (f) Location #6;
(g) Location #7; (h) Location #8.

The rehabilitation trajectory passed the eight critical points mentioned in this study,
and the positions and postures of the robotic arm and the treated person during the
rehabilitation process corresponded to a to h in Figure 13. The feedback from the treated
person could better reflect the rehabilitation effect of the robotic arm, so that the trajectory
of the robotic arm could be adjusted and optimized accordingly before practical application.
For example, the trajectory optimization method with the goal of time minimization in this
study could change the speed during the motion and the magnitude of the force applied to
the upper limb. Alternatively, the range and accuracy of the motion trajectory of the robotic
arm end could be adjusted by changing the location of the critical points and adjusting
the number of critical points. The test results show that the robotic arm did not cause
excessive compression on the upper limb during the rehabilitation process guided by the
end. The force and speed applied to the human upper limb were moderate, and the end of
robotic arm was relatively smooth during the movement, which could achieve the effect of
assisting in guiding the upper limb rehabilitation.

We will cooperate with the TCM rehabilitators from Beijing Red Medical Star Intelli-
gent Technology Development Company Limited in the future and use the robotic arm in
the actual rehabilitation process. We will discuss the effectiveness of the treatment and the
practical application in the next articles.

5. Conclusions

In this study, we proposed a BP neural network algorithm optimized by GA. Compared
with other algorithms, the computational results of this algorithm have better accuracy. We
used cubic B−spline interpolation method for trajectory planning and performed numerical
simulation with MATLAB. The results show that the location and speed profiles of the

Sensors 2022, 22, 4071 19 of 20

planned curve were relatively smooth and could meet the needs of patient rehabilitation.
To further improve the rehabilitation effect, we optimized the planned trajectory based on
GA with the goal of time minimization, and the numerical simulation results in MATLAB
showed that the optimized curve reduced the motion time, thus increasing the motion
speed of the end of the robotic arm and improving the rehabilitation effect. For safety
reasons, we have not yet applied this upper limb rehabilitation of the robotic arm to
patient rehabilitation treatment. We had tested it on several patients with normal upper
limb and the results show that the force and speed applied to the upper limbs during
the rehabilitation process was relatively stable and could achieve the effect of assisting in
guiding the rehabilitation of the upper limbs. In the future, we will cooperate with TCM
rehabilitators and use the upper limb rehabilitation of the robotic arm in the rehabilitation
process of patients. We will discuss the treatment effect and practical application of the
upper limb rehabilitation arm in our future work.

Author Contributions: Writing—original draft preparation, X.Q.; writing—review and editing, X.Q.,
C.K., G.Z. and S.C.; conceptualization, C.K. and S.C.; methodology, X.Q., C.K. and S.C.; funding
acquisition, S.C.; software, G.Z.; validation, X.Q. and G.Z.; supervision, C.K. and S.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research and Development Program of the Ministry of
Science and Technology of China, grant number 2018YFB1306400.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kang, C.; Liu, Z.; Chen, S.; Jiang, X. Circular trajectory weaving welding control algorithm based on space transformation

principle. J. Manuf. Processes 2019, 46, 328–336. [CrossRef]
2. Kang, C.; Shi, C.; Liu, Z.; Liu, Z.; Jiang, X.; Chen, S.; Ma, C. Research on the optimization of welding parameters in high-frequency

induction welding pipeline. J. Manuf. Processes 2020, 59, 772–790. [CrossRef]
3. Li, J.; Hu, M.; Wang, Z.; Lu, Y.; Wang, K.; Zhu, X. The scaling of the ligand concentration and Soret effect induced phase transition

in CsPbBr 3 perovskite quantum dots. J. Mater. Chem. A 2019, 7, 27241–27246. [CrossRef]
4. Bodner, J.; Wykypiel, H.; Wetscher, G.; Schmid, T. First experiences with the da Vinci™ operating robot in thoracic surgery. Eur. J.

Cardiothorac. Surg. 2004, 25, 844–851. [CrossRef] [PubMed]
5. Johnston, S.C.; Mendis, S.; Mathers, C.D. Global variation in stroke burden and mortality: Estimates from monitoring, surveillance,

and modelling. Lancet Neurol. 2009, 8, 345–354. [CrossRef]
6. Kim, G.Y.; Ahn, C.S.; Jeon, H.W.; Lee, C.R. Effects of the use of smartphones on pain and muscle fatigue in the upper extremity. J.

