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Abstract: The recognition of abnormal gait behavior is important in the field of motion assessment
and disease diagnosis. Currently, abnormal gait behavior is primarily recognized by pressure and
inertial data obtained from wearable sensors. However, the data drift and wearing difficulties for
patients have impeded the application of these wearable sensors. Here, we propose a contactless
abnormal gait behavior recognition method that captures human pose data using a monocular
camera. A lightweight OpenPose (OP) model is generated with Depthwise Separable Convolution to
recognize joint points and extract their coordinates during walking in real time. For the walking data
errors extracted in the 2D plane, a 3D reconstruction is performed on the walking data, and a total of
11 types of abnormal gait features are extracted by the OP model. Finally, the XGBoost algorithm
is used for feature screening. The final experimental results show that the Random Forest (RF)
algorithm in combination with 3D features delivers the highest precision (92.13%) for abnormal gait
behavior recognition. The proposed scheme overcomes the data drift of inertial sensors and sensor
wearing challenges in the elderly while reducing the hardware requirements for model deployment.
With excellent real-time and contactless capabilities, the scheme is expected to enjoy a wide range of
applications in the field of abnormal gait measurement.

Keywords: abnormal gait behavior; OpenPose; machine learning; XGBoost; random forest

1. Introduction

Abnormal gait behavior is highly-related to many neurodegenerative diseases, such
as Parkinson’s disease, cerebral palsy, lumbar disc herniation, cerebral infarction and
osteoarthritis. Therefore, the recognition and measurement of abnormal gait behavior has
been an important topic of research in the field of diagnosis and treatment [1]. Abnormal
gait behavior is highly prevalent, especially in the elderly. According to the statistics of
the China Parkinson’s Disease Registry (CPDR), more than 3 million patients suffer from
Parkinson’s symptoms in China. This indicates an urgent need for recognition systems
for behavioral disorders [2]. Preliminary diagnosis of a patient’s disease based on their
abnormal gait behavior is needed in many everyday life settings, such as houses, nursing
homes, and other public places, which saves much cost and time for the patient. At
present, the abnormal gait behavior of patients can be recognized by two main categories
of methods: by using inertial measurement units (IMUs) and by using contactless models
and machine learning algorithms.

A preliminary diagnosis of abnormal gait behavior can be achieved by wearing micro
sensors. SIJOBERT et al. [3] extracted features from frozen gait by placing a wireless inertial
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sensor on the patient’s lower leg to acquire changes in gait parameters. Zhao et al. [3,4]
developed a gait analysis system consisting of a bipedal IMU. By using an inequality-
constrained zero-velocity update (ZUPT) aided INS algorithm, this system provides an
efficient method for estimating gait parameters and characterizing gait performance to
assess the rehabilitation process of patients with gait disorders. Wang et al. [5] developed a
new IMU-based clinical gait assessment method. Their experiment extracted nine variables
from two calf-mounted IMUs and used them to quantify the patient’s gait deviation.
Based on these parameters, an IMU-based gait normal index (INI) was derived to assess
the overall gait performance. However, the use of sensors to recognize abnormal gait
behavior in patients with mobility impairments suffers from data drift problems and
wearing difficulties [5].

In recent years, inertial and pressure sensors have been widely used in hospitals and
nursing homes for analyzing patients’ gait [6]. However, such methods are suitable for
patients who have difficulty wearing sensors for data acquisition. Therefore, it is necessary
to explore contactless systems for diagnosing different behavioral disorders [7]. Kursun
et al. [2] proposed a method that combines the support vector machine (SVM) algorithm and
a recognition model for the preliminary diagnosis of patients with Parkinson’s symptoms.
Using acoustic data with the smallest deviation, the method can distinguish patients
with Parkinson’s disease from healthy people at an accuracy of 92.75%. Yaman et al. [1]
found through experiments that patients with Parkinson’s disease have poor verbal ability,
so they proposed a method in which SVM and k-nearest neighbors (KNN) algorithms
are used to obtain features from the Parkinson’s acoustic data set for the recognition of
Parkinson’s disease. The accuracy was calculated to be 91.25% and 92.33%, respectively,
by using the two algorithms. Sato et al. [8] obtained frozen gait and Magnetic step data of
Parkinson’s patients by using OP forward gait features. By analyzing the data curve, they
found patients with Parkinson’s disease have a different movement curve from healthy
people. Liu et al. [9] proposed a locally weighted discriminant-preserving projection
embedding ensemble algorithm to solve the problems of high noise and small sample size
with Parkinson’s disease data. The algorithm achieved improved accuracy in Parkinson’s
disease recognition. Studies have found that contactless methods can better differentiate
patients with Parkinson’s disease and healthy people.

