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Abstract: Atrial fibrillation (AF) is a common cardiac arrhythmia and affects one to two percent of
the population. In this work, we leverage the three-dimensional atrial endocardial unipolar/bipolar
voltage map to predict the AF type and recurrence of AF in 1 year. This problem is challenging for
two reasons: (1) the unipolar/bipolar voltages are collected at different locations on the endocardium
and the shapes of the endocardium vary widely in different patients, and thus the unipolar/bipolar
voltage maps need aligning to the same coordinate; (2) the collected dataset size is very limited. To
address these issues, we exploit a pretrained 3D point cloud registration approach and finetune it
on left atrial voltage maps to learn the geometric feature and align all voltage maps into the same
coordinate. After alignment, we feed the unipolar/bipolar voltages from the registered points into a
multilayer perceptron (MLP) classifier to predict whether patients have paroxysmal or persistent AF,
and the risk of recurrence of AF in 1 year for patients in sinus rhythm. The experiment shows our
method classifies the type and recurrence of AF effectively.

Keywords: registration; atrial fibrillation; electroanatomical voltage mapping

1. Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia globally [1]
and is associated with an increased risk of cardiovascular morbidity and mortality [2].
Restoration of sinus rhythm by catheter ablation has evolved to play an important role in the
management of symptomatic AF patients and has been shown to improve cardiovascular
outcomes, including mortality, in certain AF patient populations [3]. However, there are
still significant recurrence rates of AF after catheter ablation.

The ability to predict recurrent AF after catheter ablation based on predictor models
utilizing clinical parameters derived from classical statistical methods is very limited [4].
Atrial remodeling and fibrosis play a central role in the pathogenesis of atrial fibrillation
and can be readily evaluated during electroanatomic mapping (EAM) which is performed
routinely as part of AF ablation. In EAM, low atrial endocardial bipolar voltage is a
commonly used surrogate marker for the presence of atrial fibrosis [5]. The initiation and
maintenance of atrial fibrillation (AF) require triggers and an atrial substrate. Low voltage
has many useful associations with clinical outcomes, and comorbidities and has links to
trigger sites for AF [6]. However, data obtained from EAM are multidimensional and not
suitable for standard statistical methods. Neural network methods can analyze higher

Sensors 2022, 22, 4058. https://doi.org/10.3390/s22114058 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114058
https://doi.org/10.3390/s22114058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5793-3042
https://doi.org/10.3390/s22114058
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114058?type=check_update&version=1


Sensors 2022, 22, 4058 2 of 9

dimensional data and do not rely on a prior assumption about the underlying relationships
between variables. Thus, it would be suitable for analyzing the EAM data to predict
recurrent AF after ablation.

The purpose of this study is to retrospectively deploy and evaluate the deep learning
methods including PointNet [7], PointNetLK [8] and multilayer perceptron (MLP) to predict
recurrent atrial fibrillation after ablation based on an electroanatomical voltage map of
patients in sinus rhythm, who underwent AF ablation at the Dallas VA Medical Center
(DVAMC). Our experimental results demonstrated the possibility of using PointNetLK to
register the electroanatomical voltage maps to a common template. After the registration,
we achieved stable prediction of the recurrent AF after ablation on a small dataset.

2. Related Work

This section briefly introduces the registration technique and the MLP network
for classification.

2.1. Point Cloud Registration

Point cloud registration is a fundamental problem in 3D computer vision and pho-
togrammetry. Given several sets of points in different coordinates, registration aims to
align all sets of points into a common coordinate [9]. Ref. [10] proposes the iterative closest
point (ICP) for registration by iteratively estimating point correspondence and performing
least-square optimization. The authors of [7] propose the PointNet for raw point clouds
classification and segmentation and provide some insights into dealing with raw point
clouds. The PointNetLK [8] combines the PointNet with the classic Lucas & Kanade (LK)
algorithm into a trainable recurrent neural network that can generalize across different
shapes for point cloud registration.

2.2. Multilayer Perceptron

A Multilayer Perceptron (MLP) is a fully connected type of neural network, and
consists of at least three layers of nodes, i.e., an input layer, a hidden layer, and an
output layer [11]. Trainable weights connect adjacent layers, while there are no connec-
tions/weights between nodes within the same layer. For MLPs with more than one layer,
we often use some nonlinear activation functions between hidden layers, such as sigmoid,
and Relu [12], to increase the model capacity. Training MLPs often employs a supervised
learning technique of backpropagation [13]. In our proposed approach, we adopt a two-
layer MLP as our classifier.

