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Abstract: The neural correlates of intentional emotion transfer by the music performer are not well
investigated as the present-day research mainly focuses on the assessment of emotions evoked by
music. In this study, we aim to determine whether EEG connectivity patterns can reflect differences
in information exchange during emotional playing. The EEG data were recorded while subjects were
performing a simple piano score with contrasting emotional intentions and evaluated the subjectively
experienced success of emotion transfer. The brain connectivity patterns were assessed from the EEG
data using the Granger Causality approach. The effective connectivity was analyzed in different
frequency bands—delta, theta, alpha, beta, and gamma. The features that (1) were able to discriminate
between the neutral baseline and the emotional playing and (2) were shared across conditions, were
used for further comparison. The low frequency bands—delta, theta, alpha—showed a limited
number of connections (4 to 6) contributing to the discrimination between the emotional playing
conditions. In contrast, a dense pattern of connections between regions that was able to discriminate
between conditions (30 to 38) was observed in beta and gamma frequency ranges. The current study
demonstrates that EEG-based connectivity in beta and gamma frequency ranges can effectively reflect
the state of the networks involved in the emotional transfer through musical performance, whereas
utility of the low frequency bands (delta, theta, alpha) remains questionable.

Keywords: music; emotion; active performance; EEG; connectivity

1. Introduction

The proposed mechanisms of emotion induction by music differ in many aspects
including the information focus, cultural impact, dependence on musical structure, eval-
uative conditioning, and others. These are important from the listener’s perspective;
however, these are also implicated in intended emotion transfer while performing. The
present-day research mainly focuses on the assessment of emotions evoked by music. The
neural correlates of intentional emotion transfer by the music performer, however, are not
well investigated.

McPherson et al. [1] utilizing fMRI discovered that, during the creative expression of
emotions through music, emotion-processing areas of the brain are activated in ways that
differ from the perception of emotion in music. However, the electroencephalogram (EEG),
being a unique real-time brain activity assessment method, appears to be advantageous in
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the context of music performance allowing more ecologically valid settings. Nevertheless,
only few studies related to music improvisation or active playing while collecting and
interpreting EEG data [2–4]. In our recent study, we investigated spectral properties of
EEG activity in musicians while they were instructed to transfer a certain emotion through
performance of a predefined simple music score. To our knowledge, it was the first attempt
to address the intended emotional communication through an artistic medium using
the EEG signal. As the emotion to be communicated by musicians does not necessarily
reflect their actual felt emotions in the moment [5,6], subjects self-evaluated their own
performances based on how well they felt they expressed the intended emotion within it.

The modulation of emotional intent via the means of expressive cues in academic
music is often written in the score, and executed by the performer. However, in jazz or
popular music, these expressive cues are often only tacitly implied and the performer is
given room for interpretation. For example, the performer may often seek to perform
a unique or characteristic rendition of a familiar song by changing the tempo, groove,
dynamic, or articulation to help communicate their emotional intent [7,8]. The leeway and
capacity that performers have to use expressive cues differs between musical genres and
performance environments. As a result, the live version of a song may greatly vary from
the studio recording depending on the situational context. From a musicology perspective,
modulation of affective intent via expressive cues executed in performance is considered
an inextricable aspect of the process of embodied musical communication, which is often
overlooked in brain-imaging studies using a musical framework [9,10]. Music created,
experienced, and consumed in everyday life often functions as a means of mood modula-
tion, and a catalyst for social cohesion, coordination or contextual human behavior. These
aspects are difficult to replicate in highly controlled settings where the focus may be on the
isolation of a particular response [11,12]. To address these issues, and capture the neural
activity related to elusive creative process of imbuing music with emotion in performance,
our study’s approach attended to maintaining a level of ecological validity. The recordings
took place in a room at the music academy in Riga, where musicians are familiar with
practicing, performing, and recording. Musicians were informed that the audio recordings
of their performances would be evaluated later by a listener group. This knowledge helped
performers to associate each session of EEG recording with an ordinary music studio
recording session they may experience in their everyday practice. We probed the brain
activity patterns that are differentially involved in distinct emotional states by employing
the experimental contrast of emotional playing vs. neutral playing. Differences in power of
EEG activity were observed between distressed/excited and neutral/depressed/relaxed
playing conditions [13].

