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Abstract: Arrival-time picking is a critical step in microseismic data processing, and thus the quality
control of arrival results is necessary. Conventional picking methods may be inaccurate or inconsistent
due to varied signal-to-noise ratios (SNR) and waveform patterns of the events recorded in different
time sections. To address this issue, we propose a quality assessment method based on waveform
similarity coefficients to evaluate arrival results and also a global optimization algorithm based
on iterative cross-correlation to refine arrival times. The recordings after moveout correction are
applied to calculate the intra-event and inter-event waveform coefficients for the quality assessment
of arrival results. The residual time differences of intra-event and inter-event traces are calculated
sequentially using an enhanced iterative cross-correlation method. In addition, the stacked waveform
of each event after the intra-event residual time correction is introduced for global optimization
to obtain the inter-event residual time discrepancies. We use both synthetic data and field data to
validate the proposed method. The results indicate that the proposed method yields more robust and
reliable results. The quality assessment of the optimized arrivals is greatly enhanced compared to the
adjusted picks obtained from single event-based processing methods.

Keywords: downhole microseismic monitoring; waveform similarity coefficient; iterative cross-correlation;
arrival optimization; quality assessment

1. Introduction

Microseismic monitoring technology captures and analyzes detectable elastic waves
generated by rock ruptures and has been widely used in the hydraulic fracture stimulation
of unconventional reservoirs [1–3] and rock/mining engineering [4,5]. Arrival-time picking
is a crucial step in microseismic data processing, and the picking result is useful for phase
identification, hypocenter localization, mechanism analysis, and facture interpretation [6].
Some benchmarking studies have revealed that significantly different results in microseis-
mic interpretations can occur for the same data set [7]. Therefore, it is essential to include
quality control (QC) procedures during data processing and analysis to ensure more inter-
nally consistent results, which will ultimately help to optimize stimulation programs and
production [8,9].

In recent decades, various algorithms have been substantially developed in earth-
quake and exploration seismology to detect and pick the arrivals of different seismic waves
from 1-C or 3-C recordings. Akram and Eaton reviewed the existing arrival-time picking
algorithms on microseismic data processing, classifying them as single-level, hybrid, and
multilevel-based methods [10]. A characteristic function is generally constructed from the
single receiver recording in single-level algorithms, and the maximum of the characteristic
difference is chosen as the arrival time of the microseismic signal. The short- and long-time
average ratio method (STA/LTA) [11,12], Akaike information criterion method (AIC) [13],
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polarization-based method [14], higher-order statistics such as skewness and the kurtosis-
based method [15,16], and the time-frequency analysis method [17] are commonly used
single-level methods. Hybrid algorithms have also been proposed to achieve more accurate
and precise arrival-time results for low signal-to-noise ratio (S/N) events by combining
information from one or more individual picking algorithms [18,19]. With the rapid devel-
opment of theoretical research on deep learning, some data-driven algorithms have also
been proposed to determine the arrival times of microseismic events [20–22]. Multi-level
algorithms make simultaneous use of information on multiple receiver levels within the
array, and this kind of algorithm takes advantage of the similarity of the detected micro-
seismic signals for different receivers and thus can improve the quality of picks. Estimating
time delays among received signals is fundamental for multi-level algorithms. Several
techniques are used to estimate the time delay, such as the cross-correlation method [23–26]
and phase-only correlation method [27].

With the ever-increasing size of microseismic data volumes in real-time monitoring, a
set of parameters is generally carefully selected to process all detected events in the arrival-
time picking workflow. However, these automatic methods usually encounter a problem
in a real-time-varying noisy environment. Arrival picks among events are inconsistent
when the same judgment criteria are applied due to the differences in the SNR levels
and waveform patterns. This type of inconsistency is usually ignored in conventional
picking workflows and picking errors among events can hardly be revealed by analyzing
individual event recordings. However, they can be observed as local inconsistencies if
assessing the dataset as a whole and comparing recordings from different events. Therefore,
the validation of the entire dataset and global optimization is necessary. The quality of
P-wave and S-wave arrival is evaluated using microseismic multiplets [28]. Common-
receiver gathers were implemented to identify wrongly picked arrival times and to analyze
the quality of time picks [29]. Combining the receiver-oriented and the event-oriented
approach is proposed to optimize joint arrival time picks for microseismic events [30].