3. Data Collection and Preprocessing

In this study, we utilize AF ablation records of the DVAMC to identify patients aged
older than 18 years who underwent AF ablation between 1 January 2015 and 6 January
2019. The DVAMC gave IRB approval for this retrospective study. The Dallas VA electronic
medical records (CPRS) of these patients are reviewed to identify inclusion and exclusion
criteria, resulting in 12 patients in total. After candidate participants are identified, two
datasets from patients are abstracted. First, the EAM mapping data obtained during
catheter ablation stored on PACS or local drive are exported as deidentified data in a
common separated value file. For this series, all EAMs were mapped with CARTO, using a
Pentaray catheter inserted endocardially. Next, the medical information were collected and
abstracted from their electronic medical records.

In this work, we used a left atrial electroanatomical voltage map and abstracted clinical
information from the cohort to develop algorithms to predict 1-year recurrent AF after AF
ablation. For this study, we analyzed only the patients in sinus rhythm at the time of the
voltage mapping. Each geometric voltage map is a point cloud with voltages. It keeps
the information about the positions and unipolar and bipolar values of 3D points. Each
map is related to labels of AF type and recurrence of AF in one year. The AF type includes
paroxysmal and persistent sorts. For the 1-year recurrence of the AF label, the criteria are
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1-year recurrence of clinically significant AF after a 3-month blanking period, and AF is
detected by intermittent ECG (12 lead, commercial devices, e.g., AliveCor Kardia, Apple
Watch), continuous ECG (telemetry, Holter, event monitor/Ziopatch, ILR, PPM/ICD) with
symptoms, or change in management (rate-control, AAD, DCCV, anticoagulation, EPS, rpt
AF ablation, AVJ ablation).

In each map, we use the min–max normalization to normalize the x, y, and z positions
and unipolar and bipolar values of point cloud data. We remove maps whose number of
points is smaller than 100 and keep all maps recorded in the same ablation, resulting in
8 examples. The number of points in all maps ranges from around 200 to over 4000, and
the mean is about 1300. We resample the number of points for each example to 406 without
replacement since the lowest number of points is 406 in all eight examples.

Some statistics concerning the data are: all eight patients are male; the age distribution
is 1 in 50 s, 3 in 60 s, and 4 in 70 s; the BMI distribution is: two are below 25, two are
between 25 and 30, and four are greater than 30.

4. Voltage Map Registration and Classification

The overall process of our method is shown in Figure 1, consisting of registration and
classification 2 steps.

Registration

Reorder Prediction

MLP Classifier

Figure 1. Our proposed registration and classification framework. We first align all EAMs to the
same template point cloud via 3D point cloud registration. Then we reorder uni/bipolar voltages of
corresponding points by their L1 distance to the original point. We feed the reordered voltages into
an MLP for classification in the end.

4.1. Registration

Since different patients have different left atrial shapes and thus different electroanatom-
ical maps, we utilize point cloud registration to align the electroanatomical maps among
different patients. For voltage map registration, we pretrain a PointNetLK model on the
ModelNet40 dataset [14]. Then, we finetune the pretrained model on our electroanatomical
voltage maps. We choose leave-one-out cross validation (LOOCV) for finetuning due to the
limited number of examples in our dataset. So for each iteration in one epoch, we choose
one voltage map as the template PT , and the rest are sources PS. Our objective seeks to
find the rigid-body transform G ∈ SE(3) [15] that best aligns source PS to template PT .
Following [8], both source PS and template PT are passed through a shared MLP to compute
the global feature vectors φ(PS) and φ(PT). The Jacobian J is computed once using φ(PT).
The optimal twist parameters are found by Equation (1), used to incrementally update the
pose of PS.

ξ = J+[φ(PS)− φ(PT)] (1)

where J+ is a Moore–Penrose inverse of J. Then the global feature vector φ(PS) is recomputed.
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In summary, the PointNetLK iterates a looping computation of the optimal twist
parameters via Equation (1), and updates the source voltage map PS as

PS ← ∆G · PS

∆G = exp
(

∑
i

ξiTi

)
. (2)

The final estimate Gest is the composition of all incremental estimates computed during
the iteration:

Gest = ∆Gn · . . . · ∆G1 · ∆G0. (3)

The training loss function minimizes the difference between the estimated transform
Gest and the ground truth transform Ggt

L = ||(Gest)
−1 · Ggt − I4||F, (4)

following a straightforward method from the representation of Gest, Ggt ∈ SE(3). Note that
Ggt is an optional term. In pretraining, Ggt is a randomly generated transform matrix while
not needed in finetuning.