However, there is still a lack of studies on the recognition of gait behavior differences
caused by diseases such as cerebral infarction, cervical compression, cerebellar lesions,
and lumbar disc herniation. When it comes to diagnosing a patient, it is necessary for the
doctor to first make a preliminary diagnosis of the type of disease that causes the abnormal
gait behavior.

Guo et al. [10] went a further step by using an OP model to assess six abnormal toe
types with a mobile 3D gait analysis system. Later, D’Antonio et al. [11] solved the problem
of information concealment in videos with a corrected OP model. They also used an IMU
sensor to calibrate the collected data, which verified the authenticity of features extracted
by the OP model. At present, SVM and KNN are among the mainstream algorithms for the
recognition of behavioral disorders. Chen et al. [12] used a new FKNN model to classify the
Parkinson’s data set and achieved an experimental accuracy of 96.07%. Hariharan et al. [13]
adopted a feature reduction/selection technique and a recognition algorithm to detect
Parkinson’s symptoms. The recognition process was performed using least squares SVM
(LS-SVM), probabilistic neural network (PNN), and general regression neural network
(GRNN), and the recognition accuracy was as high as 100%.

To sum up, most of these techniques emphasized the recognition accuracy of abnormal
gait behavior over the recognition efficiency. This means challenges remain to deploy
these techniques in devices in daily applications. When a traditional OP model is used,
in particular, it can be difficult to achieve real-time disease identification without the
support of powerful hardware. Therefore, we developed a novel method that can recognize
abnormal gait behavior accurately and efficiently. First, an ultra-lightweight OP model was
developed to enable much-increased efficiency at the price of a little bit lower accuracy.
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Then, based on the gait features obtained using the OP model, a simple 3D reconstruction
model was developed to supplement more accurate features. At last, some highly efficient
machine learning algorithms were used to recognize abnormal gait behavior. Our scheme
achieves a contactless recognition of abnormal gait behavior due to multiple types of
diseases compared to previous work.

Here is a summary of what we did and accomplished in this work:

1. We constructed a lightweight OP model with Depthwise Separable Convolution
for real-time extraction of abnormal gait features. This significantly reduced the
computing workload required for hardware-intensive devices.

2. We performed a 3D reconstruction on the 2D lower limb data extracted from subjects
and obtained a total of 11 abnormal gait features from that data. Then, we further
processed the extracted data to obtain step length features. These steps improved the
data structure and diversified feature types.

3. We used machine learning algorithms to filter and classify abnormal gait features to
the measurement of abnormal gait behavior caused by different diseases.

2. Experimental Method
2.1. Establishment of Experimental Models

Usually, the lower limb behavior of the human body is captured by a lightweight OP
model, which offers a quick solution to process video and image data in real time [11,14].

Our work used this model to identify the 2D joint coordinates of patients during
walking and to obtain their walking pose data by extracting the coordinates of their lower
limb joints [15,16]. This vision-based model eliminates the inertial drift problem with
traditional sensors, and its structure is illustrated in Figure 1. With the image stream data
to be processed by the OP model, the feature map F was obtained through the VGG19
network. Then, the data entered the dual-branch convolutional neural network in multiple
stages through the feature map F. The upper branch was used to predict the heat map of
the joint, which was obtained as the heat map S. The lower branch was used to predict the
affinity field of the joint. Each stage was further predicted, and finally, the joint heat map
and affinity field of the entire network were obtained after t times of recognition [14].

Figure 1. Structure of the OP model.