In this study, we consider all microseismic event datasets as a whole and present a
quality assessment method for evaluating arrival results as well as a global optimization
algorithm for improving arrival picks on microseismic data. First, we introduce the quality
assessment of the arrivals. Next, an iterative cross-correlation method with a probability
density function is presented to calculate the residual time corrections of inter-receiver
recordings. Then, global optimization is proposed to obtain the inter-event residual time
discrepancies. Finally, we illustrate the performance of the proposed method in synthetic
data and field data, demonstrating the effectiveness and superiority of our proposed
method in consistency processing compared to the original picks and the adjusted picks
obtained from single event-based processing.

2. Methodology
2.1. Quality Assessment of Arrival Time Picks

Hydraulic fracturing-induced microseismic events are often monitored by a downhole
3C sensor array deployed in one or more wells close to the treatment well. Microseismic
events with nearby source locations and nearly identical focal mechanisms will show similar
recordings [28,31]. Meanwhile, microseismic sources with the same focal mechanism,
whether produced in the same fracturing stage or not, are expected to show similar traces
recorded but distinct amplitudes at the same receiver. A microseismic multiplet is a group
of seismic events with very similar waveforms but with different origin times. For the
multiplets, the waveform similarity depends primarily on inter-event and inter-receiver
distances and the time delay information is the key embodiment of inter-event distance, so
the accuracy and consistency of arrival-time data are the targets of arrival picking.

Let tik be the preliminary arrival time pick (P- or S-wave) for the kth event, recorded
at ith receiver, and tjl corresponds to the preliminary arrival time pick for the lth event,
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recorded at the jth receiver. It is determined as the time lag for which the normalized
cross-correlation function ccikjl between the two seismogram traces uik and ujl is maximum:

ccikjl(t) =

∫
uik(τ)ujl(τ − t)dτ√∫

u2
ik(τ)dτ ×

∫
u2

jl(τ)dτ
(1)

The correlation coefficient is the maximum value of ccikjl, and ∆tikjl is the time delay
between two recordings. If the arrival time picks and the cross-correlation calculated
relative arrival-times are identical, then they satisfy the following formula,

tik − tjl = ∆tikjl (2)

The measurements may not always be consistent due to varied noise interference or
anomalous conditions of the monitoring equipment; thus the Equation (2) is not completely
valid. When we construct the microseismic waveforms after moveout correction by arrang-
ing the arrival picking times into gathers to analyze the recordings, arrival errors can be
observed as local discrepancies. The waveform similarity of the microseismic signals can be
utilized to quantify a more precise residual time difference, which improves the accuracy
and consistency of the arrival result. Supposing one record segment has the P- or S-wave
arrival of a microseismic event in it, this phase should be aligned after an accurate moveout
correction. The semblance coefficient is a very good measure of the arrival optimization
because it shows a higher value if the waveforms of all the traces are aligned.

The similarity coefficient of inter-event multi-trace recordings is defined as

Sk =
∑N2

n=−N1
(∑M

i=1 uik(tik + n))
2

M∑N2
n=−N1

∑M
i=1 u2

ik(tik + n)
. (3)

where uik is the recording of the kth event, recorded at the ith receiver, and tik is the arrival
time. M is the trace number. N1 and N2 are the time window length before and after the
arrivals, respectively.