The integration of different cortical areas is required for both music perception and
emotional processing. Several attempts have been made to investigate network connectivity
in relation to emotional aspects of music listening. Previous studies targeting at emotion
discrimination while listening to music demonstrated that distinct network connectivity
and activation patterns of target regions in the brain are present during listening, particu-
larly between the auditory cortex, the reward brain system, and brain regions active during
mind wandering [14]. The existing fMRI-based studies showed that clear variations in
connectivity for different music pieces are present. Karmonik et al. [15] reported largest
activation for processing of self-selected music with emotional attachment or culturally
unfamiliar music. Recently, Liu et al. [16] associated emotional ratings of pleasure and
arousal with brain activity. In their study, classical music was associated with the highest
pleasure rating and deactivation of the corpus callosum while rock music was associated
with the highest arousal rating and deactivation of the cingulate gyrus. Pop music, in
contrast, activated the bilateral supplementary motor areas and the superior temporal
gyrus with moderate pleasure and arousal. Using EEG, Varotto et al. [17] demonstrated
that the pleasant music induces an increase in network number of connections, compared
with the resting condition, while no changes are caused by the unpleasant stimuli. Shahabi
and Moghimi [18] reported a positive association between perceived valence and the frontal
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inter-hemispheric flow, but a negative correlation with the parietal bilateral connectivity
while listening to music. Recently, Mahmood et al. [19] demonstrated that even a short
period of listening to music can significantly change the connectivity in the brain.

Importantly, the activation patterns while listening to music may differ in musicians
when compared to non-musicians as demonstrated by Alluri et al. [20]: in their study,
musicians automatically engaged action-based neural networks (cerebral and cerebellar
sensorimotor regions) while listening to music, whereas non-musicians used perception-
based networks to process the incoming auditory stream. However, it is not well known
to what extent the connectivity differs between states of active emotional performances.
With this follow up study, we aim to determine whether connectivity patterns can reflect
differences in information exchange during emotionally imbued playing. We assessed
brain connectivity patterns from the EEG data while subjects were performing with the
emotional intent. We contrasted emotional playing with neutral playing to control over
general patterns of motor and sensory activation and expected that observed connectivity
patterns are attributable to the emotion-related aspects of the performance.

2. Materials and Methods
2.1. Participants

Ten musicians (2 males, 8 females; age 19–40 years) were recruited with the criteria that
they were experienced piano players with a minimum of 5 years of academic training. For
each participant, EEG recording sessions involving a piano-playing task took place over four
sessions scheduled on different days. Rı̄ga Stradin, š University Research Ethics Committee
approved the study (Nr.6-1/01/59), and all participants provided their written consent.

2.2. Experimental Design and Procedure

Participants were provided with a musical score composed by the author (available
in Supplementary Materials), designed to be simple enough for trained pianists to learn
quickly and make expressive variation upon. The music used an extended pentatonic scale
to circumvent Classical Western functional harmony bias, and presented on two pages.
The first page was to be performed mechanically, in tempo, neutral in expression. The
music on the second page was a repeat of the first page, but freedom was given to the
player to alter their manner of play in order to express one of five emotions based on a 2D
valence-arousal model of affective space (distressed, excited, depressed, relaxed, neutral).
Participants were encouraged to use any and all expressive cues at their disposal (such
as tempo, groove, articulation, embellishment), to make a contrast between the neutral
first page and the emotion-imbued second page (except when the second page was also
neutral). Each page had duration of 30 s, making the duration of each performance 1 min.
The protocol was controlled with the Psychopy stimulus presentation software [21], which
presented instructions for each trial in order and randomized the sequence of the five
emotions over the course of each recording session. A total of 200 trials were recorded for
each participant. See Figure 1 for a schematic representation of a single experimental trial.
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interest (ROIs): mid-frontal left (1) and right (2), left (3) and right (4) frontal, centro-parietal left (5) 

Figure 1. Sequence of a single experimental trial.

