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Abstract: The uniaxial piezoelectric sensor was developed to overcome the problem of reflecting the
output charge of the piezoelectric element as a combination of vectors in the three stress directions.
The work performance of the uniaxial piezoelectric sensor under varying load patterns and load
rates was investigated. The sensor was embedded in concrete to monitor stress, and its elastic
modulus was used as the intermediate bridge to establish the correlation between the embedded
sensor and the external sensor. Furthermore, a correction factor for the charge transformation strain
was suggested to overcome the mismatching of the sensor’s medium and the concrete. Considering
related circumstances, a new stress monitoring method based on a uniaxial piezoelectric sensor
was proposed, which can achieve stress whole-process monitoring in concrete and confining stress
monitoring in the reinforced concrete column. The results reveal that through the proposed method,
the output charge curve of the sensor has a substantial overlap with the stress waveform and high
fitting linearity. The work performance of the sensor was stable, and its sensitivity was not affected
by loading rate and load pattern. The sensor was embedded in concrete and can coordinate with the
concrete deformation. The correction factor of strain obtained by the sensor embedded in concrete
was 1.07. The relationship between the charge produced by the embedded sensor and its external
calibration sensitivity may be used to implement the whole process of stress monitoring in concrete.

Keywords: stress monitoring; concrete stress; uniaxial piezoelectric sensor; work performance;
reinforced concrete (RC)

1. Introduction

Stress monitoring in concrete under various loads has always been one of the essential
topics of interest in the construction industry. Reliable stress monitoring methods are
significant for concrete confinement mechanisms [1–3], mass concrete cracking [4,5], and
component bearing capacity [6–9]. It is commonly acquired indirectly by attaching strain
gauges on the concrete surface [10,11]; however, with this approach, it is challenging to
comprehend the stress distribution within the concrete structure precisely. Embedded
concrete strain gauges [12,13] and fiber Bragg gratings [14,15] are other reliable monitoring
methods, yet they are quite costly. Therefore, it is vital to develop new sensors to monitor
the stress in concrete in a more effective and less expensive way.

The use of intelligent materials to monitor the performance of civil engineering con-
structions has become one of the research hotspots in the field of civil engineering in recent
years due to the tremendous development of novel sensing technologies. Piezoelectric
materials have attracted the attention of researchers to monitor stress in concrete with
their advantages, such as sensing and driving functionalities, fast response speed, stable
performance, and low price, and various methods have been proposed in this regard.

Some researchers incorporated pressure-sensitive materials into cement mortar to form
cement-based pressure-sensitive sensors [16–21], which have excellent interface compati-
bility with concrete and are suitable for monitoring uniaxial and elastic stress states; how-
ever, they are not suitable for monitoring multidirectional and elastic–plastic stress states.
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Song et al. [22] proposed a cement-based piezoelectric smart aggregate (SA) comprised of
a lead zirconate titanate (PZT) patch covered by a waterproof substance sandwiched in a
cement mortar block in their study. SA was applied to the collision of overheight vehicles
on bridges monitoring [22,23] and road traffic load monitoring [24]. Yang [25] embedded
SA into concrete specimens, calibrated SA through the uniaxial compressive strength test,
and applied it to the stress monitoring of concrete columns under low amplitude high-
frequency load. Liu et al. [26] calibrated the external sensitivity of SA under a variety of
load conditions, including impact, sine, square wave, and irregularity. The research above
shows that the sensor’s output voltage has an excellent linear relationship with stress; how-
ever, in the case of cement mortar usage to produce SA, the compressive strength is rather
low, and SA cannot withstand high-strength stress, and is easily crushed. Hou et al. [27–29]
developed granite-based SA with a strength of up to 100 MPa using granite block instead of
cement or mortar base to meet high-strength stress monitoring needs. In combination with
the developed charge amplifier, Zhang et al. [30,31] accomplished external calibration of
this SA within the range of 45 MPa compressive strength. Du et al. [32] embedded this SA
into a quartz sand-filled steel tube column to provide inside calibration sensitivity. Using
this, the stress in the quartz sand-filled steel tube column was monitored under impact load.
Zhang et al. [33,34] established the relationship of concrete stress and SA output voltage
via a cylinder compression test, thereby conducting stress process monitoring of SA inside
the column during earthquake action.