In Figure 1, ρt and ϕt are convolutional neural networks used to read features in stage
t to generate a joint heat map S1 = ρ1(F) and joint affinity field L1 = ϕ1(F); ρ1, ρt, ϕ1, ϕt

were composed of five convolution blocks and two 1 × 1 ones. The input for each stage
was the image feature F and the recognition result of the previous stage. St, Lt are the heat
map and affinity field of joint at stage t, respectively. Then, the convolutional network of
this stage was used to predict the joint heat map and joint affinity field of this stage. The
recognition process can be expressed as follows:

St = ρt(F, St−1, Lt−1), ∀t ≥ 2 (1)

Lt = ϕt(F, St−1, Lt−1) (2)
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To obtain the coordinates of the lower limbs for real-time gait recognition, a Depthwise
Separable Convolution structure, instead of the conventional convolution in VGG19, was
used in our experiment. This can significantly reduce the number of model parameters
required [17]. The size of all convolution kernels was set to 3 × 3, and the number of convo-
lution kernels increased with the number of layers. The Depthwise Separable Convolution
used different convolution kernels to convolve different channels, and decomposed the
ordinary convolution into two processes: Depthwise Convolution and Pointwise Convo-
lution, so as to decouple channel correlation and spatial correlation [17]. The Depthwise
Convolution process split the convolution kernel into single channels and convolved each
channel without changing the depth of the input feature image. The Pointwise Convolution
process was used to up- and down-dimension the feature map with 1 × 1 convolution. The
combination of these two processes made the model more lightweight. N conventional
convolution kernels of size DK × DK ×M were equivalent to one Depthwise Convolution
and N Pointwise Convolutions. Therefore, the FLOPS and Params of the Depthwise Sepa-
rable Convolution were reduced to (1/N) + (1/ DK

2) conventional convolutions. Since there
were 16 convolutions of size 3 × 3 in VGG-19, the FLOPS and Params of the lightweight
OP model dropped to 17.36% of the original model.

A convolutional neural network with a smaller size and less computation was formed,
which was well-suited for mobile devices and enabled faster and more efficient extraction of
features from video stream data and reduced hardware requirements for model deployment.

2.2. 3D Construction of Lower Limbs

During data acquisition, the camera was located in the middle of the walking distance
of the person, at a distance of 3 m from the vertical position of the person. There was
a smaller angle between the video of the person during walking and the position of the
camera, as shown in Figure 2a. The computer displayed the knee angle in motion, the
velocity of the knee angle variation, and the acceleration of the knee angle variation. The
positions of the thighs, calves and feet in the video were mapped to a two-dimensional
(2D) plane. Therefore, errors were present in the length and angle data mapped in the
video, and traditional IMU sensors have demonstrated errors in the knee angle measured
by the OP [11,16,17]. As shown in Figure 2b,c, in the 3D space, there was an angle θ1 error
between the mapped thigh and the real thigh. The real knee angle is represented by θ2, and
the false knee angle of the mapped surface is represented by θ3.

Figure 2. (a) Data acquisition process. (b) The 3D spatial relationship between the real knee and the
mapped knee. (c) The lower limb reconstructed through the 2D data.
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Since the data output from the OP model was 2D data, the angle data output by the
leg needed to be reconstructed, and the reconstruction process is shown in Figure 2c. We
obtained all the position coordinates of the leg joints and generated length and angle data
by connecting the positions of the joint points. In the 2D image, L1, L2 and L5 denote length
data directly output by the OP model as extractable quantities, while L3 and L4 denote the
real leg lengths in space. In the experiment, the data of the person standing in the video
was used as the real leg length data. Finally, the 3D knee angle θ2 was obtained as follows:

cos θ2 =
L2

1 − L2
5 + L2

2 + 2
√

L2
3 − L2

1 ×
√

L2
4 − L2

2

2L3 × L4
(3)

3. Extraction of Step Length Features

Traditional gait features include multidimensional features such as step length, average
stride time, average pace time, average stride length, and the lowest knee angle [6,18]. With
the OP extraction model, we obtained abnormal gait features directly by intercepting each
gait cycle in the program. In addition, the left and right step length features needed to be
obtained by further processing the extracted data. Therefore, we designed an experiment
for step length data extraction by observing the walking pose of the subject, as shown in
Figure 3.

Figure 3. (a) The lightweight OP model captures the phases of the knee angle change during walking.
(b) Step length calculation process. (c) Step length correction process.

The human walking process mainly consists of forward, swing and fall, as shown in
Figure 3a. Patients with gait behavioral disorders generally walk with left and right swings
and rapid changes in step length. Therefore, step length data was extracted to serve as the
predictive features for the subsequent experiments.