All participants were fully briefed on what to expect before their first scheduled record-
ing session. At each first session, participants were given time to familiarise themselves
with the recording sequence and emotional descriptors, ensuring their understanding of
the piano playing task as well as the self-evaluation step. During each trial, subjects were
asked to remain seated at the piano and follow the instructions presented on a laptop screen
at eye level.

One of the five emotion descriptors was presented for 20 s. Next, a fixation cross was
presented for 15 s while recording the resting state. This was followed by the first page
of the music score that was presented with a 3 s countdown to start playing. The neutral
baseline playing instruction was displayed for 30 s alongside the countdown to the start of
emotional playing. This was followed by the second page with the score for emotionally
expressive playing lasting 30 s. Participants self-evaluated their own performance on a
scale from 1–9, on dimensions of valence (from negative to positive) and arousal (from low
to high), with 5 representing neutral on both scales (Figure 2A). Participants were reminded
to submit their ratings not based on their actual felt emotions, but, based on how well they
felt, their own performance expressed the intended emotion.
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Figure 2. (A) Emotion descriptors used for performance instructions; (B) mean results of subjective
self-assessment on the experienced emotional arousal and valence levels across each experimental
trial of all participant (color coding is similar as in A); (C) the group of electrodes into regions of
interest (ROIs): mid-frontal left (1) and right (2), left (3) and right (4) frontal, centro-parietal left (5)
and right (6), parieto-occipital left (7) and right (8), fronto-central (9) and central parieto-occipital (10).
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When recording, five trials were grouped into a single run. Ten runs were recorded at
each session, with short rests between each run. A total of fifty trials were recorded at each
of the four sessions scheduled per participant. Audio from the performance was recorded
alongside the EEG, and participants were made aware that these would be evaluated by
listeners in future steps.

2.3. EEG Acquisition

EEG signals were acquired using an Enobio 32 device, with 32 electrodes placed
according to the International 10–20 system. Common Mode Sense (CMS) and Driven Right
Leg (DRL) connections were applied to the right earlobe for grounding, while signal quality
was monitored within the hardware’s native signal acquisition software Neuroelectrics
Instrument Controller v.2.0.11.1 (NIC). The quality index provided within NIC consists of
a real-time evaluation of four parameters, namely line noise, main noise, offset, and drift.
Data were recorded at a 500 Hz sampling rate with a notch filter applied at 50 Hz to remove
power line noise.

2.4. EEG Preprocessing

EEG data were prepared for further analysis using an automated Preprocessing
Pipeline script in MATLAB and utilizing several functions from the EEGLAB toolbox [22].
First, the Automated Artifact Rejection function in EEGLAB was applied to the raw EEGs
to eliminate the bad portions of the data, and the channels that had lost more than 20% of
their data were discarded. The data were filtered using the zero-phase bandpass FIR filter
between 0.5 to 45 Hz implemented in EEGLAB, and referenced to the mean of T7 and T8
channels. Independent Component Analysis (ICA) and ICLabel plugin in EEGLAB were
used to detect and remove the embedded artifacts including muscle activity, eye blinks, eye
movements, and heart electrical activity. The 30 s of neutral baseline performance and 30 s
of each emotional performance (distressed, excited, depressed, relaxed, and neutral) were
extracted resulting in 2000 EEG time series (data from 10 participants across 4 days and
50 piano-playing excerpts per session) for emotional playing (400 segments for each of the
emotional instruction, further called observations), and 2000 EEG time series for the corre-
sponding baseline. Emotional playing and baseline time series were treated separately but
in the same way. The electrodes were grouped into ten regions of interest (ROI, Figure 2C)
and the average for electrodes within the ROI was obtained. The observations that did not
contain information on at least one ROI (due to channels removal in previous steps) were
excluded from the analysis. To maintain the homogeneity of the final matrix, the minimum
number of observations remaining in each emotional condition was equal to 314. The 30-s
time series for each of the 10 ROIs were segmented into 3-s epochs starting from 3rd s to
27th s, and the averages of these segmented data were used for further assessments. The
dimensions of the final observation matrix thus were equal to 1570 × 10 × 1500 arrays
((314 observations for each of five emotional conditions) × (ROIs) × (3 s × 500 samples per
second)). By filtering the separate rows of the observation matrix into different frequency
bands for 1–4 Hz (delta), 4–8 Hz (theta), 8–12 Hz (alpha), 12–30 Hz (beta), and 30–45 Hz
(gamma), five sub-band observation matrices were obtained for each emotional playing
part and corresponding baseline.