The stacking waveforms superposed by the recordings after moveout correction can
be utilized as the representative signal for the microseismic events, and the similarity
coefficient between them is a measurement for the consistency of the event arrivals. The
similarity coefficient of two recordings is defined as

Xkl =
∑N

n=1 (wk(n) + wl(n))
2

2∑N
n=1 (w

2
k(n) + w2

l (n))
. (4)

where wk and wl are the stacking waveforms after moveout correction of kth event and lth
events, respectively, and N is the length of the waveform. The value of S and X lies between
zero and one, and it is equal to one only if the waveforms of all the traces are completely
the same in shape and amplitude [32]. In practice, the value will reach its maximum.

Figure 1 depicts two synthetic downhole microseismic events with different Gaussian
white noise values and their recordings after move correction using arrivals with various
error levels. We evaluate the arrivals by calculating the similarity coefficients (Table 1); S1
and S2 are the similarity coefficients of multi-trace recordings after the moveout correction
of two events, and X12 is the similarity coefficient of two stacking waveforms. As the arrival
error level increases, the waveform becomes inconsistent, and the similarity coefficients of
the recordings after moveout correction decrease significantly. In other words, the reduction
in residual time differences may be associated with an increase in the similarity coefficient
after arrival optimization.
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Figure 1. Two synthetic microseismic signals and the recordings after moveout correction using
arrivals with different error levels. (a,e) are the synthetic recordings; (b,f) are the recordings after
moveout correction using accurate arrivals; (c,g) are the recordings after moveout correction using
arrivals with 2 ms standard deviation error; (d,h) are the recordings after moveout correction using
arrivals with 5 ms standard deviation error. The blue traces are the stacked waveforms.

Table 1. Quality Assessment for the arrivals with various error levels.

The Similarity Coefficients Accurate Arrivals Arrival Error with 2 ms
Standard Deviation Error

Arrivals Error with 5 ms
Standard Deviation Error

S1 0.782 0.532 0.191
S2 0.576 0.471 0.163

X12 0.965 0.895 0.621

2.2. Arrival Refinement Based on Waveform Cross-Correlation

Many automatic processing workflows have already been developed for arrival-time
picking using multi-trace cross-correlation, such as using over-determined linear equations
to obtain the optimal result [27,30] or the iterative cross-correlation based method [10,33,34].
However, it is difficult to satisfy the conditions that both similarity coefficients of waveforms
in the event and among events are greater than the threshold value in the actual data.
The S/N and polarity of traces in the dataset are greatly different; therefore, a proper
optimization strategy should be implemented to refine the arrival of low S/N events.

We propose an enhanced iterative cross-correlation method to calculate the resid-
ual time differences of multi-trace recordings. Initial arrival times generated by any of
the picking algorithms are applied to align the microseismic recordings in this iterative
cross-correlation method. To assist in the construction of the stacked trace, microseismic
waveforms are then rescaled to equalize the pre-event noise level. Moreover, the time-shift
(τ) is updated by correlating the stacked waveform with the recording after moveout
correction. This process is repeated until the residual time shifts converge to less than a
predefined threshold value (ε), indicating that the input data has been optimally realigned.
The iterative cross-correlation workflow can be described in Figure 2.
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Figure 2. Iterative cross-correlation based workflow for refining arrival picking.

The peak value of the cross-correlation function may be ambiguous due to the low
S/N recording or the existence of multiple seismic phases. As a result, the position cor-
responding to the maximum value cannot dependably reflect the precise time delay. A
windowed cross-correlation technique has been proposed to avoid the influence of the
P-wave code [24]. In this study, we develop an enhanced cross-correlation approach by
using a probability density function f(t) to restrict the time delay estimation as follows:

