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Abstract: Wooden utility poles are one of the most commonly used utility carriers in North America.
Even though they are given different protection treatments, wooden utility poles are prone to have
defects that are mainly caused by temperature, oxygen, moisture, and high potential hydrogen levels
after decades of being exposed in open-air areas. In order to meet the growing demand regarding
their maintenance and replacement, an effective health evaluation technology for wooden utility
poles is essential to ensure normal power supply and safety. However, the commonly used hole-
drilling inspection method always causes extra damage to wooden utility poles and the precision
of health evaluation highly relies on technician experience at present. Therefore, a non-destructive
health evaluation method with frequency-modulated empirical mode decomposition (FM-EMD)
and Laplace wavelet correlation filtering based on dynamic responses of wooden utility poles was
proposed in this work. Specifically, FM-EMD was used to separate multiple confusing closely-spaced
vibration modes due to nonlinear properties of wooden utility poles into several single modes. The
instantaneous frequency and damping factor of the decomposed signal of each single mode of the
dynamic response of a wooden utility pole could be determined using Laplace wavelet correlation
filtering with high precision. The health status of a wooden utility pole could then be estimated
according to the extracted instantaneous frequency and damping factor of the decomposed signal of
each single mode. The proposed non-destructive health evaluation method for wooden utility poles
was tested in the field and achieved successful results.

Keywords: non-destructive health evaluation; wooden utility pole; FM-EMD; Laplace wavelet
correlation filtering; instantaneous frequency; damping factor

1. Introduction

Wooden utility poles are widely used to support overhead power transmission lines
and various other public utilities all over the world, such as electric lines, fiber optic cables,
and related equipment such as transformers and streetlights. Their widespread usage is
due to the advantages of wooden material attributes, which can save on costs and provide
enough strength and great flexibility to place cable hardware. It can be easily acquired from
nature with less environmental pollution than other options.

Wooden utility poles were first used with telegraph systems in the U.S. in the mid-19th
century to build a line between Baltimore and Washington, D.C. According to the survey by
Baltimore Gas and Electric Company (BGE), wooden utility poles are widely used in North
America and southern yellow pine is a major wood type used by BGE. However, wooden
utility poles are facing more and more severe erosion threats after decades of exposure to
the weather, even though these poles are under anti-decay protection [1]. According to
statistics, over 38,500 wooden utility poles required reliability inspection in 2016. Wooden
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utility pole failure can cause power interruption, damage to nearby buildings and vehicles,
and accidents that can affect human life. Figure 1 shows a scene of a wooden utility pole
failure in Baltimore on 9 May 2019. All wooden utility poles in the U.S. are regularly
examined via hole-drilling and sample extraction at their bases to check for conditions of
decay of the poles, as shown in Figure 2. Generally, there are two randomly drilled holes at
different heights, from heights close to the ground and close to a man’s height. Technicians
insert a steel bar into a sampling hole to judge the remaining radius of wood, and the
condition of surface decay is estimated via visual examination. However, the commonly
used hole-drilling inspection method has at least the following drawbacks. The inspection
accuracy is unreliable to some extent since it mainly depends on the drilling position as well
as technician experience. More importantly, it does damage to the pole structure and affects
the remaining life of the pole. This is the reason why a non-destructive health evaluation
method is imperative for wooden utility poles.

Figure 1. Accident of a wooden utility pole failure in Baltimore in 2019.

Figure 2. Conventional wooden utility pole inspection method.

There are several types of non-destructive damage detection and health evaluation
methods for wooden utility poles. Wu et al. [2] proposed a conventional measurement
method for wood component moisture content through channel state information of Wi-Fi
signals and their corresponding high-precision hybrid feature extraction via a bimodal
deep extreme learning machine. An ultrasonic tomography inspection method for wooden
utility poles was developed by Tomikawa et al. [3], the idea of which was based on the
conventional X-ray technology that measures data on each section layer, and the image
of each section layer shows the rotten wood area and healthy wood area with particular
simplicity. By gathering multiple section layers, an entire X-ray image for a wooden utility
pole can be captured. However, the drawback of the ultrasonic inspection method is that
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ultrasound does not linearly propagate because the Young’s modulus of the wooden utility
pole varies between the sap and center. Moreover, ultrasound cannot penetrate a rotten
wood area. If ultrasound meets a pocket, no further detection can be reached to the core of
a wooden utility pole; thus, it cannot have a complete measurement of a certain section.
Krause et al. [4] presented two non-destructive testing methods based on elastic wave
propagation and reflection for condition assessment of structural timber. The first approach
uses ultrasonic echoes for testing wooden building elements. The second approach uses
guided waves for testing wooden pole and pile structures. Li et al. [5] investigated wave
propagation in wooden utility poles in combination with wavelet transform analysis for
identification of conditions and underground depths of embedded wooden utility poles in
service. Wyckhuyse and Maldague [6,7] adopted infrared thermography to inspect wooden
utility poles. The infrared thermography technology built a model based on different
moisture contents to compare wood thermal properties. However, a signal of infrared
thermography would be attenuated by exterior wood. One cannot detect any interior decay
of a pole unless the decaying position is close to the surface of the wooden utility pole.