2.5. EEG Analysis

We focused on the effective connectivity approach that provides information on the
direction of information flow in the nerve systems and illustrates complex interactions
in the brain regions [23–25]. Granger Causality (GC) was utilized as a relatively simple
(with low hardware demand) available method of calculating the directed connections that
increase the success of implementing a real-time BCMI machine in future research [26].
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2.5.1. Granger Causality

GC is a statistical concept of causality which is founded on prediction. According to
Granger causality, if a signal X “Granger-causes” a signal Y, then past values of X should
provide information that helps to predict Y, whereas the past values in Y alone are not
sufficient to predict its future [27].

GC is formulated as follows:
Let y(t) and x(t) be stationary time series. First, find the proper lagged values of y(t − i)

to include in the univariate autoregression of y(t) according to (1):

y(t) = ε(t) +
∞

∑
i=1

a(i)× y(t − i) (1)

Then, the autoregression is recalculated by including lagged values of x(t) as follows (2):

y(t) = ε̃(t) +
∞

∑
i=1

a(i)× y(t − i) +
∞

∑
j=1

b(i)× x(t − j) (2)

where a(i) and b(j) are regressive coefficients and ε̃(t) is the prediction error calculated
by considering the effect of lagged values of x(t) on predicting the y(t), and ε(t) is the
prediction error of y(t) calculated without using x(t). Therefore, if the variance of ε̃(t) is
smaller than that variance of ε(t), then the GC will be 1 and x(t) ‘’Granger-causes” y(t); if
the variance of ε̃(t) is larger than that variance of ε(t), then GC value will be 0 and x(t) does
not ‘’Granger-cause” y(t).

2.5.2. Feature Extraction

For all observations, the GC was calculated between each pair of the ROIs, and
10 × 10 connectivity matrices were created, where the array (i, j) illustrates the GC value
between channels i, j. The connectivity matrices were further transformed into a 100-
element row by placing their 10 × 10 arrays sequentially next to each other, resulting in the
observation matrices of 1570 × 100 arrays instead of 1570 × 10 × 1500 [23].

2.5.3. Feature Selection

To reduce the number of features in the emotional and baseline matrices, the following
steps were taken. First, it was expected that the neutral baseline EEG and emotional
playing EEG would be different, thus a two-sided Student t-test was applied to the data
in each column in the feature matrix belonging to one emotional category and the same
column in the baseline matrix. The null hypothesis (both data are drawn from the same
distribution) was rejected with p-values < 0.05. Since no significant differences between
the ‘neutral baseline EEGs’ and the ‘EEG recorded during the expressing neutral emotions’
were expected, this step was ignored for 314 observations of neutral playing. The remaining
features that (1) were able to discriminate between the neutral baseline and the emotional
playing, and (2) were shared across conditions, were used to create new feature matrices.

Furthermore, the one-way MANOVA [28] analysis implemented in MATLAB was
performed to identify the features that were able to discriminate between conditions. The
components (the linear combination of the features) were created based on the canoni-
cal correlation analysis. For each frequency band, four components were retained with
p-values < 0.05, and the statistical outcome is presented in Supplementary Materials. The
features that contributed to the selected components were chosen as a set of final features.

2.5.4. Graph Quantification

After selecting the features, the matrices of observations were averaged to obtain a
single average connectivity matrix per condition with arrays describing the strength of the
established connections with values close to 0 indicating a weak connection and values close
to 1 indicating a strong connection. Since the connectivity matrices are similar to graphs
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which contain ROIs as nodes and connections as edges, we applied graph quantifying
techniques to statistically evaluate the patterns [18,29]. The degree of nodes referring to
the number of outputs from each node were calculated for 1570 connectivity matrices,
and, for each ROI (node), one-way ANOVA was performed on 10 pairs of emotional states
(C(5,2) = 10). By considering 10 nodes and 10 pairs, 100 p-values and 100 of Cohen’s d effect
sizes were obtained.