To summarize, SA which take advantage of the positive piezoelectric effect have been
developed by various researchers for internal stress measurement. However, there are
often matching errors between the sensor and the embedded medium; therefore, it is
essential to establish the correlation between the sensor’s sensitivity inside and outside of
calibration. Moreover, when embedded in concrete, the piezoelectric stress sensor exhibits
a complicated state of stress, and the existing sensor transfers lateral stress; thus, the
accumulated charge and stress cannot linearly correspond. A detailed explanation can be
found in Section 2.1. Considering all this, it is vital to develop a piezoelectric stress sensor
to isolate the lateral force.

In this paper, the existing sensor was improved depending on the working mechanism
of piezoelectric components in the piezoelectric stress sensor, and a piezoelectric stress
sensor was proposed to isolate the lateral force. The novel sensor was calibrated internally
and externally, and the sensitivity correlation of sensor calibration was established on the
inside and outside. In this context, the concrete stress monitoring method was proposed
and used throughout monitoring the whole process stress in concrete and monitoring
the confining stress in the reinforced concrete (RC) column to verify the reliability of the
proposed method.

2. Fundamental Principle of Piezoelectric Stress Sensor
2.1. Basic Theory of Piezoelectric Materials

The sensing element of the piezoelectric stress sensor is primarily PZT, which possesses
positive and negative piezoelectric effects. When the PZT is deformed by an external force
applied in the polarization direction, the top and lower surfaces generate opposite polarity
charges, namely the “positive piezoelectric effect”. The piezoelectric stress sensor works on
the principle of using the positive piezoelectric effect of the PZT to extract stress information
from the structure via measuring the output charge of the PZT embedded in the structure.

The piezoelectric effect reflects the connection between elastic and dielectric char-
acteristics of the crystal. In this regard, the interaction coefficient between the system’s
mechanical and electrical quantities should be related to the corresponding state. Precisely
determining the relationship of each quantity can be achieved with piezoelectric equa-
tions established via analyzing the relationship of physical quantities (stress, electric field
intensity, strain, and electric displacement vector, etc.) [35].

PZT in the piezoelectric stress sensor does not require an external power source, and
the electrical boundary condition is an electrical short circuit, with a specified strain on the
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upper and lower surfaces required; therefore, the mechanical boundary condition relies on
mechanical freedom. The piezoelectric equation that corresponds to this is as follows:

Di = eσ
ijEj + dd

imσm (1)

where Di is the electric displacement vector (3 × 1), eσ
ij is the permittivity matrix (3 × 3), Ej

is the electric field intensity vector (3 × 1), dd
im is the piezoelectric coefficients (3 × 6), and

σm is the stress vector (6 × 1). In the equation, i = 1~3, j = 1~3, m = 1~6.
The above equation indicates that the change in the three stress parameters will

cause the electric displacement of the PZT to change. To simplify the study, the existing
literature [32,36,37] set the σ1 = σ2 = 0 in order to only consider single-direction sensing;
thus, the correlation between electrical displacement and stress can be further simplified
into the following linear relationship:

D3 = d33σ3 (2)

When PZT is employed directly to monitor stress in the medium, the output charge
represents the vector combination of stress in three directions. Concrete is confined in
three directions in a steel pipe or steel section. Although the present piezoelectric stress
sensor can transfer stress in three directions, it cannot distinguish the proportioning of stress
into directions, resulting in a linear imbalance between the collected charge and the stress.
Therefore, it is vital to design a piezoelectric stress sensor under uniaxial stress to isolate the
force in the directions of 1 and 2, while also only receiving axial pressure in order to create a
linear connection between stress and electric displacement, as stated in Equation (2).