Phys. Thr. Sci. 2012, 24, 1255–1258. [CrossRef]
7. Fares, M.Y.; Salhab, H.A.; Khachfe, H.H.; Kane, L.; Fares, Y.; Fares, J.; Abboud, J.A. Upper limb injuries in major league baseball.

Phys. Ther. Sport 2020, 41, 49–54. [CrossRef]
8. Norrving, B.; Kissela, B. The global burden of stroke and need for a continuum of care. Neurology 2013, 80, S5–S12. [CrossRef]
9. Chen, G.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2021,

122, 3259–3291. [CrossRef]
10. Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [CrossRef]
11. Richardson, R.; Brown, M.; Bhakta, B.; Levesley, M. Design and control of a three degree of freedom pneumatic physiotherapy

robot. Robotica 2003, 21, 589–604. [CrossRef]
12. Johnson, G.; Carus, D.; Parrini, G.; Marchese, S.; Valeggi, R. The design of a five-degree-of-freedom powered orthosis for the

upper limb. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2001, 215, 275–284. [CrossRef] [PubMed]
13. Gao, B.; Wei, C.; Guo, S.; Xiao, N.; Bu, D.; Xu, H.; Ma, H. Embedded system-based a portable upper limb rehabilitation

robot. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China,
5–8 August 2018; pp. 631–636. [CrossRef]

14. Costa, M.A.; Wullt, B.; Norrlöf, M.; Gunnarsson, S. Failure detection in robotic arms using statistical modeling, machine learning
and hybrid gradient boosting. Measurement 2019, 146, 425–436. [CrossRef]

15. Li, X.-Q.; Song, L.-K.; Bai, G.-C. Deep learning regression-based stratified probabilistic combined cycle fatigue damage evaluation
for turbine bladed disks. Int. J. Fatigue 2022, 159, 106812. [CrossRef]

http://doi.org/10.1016/j.jmapro.2019.08.027
http://doi.org/10.1016/j.jmapro.2020.10.021
http://doi.org/10.1039/C9TA10226D
http://doi.org/10.1016/j.ejcts.2004.02.001
http://www.ncbi.nlm.nih.gov/pubmed/15082292
http://doi.org/10.1016/S1474-4422(09)70023-7
http://doi.org/10.1589/jpts.24.1255
http://doi.org/10.1016/j.ptsp.2019.11.002
http://doi.org/10.1212/WNL.0b013e3182762397
http://doi.org/10.1021/acs.chemrev.1c00502
http://doi.org/10.1016/S0140-6736(11)60325-5
http://doi.org/10.1017/S0263574703005320
http://doi.org/10.1243/0954411011535867
http://www.ncbi.nlm.nih.gov/pubmed/11436270
http://doi.org/10.1109/ICMA.2018.8484686
http://doi.org/10.1016/j.measurement.2019.06.039
http://doi.org/10.1016/j.ijfatigue.2022.106812

Sensors 2022, 22, 4071 20 of 20

16. Makarem, S.; Delibas, B.; Koc, B. Data-driven tuning of PID controlled piezoelectric ultrasonic motor. Actuators 2021, 10, 148.
[CrossRef]

17. M Zahir, A.; Alhady, S.; Othman, W.; Ahmad, M. Genetic algorithm optimization of PID controller for brushed DC motor.
In Intelligent Manufacturing & Mechatronics; Hassan, M., Ed.; Springer: Singapore, 2018; pp. 427–437. [CrossRef]

18. Xiao, X.; Fang, Y.; Xiao, X.; Xu, J.; Chen, J. Machine-Learning-Aided Self-Powered Assistive Physical Therapy Devices. ACS Nano
2021, 15, 18633–18646. [CrossRef]

19. Tejomurtula, S.; Kak, S. Inverse kinematics in robotics using neural networks. Inf. Sci. 1999, 116, 147–164. [CrossRef]
20. Nearchou, A.C. Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified

genetic algorithm. Mech. Mach. Theory 1998, 33, 273–292. [CrossRef]
21. KöKer, R. A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on

error minimization. Inf. Sci. 2013, 222, 528–543. [CrossRef]
22. Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path planning and trajectory planning algorithms: A general overview. In

Motion Operation Planning of Robotic Systems; Carbone, G., Gomez-Bravo, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 29,
pp. 3–27. [CrossRef]

23. Tian, L.; Collins, C. An effective robot trajectory planning method using a genetic algorithm. Mechatronics 2004, 14, 455–470.
[CrossRef]