3. Results

As expected, the tasks of emotional and neutral playing differed considerably in terms
of arousal and valence levels with respect to the state of the intended emotion transfer.
The means and standard deviations of subjective evaluation on the scales of valence and
arousal are plotted in Figure 2B.

Differences in connectivity were expected to be observed in performers for different
emotional instructions. However, the number of initial extracted features being very high
made results not possible to comprehend. Thus, a further feature reduction was performed
and only the features that were able to discriminate between the neutral baseline and the
emotional playing and were shared across conditions were utilized further.

The number of selected features that were able to discriminate between conditions is
presented in Table 1.

Table 1. Number of features retained after feature extraction steps.

Student t-Test (Number of Features) MANOVA (Number of Features)

Delta 9 6
Theta 11 6
Alpha 8 4
Beta 46 38

Gamma 45 30

Surprisingly, for the low frequency bands—delta, theta, alpha—a limited number
of connections (4 to 6) contributed to the discrimination between the emotional playing
conditions. In contrast, a dense pattern of connections between regions that was able to
discriminate between conditions was observed in beta and gamma frequency ranges (30 to
38). Tables containing statistical outputs and visualization of connectivity for all frequency
bands are provided in the Supplementary Materials. The connectivity patterns for beta and
gamma ranges are plotted in Figure 3, where outflow connections are color-coded in the
same way as the ROIs, and the degrees of node are represented by the size of the node, and
strength of the connections is reflected by the thickness of the lines.

As the strength of the connections identified in frequency bands can either increase or
decrease reflecting in degrees of nodes, the degrees of nodes for all emotional conditions
were followed by a pairwise comparison between emotional instructions. The statistical
outcomes of this comparison for beta and gamma ranges are illustrated in Figure 4.
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Connections observed in the beta range were more abundant in emotional playing
conditions in comparison to neutral playing (Figure 3). The low valence conditions—
distressed and depressed—were characterized by somewhat reduced node densities in
fronto-central, right centro-parietal, right and left parieto-occipital regions. This was
especially pronounced when depressed state was contrasted with relaxed state (Figure 4).
The high valence states—excited and relaxed—were characterized by denser right fronto-
lateral, fronto-central and parieto-occipital nodes when compared to the neutral condition;
this effect was stronger for relaxed-neutral contrast. Moreover, the right mid-frontal
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node was somewhat more connected to the left and right parieto-occipital regions, and
connections with the right fronto-lateral node were reduced.

Connections in the gamma range, although abundant, were not easily discriminating
based on either valence or arousal (Figure 3). The right mid-frontal, left centro-parietal and
parieto-occipital nodes showed reduced degrees of nodes in emotional playing conditions
when compared to neutral playing. However, an opposite effect was observed for the left
fronto-lateral and right-parieto-occipital regions, where the node density was higher during
emotional performance. In the low arousal states, the left mid-frontal node was connected
to both the right and left parieto-occipital nodes, but not this was not seen in the high
arousal states. In high arousal conditions, the left parieto-occipital node was somewhat
better connected to the left fronto-lateral and central parieto-occipital nodes. Surprisingly,
the right centro-parietal and parieto-occipital node showed a very limited connectivity to
other nodes in the gamma range (Figure 4).

4. Discussion

The aim of the present study was to examine the organization of networks during
music performance with the intention to transfer emotion. The EEG responses were
collected and the patterns of connectivity were estimated using Granger causality approach.
The effective (signal flow) connectivity was analyzed in different frequency bands, i.e., delta,
theta, alpha, beta, and gamma. As the connectivity patterns are complex and difficult to
evaluate, a set of features able to discriminate between conditions was identified first and
analyzed further.