2.2. Measuring Principle of Piezoelectric Stress Sensor

Since PZT is an active capacitor in the piezoelectric stress sensor, it has high internal
resistance and low output energy. Therefore, the piezoelectric stress sensor measurement
circuit is typically required to be coupled to a high input impedance preamplifier. The first
of its functions is to amplify the weak signal produced by the sensor to make it suitable for
measurement, while the second is to convert the high output impedance of the piezoelectric
sensor to a low output impedance. Since piezoelectric sensors can output voltage signals
or charge signals, preamplifiers can be classified as either voltage or charge amplifiers.
However, since the length of the cable in the voltage amplifier circuit influences the voltage
amplification coefficient and the low-frequency response is not optimal, a charge amplifier
is frequently utilized [36]. The charge amplifier used in the current study is Kistler5080,
produced by the Swiss Kistler Company.

3. Development and External Calibration Performance Analysis of Uniaxial
Piezoelectric Sensor

To address the issue that the present piezoelectric stress sensor is influenced by lateral
confinement, the PZT patch’s perimeter is left blank, and only axial contact and force is
applied. The PZT patch of this sensor is solely subjected to axial force and efficiently isolates
the lateral force to detect the axial stress inside the concrete; this form of the sensor is termed
a uniaxial piezoelectric sensor (Figure 1). The sensor is made by pouring an epoxy resin
and dry cement mixture (weight ratio 10:1). The preparation of the developed uniaxial
piezoelectric sensor is shown in Figure 1. The PZT patch adopts the PZT-8 model with a
minor piezoelectric strain constant. The detailed parameters are shown in Table 1. The
sensor size was 20 mm× 20 mm× 20 mm, and the base size was 28 mm× 20 mm× 5 mm.

The suggested sensor’s sensitivity was calibrated under four distinct load cases, in
which the load patterns included triangular repetition, trapezoid repetition, and stepwise
repetition. The impact of loading rate was also considered. Different load cases are
presented in Table 2. A stress control scheme was applied. The sensor was calibrated using
ETM105D microcomputer control electron universal testing machines (Figure 2).
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Figure 1. The preparation details of the uniaxial piezoelectric sensor.

Table 1. PZT-8 parameters.

Performance
Category Property Values Performance

Category Property Values Performance
Category Property Values

Size (mm) 8 × 8 × 0.5 Elastic constants
Y11

E (N/m2) 1.2 × 1010 Piezoelectric strain
constant d33 (C/N) 232 × 10−12

Density (kg/m3) 7600 Elastic constants
Y33

E (N/m2) 7.0 × 1010 Piezoelectric strain
constant d31 (C/N) −90 × 10−12

Relative permittivity
εr

1400 Elastic constants
Y55

E (N/m2) 29.4 × 1010 Piezoelectric strain
constant d15 (C/N) 378 × 10−12

Table 2. Different loading cases.

Loading Cases Load Patterns Stress Amplitude
Range (MPa)

Loading Rate
(MPa/s)

Case 1 Triangular repetition 0~16 0.5
Case 2 Triangular repetition 0~16 0.8
Case 3 Trapezoid repetition 0~16 0.8
Case 4 Stepwise repetition 0~20 0.8
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The stress–charge dual longitudinal axis curves and fitting curves for the same ampli-
tude and various loading rates are shown in Figures 3 and 4. The charge curve produced by
the sensor had a high degree of overlap with the applied stress waveform in both amplitude
and phase, and their linear correlation coefficient reached a high level of linearity of 0.998.
The results show that the sensor has good response to external load and high linearity
between external input stress and output charge.
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The stress–charge dual longitudinal axis curves and fitting curves of various load
patterns are shown in Figures 4–6. The sensor’s sensitivity error was minimal under
different load patterns, with a maximum error of around 4.0%. The findings reveal that the
sensitivity of the suggested sensor was little affected by load patterns and rates, and the
performance of the sensor was stable.
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4. Concrete Stress Monitoring Method Based on the Uniaxial Piezoelectric Sensor