4.2. Classification

Before feeding voltages into a classifier, we still need to reorder unipolar/bipolar
voltages into the same coordinate system before feeding them into the classifier since the
sequence/order of voltages has changed with associated 3D points after registration. There-
fore, we simply choose to reorder both template and source voltages by their associated
points’ L1 distance to the original point as in Equation (5):

di = ||(xi, yi, zi)− (0, 0, 0)||1. (5)

In our task, since we have two types of inputs, unipolar and bipolar, and two prediction
outputs, AF type and 1-year recurrence AF (1Y re AF), we then have four independent
combinations (unipolar to AF type, bipolar to AF type, unipolar to 1Y re AF, and bipolar to
1Y re AF). In addition, we also propose to use ensemble inputs, i.e., combining unipolar
and bipolar voltages, to predict AF type and 1Y re AF. We employ an MLP with two fully
connected layers, one dropout layer, and the Relu activation function as the classifier. The
loss function is cross-entropy loss with log and softmax function as in Equation (6)

LCE(y, t) = −∑
j

tj log(yj) + (1− tj) log(1− yj), (6)

where tj is the target and yj is the prediction.
In the ensemble method with two types of inputs, i.e., unipolar and bipolar, we merge

their representations at the logits layer by averaging the probabilities from two classifiers
(unipolar and bipolar), respectively.

5. Experiment
5.1. Registration

In the PointNet pretraining, the batch size is 16, the epoch is 200, and the training
optimizer is Adam [16]. The dimension of feature for each point is 1024. After training in
PointNet, we transfer the model into PointNetLK. In the PointNetLK model, the hyperpa-
rameters are the same as PointNet. We set the max iteration on LK in each sample to 20
and the step size for approximate Jacobian to 0.01. In the PointNetLK model, we randomly
generate a twist vector ξ with six dimensions, in which there are three for rotation and three
for translation. This twist vector, serving as the ground truth transformation, will be used
to transform the original point cloud data into the source of the registration and the original
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data will be the template in training to test the performance. We use the random rotation
angel [0, 45] degrees and translation [0, 0.8] during training of the PointNetLK model.

The process of registration in the training data is shown in Figure 2. The red point
cloud data represents the source point cloud. The blue one is the template. In Figure 2, we
choose one training sample to show the registration process evolving from the 1st to the
16th iteration.

(a) Iter. 1 (b) Iter. 8 (c) Iter. 12 (d) Iter. 16

Figure 2. The process of registration in one training data item with patient Id 52997 from the 1st to
the 16th iteration. The red point data represent the sources of the process, while the blue represent
the template.

5.2. Classification

In the classification, as explained in Section 4.2, we train six classifiers for combinations
between three inputs (unipolar, bipolar, and ensemble inputs) and two outputs (AF type
and 1Y re AF). First, we select one sample as the registration template. Then, we register
other samples through the PointnetLK to align other samples to the template. After the
registration, we reorder the voltage values of all samples uniformly so that these voltage
values can be fed into the classifier. In our implementation, we reorder the voltages accord-
ing to their 3D points’ L1 distance to the original point. In this way, the order of voltage
values will imply the same physical meaning for all samples. After the reordering, we feed
the voltage values into an MLP with two fully connected layers to perform classification.
Since different samples have a different number of points, we sample them to have the
same number of points (406). Our two-layer MLP classifier has a hidden dimension of
300, and the dropout rate is 0.4. The evaluation metrics are accuracy, F1-score, ROC-AUC,
and PR-AUC. We perform the leave-one-out cross validation (LOOCV) in all experiments,
which uses seven examples for training and one for testing and loop through all examples
in the dataset.

Since we have three kinds of inputs (unipolar, bipolar, and ensemble) and two labels
(AF type and 1 year recurrence of AF), there are six single evaluation scenarios: unipolar vs.
AF type (Table 1), bipolar vs. AF type (Table 2), ensemble vs. AF type (Table 3), unipolar vs.
1Y re AF (Table 4), bipolar vs. 1Y re AF (Table 5), and ensemble vs 1Y re AF (Table 6).

For single input type, we can observe that both kinds of inputs (unipolar (Table 4) and
bipolar (Table 5)) can perform very well on two labels. However, the AF type label is more
difficult than the 1Y re AF. Under the AF type label from Tables 1 and 2, we can see that the
bipolar input wins slightly against the unipolar input by 3:2. Then, there are three cases in
which they are even.

We also compare two ensemble input cases, i.e., we perform weighted average proba-
bilities of two inputs (unipolar and bipolar) for classification. The results are summarized
in Tables 3 and 6. From the ensemble method results, we can observe that the ensemble
method in two cases can tie with or outperform the best of single input methods in most
cases (mostly the 1Y re AF cases). This scenario indicates that ensemble methods can take
advantage of the information from both inputs to perform better in the classification. Only
one case underperforms the single input method, i.e., template 0 under the AF type label.
This special case is the average of two single input methods and yields that template 0 may
cause some disagreement between two types of inputs (unipolar and bipolar).
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Table 1. Classification in eight test data of unipolar voltage on AF type through LOOCV.