The step length feature extraction process is shown in Figure 3b. The distance for
which a person walks one step with one foot is determined by the person’s leg length and
knee angle during walking [19]. When a person leans forward, the raised foot is affected by
the bending angle of the knee and moves forward. Taking the fixed angle of the step length
as the lowest knee angle, we designed an experiment to measure the walking distance of
a single person. We denoted the length of the thigh as Γ1, the length of the calf as Γ2, the
lowest knee angle as αmin, and the angle between the calf and the vertical direction of the
knee at the lowest knee angle as βmin.
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When the step length was completely determined by thigh length Γ1 and lowest knee
angle αmin, we obtained:

lα1 = Γ1 × cos(αmin − 90) (4)

lα1 represents the predicted real step. The predicted distances in Figure 3c represent
the time-varying movement distance curve fitted by this step method. As time went by, the
difference between the predicted real distance and the real value became larger. Therefore,
it was necessary to process the experimental data. It was found that the position coordinate
of the knee at the lowest angle did not accurately reflect the distance moved by a single
step during the real walking process.

When the step length was determined by thigh and calf lengths Γ1, Γ2 and knee angles
αmin and βmin, we obtained:

lα2 = Γ1 × cos(αmin − 90)− Γ2 × sin(βmin) (5)

The processed single-step step length data is also presented in Figure 3c. This data
was close to the real data. This demonstrated that this contactless step length measurement
method is scientifically feasible. In the experiment, left and right step lengths were used as
the features for classifying different types of abnormal gait behavior.

4. Analysis of Abnormal Gait Behavior
4.1. Analysis of Gait Characteristics for Different Diseases

In the medical field, behavioral disorders are mostly diagnosed in patients with
Parkinson’s disease, lumbar disc herniation, cerebral infarction, diabetes mellitus, and
cerebellar lesions. Stimulation of electrical muscle signals can cause abnormal gait when
walking. Therefore, there is a need to classify and assess these patients’ disorders in a
quantitative and contactless manner. In our experiments, we extracted gait data by asking
the subject to walk for a distance under an indoor camera. Then, using machine learning
algorithms, we achieved a preliminary diagnosis of these diseases.

Table 1 lists five different abnormal gaits that may be caused by behavioral disorders
and their characteristics. These characteristics can be used as the motor characteristics of
subjects who showed such abnormal behavioral symptoms in the experiment. Five types of
abnormal gait behaviors are caused by different types of diseases. When the walking stride
is small and the movement is stiff and slow, it is a manifestation of Parkinson’s disease.
Therefore, this scheme is convenient for doctors to pre-diagnose patients by classifying
abnormal gait.

Table 1. Characteristics of abnormal gait behavior for different diseases.

Gait Gait Characteristics Corresponding Types of Diseases

Magnetic step (or
Freezing gait)

The walking steps are small
and the movements are stiff

and slow.

This gait may indicate Parkinson’s
disease. The patient has symptoms

of tremor, stiff limbs, and slow
movement [20]

Mop step

The patient moves their left
and right legs at inconsistent
paces, and tends to walk by

dragging their feet.

This gait may indicate lumbar disc
herniation or cervical spondylitis

myelopathy. Due to nerve
compression, the patient has weak
muscle on one leg, and generally

drags one foot during walking [18]

Scissor Step
The patient tends to walk with
their toes facing inward and

their legs crossed.

This gait may indicate cerebral
palsy or spinal cord injury, which
can lead to impaired neurological

function and affect physical
activity [21]
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Table 1. Cont.

Gait Gait Characteristics Corresponding Types of Diseases

Intermittent
fragmentation

The patient experiences
lameness and often feels the
need to stop and rest due to
pain and numbness in legs.

This gait may indicate osteoarthritis,
lumbar spinal stenosis, vasculitis, or

diabetes [22]

Drunk step
The patient cannot walk in a

straight line and tend
to stagger.

This gait may indicate cerebral
hemorrhage, cerebral infarction,

brain tumor, or cerebellar lesions.
These diseases can cause cerebellar

damage or cerebellar
dysfunction [23].

4.2. Collection of Experimental Data

Due to sensitive neuromuscular changes, patient gait can serve as an important tool
for patient state prediction and classification, widely affecting most gait features such as
knee angle, step size, and stride length [24,25]. Exploring the gait changes caused by the
muscles caused by lesions can help to understand the gait changes and the rehabilitation
process of various diseases [26].