To monitor concrete stress under external loads, twelve uniaxial piezoelectric sensors
were embedded in the 1/2 height of four different C35 concrete specimens with dimensions
of 150 mm × 150 mm × 300 mm (length × width × height). The external calibration
sensitivities of twelve sensors were measured according to the triangular loading form
in Section 3, and the results are shown in Table 3. Considering the heterogeneity and
discreteness of concrete, the sensors were embedded at the corners and edges of the two
groups of specimens, respectively, and strain gauges were attached on the corresponding
concrete surfaces to establish the layout scheme illustrated in Figure 7. The strain in
the sensor’s embedded concrete surface layer was assumed to be equal to that on the
corresponding concrete surface, and the strain given by the strain gauge was used as the
calibration reference for the embedded sensor.

Table 3. External calibration sensitivities of twelve sensors (K1).

Group Specimen
Number

Sensor
Number

Sensitivity
(pC/MPa) Group Specimen

Number
Sensor

Number
Sensitivity
(pC/MPa)

Group A

A1
S1 62,574

Group B

B1
S1 77,160

S2 66,082 S2 66,304
S3 54,497 S3 62,275

A2
S1 74,314

B2
S1 72,842

S2 87,604 S2 71,858
S3 57,015 S3 82,699

In order to study the effect of embedded sensors on the mechanical properties of
the specimens, the average compressive strengths of the specimens with and without the
embedded sensors were compared. The average compressive strength of the embedded
sensor specimen was 28.07 MPa, and the average compressive strength of the without-
sensor specimen was 29.40 MPa. The errors were as small as 4.5%. Therefore, the influence
of embedded sensors on the mechanical properties of the specimen is not considered in
this paper.

The test was carried out on a 3000 kN electro-hydraulic servo press machine with
a displacement control loading rate of 0.3 mm/min. The maximum average stress was
restricted to 15 MPa in order to maintain the concrete within the elastic range. The test
devices and data acquisition system are shown in Figure 8. The dual longitudinal axis curve
of the strain obtained by the strain gauge attached to the concrete surface and the charge
obtained from the embedded sensor are given in Figure 9. The charge curve was consistent
with the overall trend of the strain curve without hysteresis. The findings demonstrate that
the suggested sensor could coordinate with concrete deformation and monitor changes in
concrete internal force.
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Figure 8. Test devices and data acquisition system.

From the fitting curve of the charge obtained by the embedded sensor and the concrete
surface strain in Figure 10, it can be seen that the charge had an approximately linear
relationship with the concrete surface strain.
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Figure 9. The surface strain of specimens and charge obtained from the embedded sensor in dual
longitudinal axes curves.

The embedded sensor’s physical and mechanical properties differ from those of the
surrounding concrete, which changes the original stress field of the concrete, causes stress
concentration and redistribution, and results in matching errors [38]. For the purpose
of eliminating the above “matching error”, the matching coefficient was often used to
correct the sensitivity of the sensor. It should be related to the concrete elastic modulus,
considering the stress transformation’s direct use. The elastic modulus of concrete ceases to
be linear and does not display a constant value when it enters the elastic–plastic behavior
stage. Therefore, finding a quantitative link between the matching coefficient and the elastic
modulus of concrete is complicated. Therefore, this paper assumes that the sensor is always
intact and elastic in the loading process, and that its elastic modulus is a constant value. To
establish the correlation between the embedded sensor and the external sensor, the sensor’s
elastic modulus was used as an intermediary bridge. The relationship between them was
established using the following steps.