Ncc(t) = cc(t)× f (t) = cc(t)× 1
σ
√

2π
e−

(t−µ)2

2σ2 . (5)

where µ is the mean value of the time difference (usually 1–2 times the dominant period
of the signal), and σ is the estimated residual time. Figure 3 shows the comparison of
the time difference estimation results between the normalized cross-correlation function
and the proposed cross-correlation function. Figure 3a is one microseismic recording
after moveout correction using the initial arrivals. Figure 3b,c are the recordings after
residual time correction by the normalization cross-correlation function and the proposed
cross-correlation function. The red circle in Figure 3b indicates the wrong time difference
correction. It can avoid the large deviation in time difference estimation if the error is
within a certain range (shown in Figure 3c,e).
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Figure 3. Waveforms after moveout correction based on adjusted picks from the time delay estimation.
(a) the recording flattened using P pick times of one microseismic event example; (b,c) represent the
recordings after adjusted picks correction using the normalized cross-correlation function and the
proposed cross-correlation function, respectively; (d,e) are the normalized cross-correlation function
and the proposed cross-correlation function, respectively. The red ‘x’ indicates the position of the
maximum value. The red circle shows the wrong residual time estimation.

2.3. Global Consistency Processing

An observed seismogram is a convolution of the source term, path effects, site effects,
and instrumental responses. Event pairs with high cross-correlation coefficient values
are considered to have close hypocenters and similar focal mechanisms. The waveform
similarity characteristic of the events recorded by downhole arrays is primarily embodied
by two aspects: (1) microseismic signals recorded by the adjacent receivers show waveforms
similar on the records; (2) the waveforms of different microseismic events with nearby
source locations and similar focal mechanisms show similar on the records. To improve
the consistency of arrival time data and eliminate the influence of noise interference or
abnormal situations of monitoring equipment, we propose a stepwise processing method
for the global optimization of arrival picking for microseismic events.

The initial arrival picks tik (k is the event number and i is the receiver number) of the
microseismic data are obtained using an automatic algorithm, such as the STA/LTA or AIC
methods. The workflow of the proposed method begins by optimizing intra-event picks.
We apply the proposed enhanced iterative cross-correlation method to refine intra-event
arrivals and superpose the aligned waveforms of each event after residual time correction.
This process improves the relative picking accuracy between receivers and ensures the
consistency of the intra-event arrival time data.

Global optimization is applied to calculate the inter-event residual time difference
from the stacking waveforms of each event. Before optimization, the three-component
stacking waveforms are rotated into one component to maximize the P-wave or S- wave
signal energy. The arrival times after global optimization can be expressed

T′ ik = tik + ∆tik + ∆Tk. (6)

where T′ is the arrival time results after the global optimization. ∆tik and ∆Tk represent the
intra-event and inter-event arrival corrections, respectively.
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The workflow of the proposed global optimization method for microseismic event
arrivals in this paper can be described as follows (Figure 4).

Figure 4. Flowchart of the proposed global optimization method.

3. Synthetic Data Analysis

To validate the proposed method, we apply it to synthetic data generated using the
geometry of a real microseismic monitoring system. The acquisition geometry consists
of 15 receivers ranging in depth from 2443 to 2673 m. The spacing interval between two
neighboring receivers is 10 m for levels 1 to 4 and levels 13 to 15, and 20 m for levels 4 to
13. The layout of this microseismic monitoring survey is shown in Figure 5. The velocity
model used in this case is initially developed from the sonic logging data of the perforation
well (as shown in Figure 5c). 100 microseismic events with random locations near one
fracturing stage are used to generate synthetic one component recordings. The direct wave
travel times are calculated using the layer velocity model. Ricker wavelets with dominant
frequencies of 200 Hz and 100 Hz are used as the P and S-waves, respectively. The wavelet
is multiplied by different weighting factors to simulate the various magnitudes of events,
and these factors are exponentially decreased with traces to simulate the attenuation caused
by the different propagation paths. Gaussian white noise is added to the 100 recordings
with a sampling interval of 0.5 ms.