A total of eight subjects of different heights and weights (five males and three females)
were involved in this experiment for data collection. Based on the behavioral characteristics
of the disease in Table 1, the subjects were asked to imitate walking with a normal gait
and five abnormal gaits. All the subjects walked back and forth along a five-meter-long
experimental route. Five sets of experimental data were collected from each subject for
each gait. Through the method of data undersampling, the imbalanced data set becomes
balanced, and 40 experimental data are saved for each type of feature. The knee angle
changes as the subjects walked with different gaits are shown in Figure 4. During the
experiment, the subjects showed significant differences in knee angle changes among the
six gaits. The changes in the left and right knee angles during walking with abnormal gaits
suggested that the body was unbalanced.

Figure 4. Variation curves of left and right knee angles under different gait. (a) Standard walking.
(b) Mop step. (c) Drunk step. (d) Intermittent fragmentation. (e) Magnetic step. (f) Scissor step.
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4.3. Feature Screening

We set one step for each left and right leg as a motion cycle. By collecting and
processing the raw data, we obtained a total of 11 gait features, including left step length
(LSS), right step length (RSS), lowest left knee angle (LLK), lowest right knee angle (LRK),
average stride length (AS), average pace time (APT), average stride time (AST), variance of
right knee angle variation (VOR), variance of left knee angle variation (VOL), average value
of knee angular velocity (KAV), and average value of knee angular acceleration (KAA).
We performed a 3D reconstruction on four of these features: LSS, RSS, LLK, and LRK. The
four feature statistics of the six gaits with large differences are shown in Figure 5. Through
statistical data, it is found that there are large differences in the features of different gait
types, which contributes to higher accuracy of classification.

Figure 5. Difference distribution statistics of six gaits. (Features included are LLK, LRK, LSS, RSS).

Admittedly, accidental errors and interfering characteristics were present in this exper-
imental data. Therefore, before classifying abnormal gait behavior, we screened the feature
data and obtained the importance scores of each feature using the XGBoost algorithm [27],
as shown in Figure 6. (After GridSearch, it is determined that the parameter combination
is booster is gbtree, the learning rate is 0.3, tree depth is 6, and the maximum number of
iterations is 100).

Figure 6. 2D and 3D feature importance scores after XGBoost screening.

From Figure 5, five of the eleven features, i.e., AST, KAV, APT, RSS, and LSS, have
relatively high importance scores in both 2D and 3D conditions. For the four features
processed with 3D reconstruction, the models showed increased importance scores on LSS,
RSS, LLK and a decreased importance score on LRK. For models containing 3D features,
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AST achieved the highest importance score. For models containing 2D features, LRK
achieved the highest importance score. The experimental results showed that the overall
model performance varied greatly with the type of feature used in the experiment. Some
features produced low importance scores, indicating that these features did not contribute
much to the overall model performance due to the masking problem and the randomness
of different subjects during data collection. Better results were achieved for AST and KAV
than for the other features, indicating that the average stride time and knee angular velocity
played a bigger role in assessing body balance during walking.

XGBoost is used as a key machine learning algorithm for feature importance ranking,
which can eliminate unfavorable features of machine learning models [27–29]. As shown
in Table 2, by reducing the low-scoring features in order of importance scores, we obtained
the acceptance scores for different numbers of features. With 3D features, the acceptance
scores decreased as the number of features decreased in the range of 1~8. The best score of
0.9306 was achieved with 11 or 8 features. For the 2D features, the best score was achieved
with 11 features, and the score basically decreased as the number of features decreased.
Since the same score was obtained with 8 or 11 3D gait features, the abnormal gait behavior
is recognized with 8 and 11 features, respectively.

Table 2. Acceptance scores for different numbers of features.

Number of Features Score-2D Score-3D

11 0.9167 0.9306
10 0.9028 0.8889
9 0.8889 0.9167
8 0.8472 0.9306
7 0.8611 0.8611
6 0.8472 0.8750
5 0.8056 0.8333
4 0.7639 0.6944
3 0.7083 0.7083
2 0.5556 0.5833
1 0.3333 0.4028

5. Discussion

The five abnormal gaits were mainly determined by different types of gait behavioral
disorders. In our experiment, we used five recognition methods, i.e., Gradient Boosting
(GB), KNeighbors (KN), Multilayer Perception (MLP), Random Forest (RF), and SVM,
to classify the six gait features [28–33]. The parameter settings of the machine learning
model obtained by GridSearch are shown in Table 3. Finally, 2D adopts 11 features for
classification, and 3D adopts 8 and 11 features for classification, respectively, as shown
in Table 4. For the multi-classification problem of abnormal gait behavior, we introduce
the evaluation index Macro-average method and use Recall and Precision to express the
classification results.