Firstly, the sensitivity (K1) of the sensor’s external calibration was converted into
an expression related to strain, as shown in Equation (3). The converted strain (ε′2) of
embedded concrete of a uniaxial piezoelectric sensor under external load was thereby
established, as shown in Equation (4):

α1 =
Q1

ε1
=

Q1Eex

σ1
= K1Eex (3)

ε′2 =
Q2

α1
=

Q2

K1Eex
(4)

where Q2 is the ratio of charge to strain obtained by the external sensor, Q1 is the charge
produced by the sensor, ε1 is the strain applied to the sensor, σ1 is the stress applied to the
sensor, Eex is the elastic modulus of the sensor, and Eex = 2913 MPa.
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Figure 10. Fitting curves of charge obtained by embedded sensor and concrete surface strain.

Secondly, the embedded sensitivity (Q2) of the sensor was calculated as the ratio of
the charge produced by the embedded concrete of the sensor to the surface strain of the
concrete, as given in Equation (5):

α2 =
Q2

ε2
(5)

where Q2 is the charge produced by the embedded concrete of the sensor, and ε2 is the
strain of concrete surface under external load.

Thirdly, the ratio between the converted strain of the embedded sensor and the
concrete surface strain was defined as the correction factor (γ), which was absolutely equal
to the ratio of Q1 and Q2 according to Equation (6). Therefore, Q1 and Q2 were used to
deduce γ backwards. Table 4 shows Q1, α2, and γ of the above twelve sensors. Statistical
analysis showed that the mean, standard deviation, and coefficient of variation value of
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correction factor were 1.07, 0.092, and 0.086, respectively. Therefore, the correction factor of
1.07 was recommended.

γ =
ε′2
ε2

=
Q2

α1ε2
=

α2

α1
(6)

Table 4. Correction factor (γ ).

Sensor Number α1 (pC/µε) α2 (pC/µε) γ Sensor Number α1 (pC/µε) α2 (pC/µε) γ

A1S1 182 202 1.11 B1S1 216 278 1.24
A1S2 192 203 1.05 B1S2 255 186 0.96
A1S3 159 169 1.06 B1S3 166 181 1.09
A2S1 216 224 1.04 B2S1 212 256 1.21
A2S2 255 234 0.92 B2S2 209 246 1.18
A2S3 166 174 1.05 B2S3 241 263 1.09

Average value of correction factor 1.07
Standard deviation of correction factor 0.092
Variation coefficient of correction factor 0.086

Fourthly, Equation (7) demonstrates the connection between the internal concrete
strain monitored by the proposed sensor and the external calibration sensitivity.

ε2 =
Q2

γα1
=

Q2

γK1Eex
(7)

Finally, the internal concrete strain is substituted into the constitutive model of con-
crete [39] to obtain the internal stress of concrete.

To summarize, a practical stress monitoring system based on the uniaxial piezoelectric
sensor was proposed, and the detailed process is depicted in Figure 11.
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5. Application and Verification of Monitoring Method
5.1. Monitoring the Stress Whole Process in Concrete Specimen

The above four specimens were loaded until concrete crushing to obtain the corre-
sponding load curve and charge curve. The charge curve was converted into a stress curve
according to the proposed method, and the average value of three sensors was taken as the
stress curve of the proposed method. The ratio of the applied load to the cross-sectional area
of the specimen was taken as the average stress curve of the specimen. The average stress
curve was compared with the findings of the suggested method, as shown in Figure 12,
using the data results of Group B as an example. The suggested method’s stress curve was
shown to be in better agreement with the specimen’s average stress curve before reaching
maximum stress, with average errors of roughly 6.3% and 5.9%, respectively. Observed
results reveal the effectiveness of the proposed method for monitoring stress in concrete.
Furthermore, the monitored stress after reaching the maximum stress was larger than
the average stress and the error between them which increased gradually. This is mainly
because the specimen section area was basically intact before reaching the maximum stress.
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After reaching maximum stress, the surface concrete gradually peeled off and lost its
bearing capacity. In addition, the reduction in the cross-sectional area was ignored when
calculating the average stress, resulting in minor stress obtained.
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5.2. Monitoring the RC Column’s Confining Stress