We use the short-term average/long-term average method (STA/LTA) to obtain the
arrivals of each event, and then apply the improved iterative cross-correlation method
to optimize the initial arrivals, achieving the adjusted picks after intra-event refine pro-
cessing and inter-event refine processing sequentially. The number of samples in short
and long-time windows are 20 and 100, respectively. To avoid incorrect arrival picks, we
combine the limitations of the time difference between different receivers and different
seismic phases when judging the P and S-wave arrivals. After intra-event residual time
correction, the aligned waveforms of each event are superposed and then used for global
optimization to obtain the inter-event residual time discrepancies. Figure 6 shows an
example of microseismic event recording and the recordings after moveout correction
using different arrivals. The residual time differences are accurately estimated, and the
waveform consistency of the iterative cross-correlation refinement method is greater than
that of the STA/LTA method, especially the P-wave recording in the example. Figure 7
shows the recordings of the stacked traces using the arrivals of different methods. The
arrival differences among events are minimized after global optimization.
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Figure 5. Layout and location of a real case microseismic monitoring system: the green triangles
represent receivers, the black stars represent 11 fracturing sections, and the red stars represent the 100
microseismic event locations used to generate synthetic data. (a) 3-D view; (b) planar view; (c) the
velocity model. Black and gray lines represent P and S wave velocities, respectively.

Figure 6. (a) synthetic microseismic recordings and the arrival picks. The black, green, and blue
lines represent the true arrivals, the arrivals of STA/LTA, and intra-event optimization processing,
respectively. (b,e) are P and S-waves after moveout correction using true arrivals; (c,f) are P and
S-wave after moveout corrections using arrivals by STA/LTA; (d,g) are P and S-wave after moveout
correction using refined picks by intra-event optimization processing.

Figure 8 depicts the error comparison between the arrivals of three processing methods
and the actual arrivals. In comparison to the arrival error of the STA/LTA method, the
arrival error after intra-event optimization processing is significantly reduced, and the
arrival error of the global optimization method decreases further. The bias in arrival picks
(about 2~5 sampling numbers) may be caused by the shape of the synthetic microseismic
signal, and it is in an acceptable range. In the actual data, the location of the arrival is
unknown. The waveform similarity coefficient after moveout correction is a useful tool to



Sensors 2022, 22, 4065 9 of 18

analyze the quality of arrival results. As shown in Figure 9, the similarity coefficients of
the moveout corrected waveforms are calculated using the true arrivals and arrivals of the
STA/LTA method, after intra-event optimization processing. The similarity coefficients of
moveout corrected waveforms after intra-event processing tend to approach those of true
arrivals, indicating that arrival errors have been decreased.

Figure 7. The stacked waveforms of each event obtained by different arrival picks. (a,b) are the P
and S-wave stacked waveform using arrivals from STA/LTA; (c,d) are the P and S-wave stacked
waveform using arrivals from intra-event optimization processing; (e,f) are the P and S-wave stacked
waveform using arrivals from global optimization processing. The horizontal gray line represents
the location of arrivals, and the recordings are processed by energy balancing between traces for
better visibility.

Figure 8. Arrival error histogram of different picking methods. (a) P wave arrival errors; (b) S wave
arrival errors; (c) P-S time difference errors. The gray, blue, and red bars represent true arrivals
and the arrivals of the STA/LTA method, the intra-event optimization processing method, and the
inter-event optimization processing methods, respectively.
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Figure 9. Quality assessments for the arrival results of different picking methods compared with
the true arrivals. (a) the P wave similarity coefficients of intra-event traces; (b) the S wave similarity
coefficients of intra-event traces. The black and blue circles represent the similarity coefficients
calculated by those arrivals of the STA/LTA method and intra-event processing methods, respectively.

4. Field Data Analysis

To demonstrate the performance of the proposed method, we used a field microseismic
dataset during the 11-stage hydraulic fracture treatment which was shown in Figure 5. The
dataset is from a tight reservoir fracturing monitoring project of Shengli Oilfield in eastern
China. The total duration of the monitoring dataset is more than 27 h, and its sampling
interval is 0.5 ms. Before the hydraulic fracturing stimulation starts, a perforation shot is
fired in a third well located approximately 920 m northwest of the monitoring well. We used
the signal of the perforation shot to orient the receivers to obtain the component-rotated
data, and then we adopted a band-pass filter with cutoff frequencies 30 Hz and 300 Hz
to eliminate low- and high-frequency noises from the continuous downhole monitoring
recordings. In the continuous dataset, 521 triggered events were detected using an intra-
event coherence-based event detection method, and their P- and S- wave arrival times were
determined using the joint STA/LTA-polarization-AIC method [19].