24. Gasparetto, A.; Zanotto, V. A new method for smooth trajectory planning of robot manipulators. Mech. Mach. Theory 2007,
42, 455–471. [CrossRef]

25. Ahuactzin, J.M.; Talbi, E.-G.; Bessière, P.; Mazer, E. Using genetic algorithms for robot motion planning. In Geometric Reasoning for
Perception and Action; Laugier, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 708, pp. 84–93. [CrossRef]

26. Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In From Natural
to Artificial Neural Computation; Mira, J., Sandoval, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 930, pp. 195–201.
[CrossRef]

27. Sahin, I.; Koyuncu, I. Design and implementation of neural networks neurons with RadBas, LogSig, and TanSig activation
functions on FPGA. Elektron. Elektrotechnika 2012, 120, 51–54. [CrossRef]

28. Rahimi-Ajdadi, F.; Abbaspour-Gilandeh, Y. Artificial neural network and stepwise multiple range regression methods for
prediction of tractor fuel consumption. Measurement 2011, 44, 2104–2111. [CrossRef]

29. Hock, O.; Sedo, J. Inverse kinematics using transposition method for robotic arm. In Proceedings of the 2018 ELEKTRO, Mikulov,
Czech Republic, 21–23 May 2018; pp. 1–5. [CrossRef]

30. Duka, A.-V. Neural network based inverse kinematics solution for trajectory tracking of a robotic arm. Procedia Technol. 2014,
12, 20–27. [CrossRef]

31. Sui, Z.; Jiang, L.; Tian, Y.-T.; Jiang, W. Genetic algorithm for solving the inverse kinematics problem for general 6r robots. In
Proceedings of the 2015 Chinese Intelligent Automation Conference; Deng, Z., Li, H., Eds.; Springer: Berlin/Heidelberg, Germany,
2015; Volume 338, pp. 151–161. [CrossRef]

32. Dereli, S.; Köker, R. A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: Quantum
behaved particle swarm algorithm. Artif. Intell. Rev. 2020, 53, 949–964. [CrossRef]

33. Jaworski, Ł.; Karpiński, R.; Dobrowolska, A. Biomechanics of the upper limb. J. Technol. Exploit. Mech. Eng. 2016, 2, 53–59.
[CrossRef]

http://doi.org/10.3390/act10070148
http://doi.org/10.1007/978-981-10-8788-2_38
http://doi.org/10.1021/acsnano.1c10676
http://doi.org/10.1016/S0020-0255(98)10098-1
http://doi.org/10.1016/S0094-114X(97)00034-7
http://doi.org/10.1016/j.ins.2012.07.051
http://doi.org/10.1007/978-3-319-14705-5_1
http://doi.org/10.1016/j.mechatronics.2003.10.001
http://doi.org/10.1016/j.mechmachtheory.2006.04.002
http://doi.org/10.1007/3-540-57132-9_6
http://doi.org/10.1007/3-540-59497-3_175
http://doi.org/10.5755/j01.eee.120.4.1452
http://doi.org/10.1016/j.measurement.2011.08.006
http://doi.org/10.1109/ELEKTRO.2018.8398366
http://doi.org/10.1016/j.protcy.2013.12.451
http://doi.org/10.1007/978-3-662-46466-3_16
http://doi.org/10.1007/s10462-019-09683-x
http://doi.org/10.35784/jteme.517

	Introduction
	Back Propagation Neural Network Algorithm Based on Genetic Algorithm Optimization
	Principles of Back Propagation Neural Network and Genetic Algorithm
	Back Propagation Neural Network
	Genetic Algorithm

	Computational Procedure of Back Propagation Neural Network Algorithm Based on Genetic Algorithm Optimization

	Trajectory Planning of Redundant Robotic Arm for Upper Limb Rehabilitation
	Derivation of Cubic B-Spline Interpolation
	Rehabilitation Trajectory Planning for Redundant Robotic Arm for Upper Limb Rehabilitation
	Rehabilitation Trajectory Planning under Cartesian Space
	Joint Kinematic Analysis of Redundant Robotic Arm for Upper Limb Rehabilitation

	Optimization of Rehabilitation Trajectory of Redundant Robotic Arm for Upper Limb Rehabilitation and Its Simulation Experiment
	Optimization of Rehabilitation Trajectories with the Goal of Time Minimization
	MATLAB Numerical Simulation of Redundant Robotic Arm for Upper Limb Rehabilitation

	Conclusions
	References