Table 3. Parameter combinations for machine learning models.

Machine Learning
Algorithms Parameters

GB α = 10, loss function = deviance, subsample = 1.0.
KN Weights = distance, n = 4, distance measure = 1.

MLP Activation = ReLU, χ = (50,50), optimizer = Adam, α = 800, γ = 1.
RF Number of decision trees = 57.

SVM Kernel = ‘linear’, Kernel coefficient = 1.
n is the number of neighbors, α is the maximum number of iterations, γ is the state of the random
number generator.
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Table 4. Recognition results obtained for 8 and 11 features using five machine learning algorithms.

Machine Learning
Algorithms

2D—11 Features 3D—8 Features 3D—11 Features

Recall Precision Recall Precision Recall Precision

GB 0.7661 0.7778 0.8333 0.8611 0.8194 0.8472
KN 0.7211 0.7361 0.7500 0.7778 0.7533 0.7638

MLP 0.7557 0.7778 0.7944 0.8055 0.8344 0.8472
RF 0.8888 0.8918 0.9167 0.9213 0.9032 0.9048

SVM 0.7881 0.7918 0.8917 0.9027 0.8571 0.8611

TP represents the number of samples that predict the correct gait as the correct gait;
FN represents the number of samples that predict the correct gait as the incorrect gait; FP
represents the number of samples that predict the incorrect gait as the correct gait; TN
represents the number of samples that predict incorrect gait as incorrect gait;

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Precisionmacro =
1
n

n

∑
i=1

Precisioni (8)

Recallmacro =
1
n

n

∑
i=1

Recalli (9)

In this experiment, we used five machine learning algorithms to classify the feature
data of abnormal gait behavior. As seen in Table 3, the recognition accuracies were improved
after the 3D reconstruction of some features extracted from the OP model, with the highest
precisions being 89.18% for 2D features and 92.13% for 3D features. As shown in Figure 7,
high recognition accuracy was achieved for all gaits using random forest (RF). The lower
recognition accuracy of abnormal gait types also reached 83%, and the highest recognition
can reach 100%. The different gait recognition accuracy of 3D features has been improved
to varying degrees, indicating that abnormal gait features show more obvious differences
after 3D reconstruction. The highest recognition accuracy for abnormal gait (Magnetic step)
caused by Parkinson’s disease is 92%. Under the interference of a large number of different
abnormal gaits, Parkinson’s gait achieved the same level of accuracy as previous work [1,2].
The overall experimental results were as expected, and high recognition accuracy was
achieved for different types of abnormal gaits.

Figure 7. Best recognition precisions for 2D and 3D features.
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This work realizes the lightweight of the model and quickly completes the gait recog-
nition of volunteers, which overcomes the problems caused by wearing sensors and in-
clude multiple types of abnormal gait diseases and is no longer limited to Parkinson’s [1].
However, with the introduction of a more abnormal gait, there may be some impact on
Parkinson’s recognition.

6. Conclusions

In this paper, we presented a lightweight contactless pose sensing scheme for abnor-
mal gait behavior recognition. With this scheme, a lightweight OP model was used to
extract abnormal gait features in experiments and satisfactory results were achieved for the
recognition of diseases with abnormal gait behavior. The scheme offered a more lightweight
and less hardware-intensive alternative to traditional approaches for the recognition of
abnormal behavior in the elderly. Specifically, we used Depthwise Separable Convolution
to make the OP model more lightweight, with its FLOPs and Params reduced to 17.36%
of the original model. This design reduced the hardware requirements for the model and
allowed for real-time contactless recognition of abnormal gait behavior by cameras.

For the data collected by the OP model, we first performed 3D reconstruction on
the lower limb data to obtain the real walking data. Then, we screened out the invalid
features from the acquired features, completed feature importance analysis and filtered
out gait features with poor results. Finally, we used five machine learning algorithms
to classify the gait data and performed disease type recognition based on abnormal gait
features. In the experiments, the RF algorithm achieved the best recognition precisions,
which was 92.13%. The experiments verified that our proposed scheme can classify diseases
with abnormal gait behavior accurately and efficiently. This scheme can assist doctors to
recognize patient lesions by different abnormal gait behavior caused by different diseases.
With this scheme, we can continue to study high-precision quantitative evaluation of such
diseases in the future.
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