Figure 10 shows four of these field microseismic events and their P- and S-wave arrival
picks. The results seem to be accurate and acceptable. However, due to the difference
between S/N and the waveform patterns, some of these picks are not accurate; they can
be observed as local inconsistencies between traces both in common event gathers and
common-receiver gathers after moveout correction based on pick times. Local waveform
misalignment indicates the picking error among traces. Figures 11 and 12 show common
event gathers of the P-wave and S-wave of four microseismic events after moveout correc-
tion using the arrivals by the STA/LTA-polarization-AIC picker. The arrival picking errors
are indicated by the local inconsistencies between waveforms (noted by the black arrows).
In addition, the signal-to-noise ratios (SNR) of waveforms from each receiver are revealed
to be considerably varied. The amplitude of the P-wave in Figure 11 decreases for deeper
receivers as they may have been affected by radiation patterns and propagation paths [35].
Figure 13 displays four common-receiver gathers (CRG) after moveout correction, which
are waveforms acquired by the same receiver (Receiver No.2, 5, 6, and 8) and can provide
another perspective for finding erroneous picks.
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Figure 10. Four microseismic events and their P- and S-wave arrival picks. The balck vertical bars
denote the P-wave arrival picks, and the gray ones denote those of the S-wave. Blue, green, and
red lines represent rotated x-, y-, and z-components, respectively. (a) Event No.1; (b) Event No.2;
(c) Event No.3; (d) Event No.4.

Figure 11. P-waves of four microseismic events recorded by 15 receivers after moveout correction.
The horizontal gray line represents P-wave arrivals. (a–d) are P-wave recordings from the four events
in Figure 10. Blue, green, and red lines represent rotated x-, y-, and z- components, respectively. The
arrows indicate the local inconsistencies between waveforms.
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Figure 12. S-waves of four microseismic events recorded by 15 receivers after moveout correction.
The horizontal gray line represents S-wave arrivals. (a–d) are S-wave recordings from the four events
in Figure 10. Blue, green, and red lines represent rotated x-, y-, z- components, respectively. The
arrows indicate the local inconsistencies between waveforms.

Figure 13. Common-receiver gathers of x-components flattened using P pick times. The horizontal
gray line represents the location of P-wave arrivals. (a) Receiver No.2; (b) Receiver No.5; (c) Receiver
No.6; (d) Receiver No.8. The blue arrows indicate the local inconsistencies between waveforms from
different events.

The arrival times obtained from the joint STA/LTA-polarization–AIC method are
utilized as initial picks for cross-correlation-based methods that refine the initial picks via
the waveform similarity. Figures 14 and 15 show the moveout corrected waveforms after the
refinement of intra-event arrivals and the 3C stacked traces on their right. The adjustment
of arrival time picks by multilevel algorithms results in more consistent waveforms than
the waveforms shown in Figures 11 and 12. Figure 16 shows the similarity coefficients of
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the moveout corrected waveforms before and after intra-event refinement. The similarity
coefficients of the P wave (Figure 16a) and S wave (Figure 16b) are significantly increased for
the majority of the events. The low similarity coefficients of the S wave in the z-component
are due to the low energy of the S wave.

Figure 14. The 3C recording of the example events after residual time correction based on corrected
P-wave arrival picks and the stacked waveforms on their right. (a–d) are P-wave recordings from the
four events in Figure 10. The gray horizontal lines represent the corrected arrival picks of the P-wave.
Blue, green, and red lines represent x-, y-, and z- components, respectively.

Figure 15. The 3C recording of the example events after residual time correction based on corrected
S-wave arrival picks and the stacked waveforms on their right. (a–d) are S-wave recordings from the
four events in Figure 10. The gray horizontal lines represent the corrected arrival picks of the S-wave.
Blue, green, and red lines represent x-, y-, and z- components respectively.