The proposed sensors were embedded in both RC and plain concrete columns, and
the maximum stress of the core concrete of the two columns was compared to observe
the confinement effect of the reinforcement on the concrete under axial compression. The
column height was 900 mm. The sensor layout, column section size, and reinforcement are
shown in Figure 13.
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According to the mechanical properties test of materials, the yield strengths of lon-
gitudinal reinforcement, stirrup, and the axial compressive strength of concrete were 357
MPa, 433 MPa, and 24.91 MPa, respectively. The external calibration sensitivities of six
sensors are shown in Table 5. Until the concrete was crushed, the columns were subjected
to displacement loading at a rate of 0.3 mm/min. The stress obtained by sensor monitor-
ing, based on the concrete stress monitoring method proposed in Chapter 3, is shown in
Figure 14.

Table 5. External calibration sensitivity of six sensors (K1).

Specimen Sensor
Number

Sensitivity
(pC/MPa) Specimen Sensor

Number
Sensitivity
(pC/MPa)

Plain
concrete

S1 58,153
RC

S1 59,988
S2 36,139 S2 38,324
S3 47,228 S3 47,351
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The stress–displacement curve of the RC column was close to that of plain concrete
before the displacement was loaded to about 6 mm. The stress–displacement curve of the
RC column gradually became greater than that of plain concrete after the displacement was
loaded to around 6 mm. The ratio of the maximum stress in RC to plain concrete was 1.064.

According to Mander’s confinement theory [40], the ratio of the compressive strength
of confined concrete to that of unconfined concrete represents the concrete strength increase
factor. The maximum stress obtained by the sensor embedded in RC was the compressive
strength of confined concrete, and the maximum stress obtained by monitoring the sensor
embedded in plain concrete was the compressive strength of unconfined concrete, according
to the uniaxial force characteristics of the developed sensor. The concrete strength increment
factor of reinforced confined concrete was 1.075, according to Mander’s theoretical formula,
and the error between monitoring and theory was nearly 1.0%. The dependability of the
proposed monitoring method is further detailed.

6. Conclusions

A uniaxial piezoelectric sensor only subjected to axial force was proposed based on
the PZT working mechanism. The elastic modulus of the sensor was proposed as an
intermediate bridge to establish the correlation between the embedded sensor and the
external sensor, given that the sensor’s medium did not match the concrete and there
was a matching error. Furthermore, the strain obtained by the strain gauge was taken
as the embedded sensor’s calibration datum, and a suggested correction factor of strain
obtained by the sensor embedded in concrete was provided. On this basis, a concrete
stress monitoring method based on the uniaxial piezoelectric sensor was proposed. The
suggested method’s dependability was confirmed by monitoring the concrete specimen’s
stress during the procedure and the confining stress of the RC column. The following
conclusions were obtained:

(1) The proposed sensor had high linearity between applied stress and output charge
and responded well to an external load. In addition, the loading rate and load pattern
did not affect the sensor’s sensitivity, and its work performance was stable.

(2) The charge curve obtained by the embedded concrete sensor was consistent with the
overall trend of the concrete surface strain curve, without hysteresis, and the two were
positively proportioned in the concrete’s elastic stage. The strain correction factor
obtained by the sensor embedded in concrete was 1.07.

(3) The stress curve derived by the suggested method was in good agreement with the
average stress curve of the concrete specimen before it reached maximum stress, and
the average error between them was less than 6.3%. The error between the concrete
strength increase factor of the proposed technique and Mander’s confinement theory
was about 1.0%, which verifies the reliability of the proposed method. Future work
will investigate the confinement mechanism of steel-confined concrete based on the
proposed method.
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