Template Accuracy F1 ROC-AUC PR-AUC

0 0.375 0.444 0.375 0.575
1 0.375 0.545 0.375 0.652
2 0.625 0.769 0.500 0.688
3 0.75 0.500 0.667 0.792
4 0.75 0.500 0.667 0.792
5 0.375 0.444 0.375 0.575
6 0.375 0.444 0.375 0.575
7 0.5 0.333 0.467 0.458

Table 2. Classification in eight test data of bipolar voltage on AF type through LOOCV.

Template Accuracy F1 ROC-AUC PR-AUC

0 0.625 0.4 0.625 0.8125
1 0.625 0.727 0.625 0.786
2 0.625 0.769 0.500 0.688
3 0.5 0.333 0.467 0.458
4 0.5 0.667 0.4 0.188
5 0.375 0.444 0.375 0.575
6 0.375 0.444 0.375 0.575
7 0.75 0.5 0.667 0.792

Table 3. Classification in eight test data of ensemble voltages on AF type through LOOCV.

Template Accuracy F1 ROC-AUC PR-AUC

0 0.5 0.667 0.5 0.75
1 0.625 0.727 0.625 0.786
2 0.625 0.769 0.5 0.688
3 0.875 0.8 0.833 0.896
4 0.75 0.5 0.667 0.792
5 0.375 0.545 0.375 0.652
6 0.5 0.333 0.5 0.562
7 0.75 0.5 0.667 0.792

Table 4. Classification in eight test data of unipolar voltage on 1Y re AF through LOOCV.

Template Accuracy F1 ROC-AUC PR-AUC

0 0.75 0.857 0.5 0.875
1 0.75 0.857 0.5 0.875
2 0.875 0.933 0.500 0.938
3 0.75 0.857 0.5 0.875
4 0.75 0.857 0.5 0.875
5 0.625 0.769 0.417 0.836
6 0.625 0.769 0.417 0.836
7 0.875 0.933 0.5 0.938
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Table 5. Classification in eight test data of bipolar voltage on 1Y re AF through LOOCV.

Template Accuracy F1 ROC-AUC PR-AUC

0 0.625 0.769 0.417 0.836
1 0.75 0.857 0.5 0.875
2 0.875 0.933 0.5 0.938
3 0.5 0.667 0.333 0.792
4 0.75 0.857 0.5 0.875
5 0.625 0.769 0.417 0.836
6 0.5 0.667 0.333 0.792
7 0.875 0.933 0.5 0.938

Table 6. Classification in eight test data of ensemble voltages on 1Y re AF through LOOCV.

Template Accuracy F1 ROC-AUC PR-AUC

0 0.75 0.857 0.5 0.875
1 0.75 0.857 0.5 0.875
2 0.875 0.933 0.5 0.938
3 0.75 0.857 0.5 0.875
4 0.75 0.857 0.5 0.875
5 0.75 0.857 0.5 0.875
6 0.75 0.857 0.5 0.875
7 0.875 0.933 0.5 0.938

6. Discussion
6.1. Unipolar vs. Bipolar

We also compare the performance of two types of input data (unipolar vs. bipolar) to
see which one has better classification results. For the 1Y re AF case, we can observe from
Tables 4 and 5 that both inputs can perform very well on the classification. However, for the
AF type label, we can see that the bipolar inputs (with three winning cases) perform slightly
better than the unipolar inputs (with two winning cases), and there are three even cases.

6.2. Discussion of Different Templates

From the classification results discussed in the previous section, we can observe that
different templates also play an important role in classification performance, for example,
template 2 vs. template 5 in Figure 3. From the given examples of templates 2 and 5, we
can see that template 2 can generate better registration than template 5. Therefore, it can
also yield better downstream classification results.

(a) (b)

Figure 3. (a) Template 2; (b) Template 5.
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6.3. Limitation

This work mainly studies utilizing 3D point-cloud registration and MLP to classify
voltage mappings for AF type and 1 year recurrence of AF. One obvious limitation is
the limited size of our dataset, with only eight examples, and thus the results may have
a large bias. In addition, the lack of patients’ demographic information may lead to
inferior results in prediction. In our proposed method, we sort the 3D points by their
L1 distance to the original point. This design is very heuristic and may not be valid in
electroanatomical mapping.

7. Conclusions

In this paper, we study the most common cardiac arrhythmia, atrial fibrillation (AF),
through classifying patients’ left atrial electroanatomical voltages. To resolve the voltage
misalignment problem among different patients, we adopt the 3D point cloud registration
method to first align all points (voltage mapping) to the same template. Then we reorder
the points of each patient according to the same distance metric. After the registration and
reordering, we perform classification on two kinds of input data (unipolar and bipolar).
Our experiment results demonstrate that the performances of bipolar values are slightly
better than the unipolar values for the classification task, and the ensemble of two inputs
can slightly help to improve the classification results in most cases. We hope this work can
shed some light on solving similar problems that need point cloud registration.
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