Sensors 2022, 22, 4065 14 of 18

Figure 16. The similarity coefficients of moveout corrected waveforms before and after intra-event
arrival refinement. (a) P wave; (b) S wave. Blue, green, and red circles represent x-, y-, and z-
components respectively.

Although the waveform consistency after intra-event residual time difference correc-
tion has increased greatly, errors among events cannot be detected from the analysis of
individual event recordings. The optimization process is not accomplished since there
are still conspicuous time differences among events, which are observed as waveform
misalignment in stacked waveform gathers, as shown in Figure 17. To limit the influence of
the focal mechanism, these three-component recordings of the stacked waveforms of the P
wave and S-waves were rotated to one component to maximize waveform energy and then
processed by energy balancing and polarity unification. The superposed traces from events
provide the arrival time and waveform shape of microseismic signals as well as enhancing
the S/N, which is beneficial to calculate residual time discrepancies among events. Since
arrival refinement is only applied in each event and does not take into consideration the
interconnectivity of various events, the consistency of arrival picks among events varies
even among waveforms with a high signal-to-noise ratio.

Figure 18 shows the stacked waveforms of the P wave and S wave after inter-event
optimization processing. Compared with the waveforms of the single event-based process-
ing, the waveforms after global optimization are more consistent, as shown in Figure 19.
As shown in Figure 20, the similarity coefficients of the stacking waveforms are calculated
using the adjusted arrivals of intra-event optimization processing, and the global optimiza-
tion method. It demonstrates that after global optimization, the similarity coefficients of
the stacked waveforms greatly increase, indicating that arrival discrepancies among the
events are reduced.
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Figure 17. The stacked waveform gathers of all events based on adjusted picks. The horizontal
lines show the arrival times of the stacked waveforms. (a) P wave; (b) S wave. The recordings are
processed by energy balancing and polarity unification.

Figure 18. The stacked waveform gathers of all events after inter-event event refinement. The
horizontal lines show the arrival times of the stacked waveforms. (a) P wave; (b) S wave. The
recordings are processed by energy balancing and polarity unification.
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Figure 19. The stacked waveforms of all events before and after inter-event refinement. (a) P
wave stacked waveforms before inter-event refinement; (b) P wave stacked waveforms before inter-
event refinement; (c) S wave stacked waveforms before inter-event refinement; (d) S wave stacked
waveforms after inter-event refinement. The red lines are the final stacked waveforms.

Figure 20. The similarity coefficients between the stacking waveforms before and after global
optimization processing. (a) the similarity coefficients of the P wave before global optimization; (b) the
similarity coefficients of the P wave after global optimization; (c) the similarity coefficients of the S
wave before global optimization; (d) the similarity coefficients of the S wave after global optimization.



Sensors 2022, 22, 4065 17 of 18

5. Conclusions

We have proposed a quality assessment method based on waveform similarity coef-
ficients for evaluating arrival results and a global optimization approach to refining the
original arrival-time picks. The similarity coefficients of the moveout corrected waveforms
and the stacking waveforms of each event have been calculated to evaluate the arrival
results. The presence of arrival error in the conventional picking method diminishes the sim-
ilarity coefficients, and the consistency among events is ignored. Iterative cross-correlation
is utilized to estimate the residual time difference between traces, and a probability den-
sity distribution of the time difference is considered in the waveform cross-correlation to
avoid wrong picks. The arrival discrepancies among the events are also obtained using the
enhanced iterative cross-correlation approach on the stacked waveforms. The global opti-
mization method has been tested on synthetic data and field data; the aligned waveforms
indicate a greatly improved picking consistency of the arrival time result. The actual data
processing results show that the arrival time data of microseismic events with a similar
waveform from different fracturing stages can be regarded as a whole, which can rectify
shortcomings in the consistency among the original results using traditional methods, thus
improving the accuracy and consistency of the arrival times.
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