The analysis of the spectral properties of EEG reported in our previous study [13] on
the same dataset suggested differences between high-arousal and low-arousal conditions
to be reflected in elevated frontal delta and theta activity and signs of increased frontal
and posterior beta and gamma. Surprisingly, the connections within the low (delta, theta
and alpha) frequency bands did not show a potential to distinguish among emotional
playing tasks. This could indicate that the similar connection pattern was present in all
emotional playing conditions in the low frequencies. In contrast, the activity in higher
frequencies—beta and gamma ranges—demonstrated a dense connection pattern discrimi-
nating between emotional performance conditions. The observed effect matches the results
by Dolan et al. [30], who, using brain entropy and signal complexity, demonstrated that
the prepared performance was associated with the activity in low frequencies (delta, theta
and alpha bands), while the improvisation required activity at higher frequencies (beta
and gamma).

Improvisatory behavior in music was previously related to network of prefrontal
brain regions commonly linked to the presupplementary motor area, medial prefrontal
cortex, inferior frontal gyrus, dorsolateral prefrontal cortex, and dorsal premotor cortex [31].
We showed that connections from frontal regions to all other regions were present and
expressed. This pattern might reflect the activation of anterior brain regions contributing
to musical structure building when performing [32], emotional processing where the pre-
frontal region plays the most important role and interacts with almost all other regions [33],
and also executive functioning [34].

Surprisingly, however, in the gamma range, the right mid-frontal node displayed
reduced density during emotional performance when compared to neutral playing. This
observation could be partly related to the results by Pinho et al. [35]. The authors showed
a decrease in dorso-lateral prefrontal cortex activity in professional pianists improvis-
ing based on specific emotional cues (happy/fearful) but an increase in activity in the
same region when the improvisation was based on specific pitch sets. For the left lateral
frontal region, however, an opposite effect was observed—the node density was higher
during the emotional performance in gamma and, partly, in beta ranges. Previously,
Bhattacharya et al. [36] demonstrated the leftward dominance for the degree of gamma
band synchrony in musicians while they were listening to music than in non-musicians
and attributed this effect to the manifestation of musical memory. Correspondingly, in the
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beta frequency band, the predominant activation in the left hemisphere along with the
inter-hemispheric integration between the frontal right and parietal left region during im-
provisation were observed by Rosen et al. [2] in professional musicians but not in amateur
musicians [4]. Finally, Kaneda et al. [37] indicated that the left inferior frontal activation
might contribute to generation of emotions by semantic elaboration and regulation through
reappraisal. Taking into account the setup of the current experiment, where subjects were
asked to reflect certain emotion and evaluate the success, it is well likely that semantic and
reappraisal-related processes were activated during the performance. Thus, the denser con-
nections in the high frequency bands, capable of showing the most significant differences
among the positive, neutral, and negative emotional states [38], may indicate the mediation
of information transmission during the processing of emotion-related activities [39] and
the cognitive aspects of the active performance [36] on the one hand. On the other hand, it
suggests that professional training in music allows a distinct context-sensitive functional
connectivity between multiple cortical regions to occur during listening to music [36], and
potentially it depends on the level of experience [2].

Investigating the neural underpinnings of active emotional music performance pro-
motes a better understanding of human creative processes and capabilities. Notably, the
connectivity measures seem to reflect different aspects of emotional performance than
classical spectral EEG measures. The different approaches allow for identifying neural
signatures potentially applicable in Brain–Computer Music Interface (BCMI) systems de-
signed for supporting embodied music performance, or neurofeedback contexts where a
user may learn to control musical parameters via their online EEG signal. However, the
study design, as utilized in the present study, is complex and repetitive, allowing unique
data collection but resulting in a small sample size. This prevented the evaluation of
the effects of individual factors such as gender, age or musical experience. Future works
should test the suitability of the extracted parameter for BCMI use and selection of effective
classification approaches [40].

5. Conclusions

The current study demonstrates that EEG-based connectivity in beta and gamma
frequency ranges can effectively reflect the state of the networks involved in the emotional
transfer through musical performance, whereas utility of the low frequency bands (delta,
theta, alpha) remains questionable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22114064/s1, Figure S1: Musical score; Figure S2: Connectivity
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pairwise comparison for degrees of nodes.
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