Similar to the methods mentioned above, Tsang et al. [8] used the acoustic impulse
response to analyze conditions of different wooden utility poles and conducted sound
energy analysis by combining fuzzy logic and frequency analysis methods. Xu et al. [9]
used an acoustic separation and enhancement algorithm to explore the use of acoustic
impact tests to evaluate the conditions of hardwood logs regarding their internal decay,
cracks, and void. Raczkowski et al. [10] achieved detection of the early stage of wood
decay based on the acoustic emission method. However, the acoustic emission method
is sensitive to material properties and prone to be affected by noise. In order to meet
practical engineering concerns for inspection convenience and accuracy, a non-destructive
health evaluation method of wooden utility poles with their instantaneous frequencies and
damping factors extracted from their dynamic response signals was proposed in this work.

Modal parameters of a structure usually play an important role in structural health
evaluation since damage often affects its dynamic behaviors and triggers changes in its dy-
namic characteristics, such as natural frequencies, damping ratios, and mode shapes [11,12].
Due to the relationship between modal parameters and structural health conditions, modal
parameters of a monitored structure are useful for non-destructive health evaluation. How-
ever, a directly acquired dynamic signal of a nonlinear structure usually shows confusing
multimodal characteristics and each single mode can contain its own modal information.
Therefore, it is necessary to decompose a confusing multimodal signal into several single-
mode signals using the frequency-modulated empirical mode decomposition (FM-EMD)
method. Commonly, modal parameters hidden in each single mode are extracted using
the Hilbert transform to draw the logarithmic amplitude–frequency diagram and phase–
frequency diagram [13,14]. Lei and Zuo [15] proposed a fault diagnosis method for rotating
machinery based on ensemble empirical mode decomposition to solve its mode-mixing
problem when decomposing multiple-order modes and obtain its modal parameters using
an improved Hilbert–Huang transform (HHT). Das et al. [16] presented a vibration-based
damage detection method for wooden utility poles based on the wavelet packet transform
(WPT) and an improved HHT. The logarithmic amplitude–frequency and phase–frequency
relationships could become linear using curve fitting. Modal parameters of a single mode
could then be obtained via calculating the slopes of curve-fitted lines. Inevitably, there are
fitting errors for the logarithmic amplitude–frequency and phase–frequency lines obtained
via curve fitting, which affects the accuracy of modal parameter identification. In order to
improve the accuracy of modal parameter identification, correlation filtering based on the
Laplace wavelet was introduced [17]. Some studies [18–20] presented some case studies
of Laplace wavelet correlation filtering methods for identifying natural frequencies and
damping ratios of different structures. Since the correlation filtering technology is based on
the principle of waveform similarity matching and the waveform of an impact response
signal is often similar to the Laplace wavelet, the natural frequency and damping ratio of
each single mode can be picked up using Laplace wavelet correlation filtering with high
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precision. Zhang et al. [21] proposed an inverse decaying FM-EMD method combined with
Laplace wavelet correlation filtering for identifying bolt tightness in an aero-engine rotor
assembly by extracting its natural frequency information. However, damping factors of the
aero-engine rotor assembly were not studied.

Traditional EMD can separate multiple modes when frequency ratios are larger than 2.
If the frequency ratio of two adjacent modes is less than 2, the conditions of neighboring
intrinsic mode functions (IMFs) cannot be satisfied, which causes the inability of EMD
to separate closely spaced modes. The current improved EMD mainly focuses on fre-
quency analysis. However, damping factors, which are important factors of closely spaced
modes, are usually neglected. Moreover, instantaneous frequencies and damping factors
in decomposed single modes are always obtained based on the HHT to plot logarithmic
amplitude–frequency and phase–frequency diagrams, and to retain their linear relation-
ships using curve fitting, whose slopes can be calculated from these lines. However, the
logarithmic amplitude–frequency and phase–frequency lines obtained using curve fitting
differ from the original data, which affects the accuracy of structural health evaluation.

The main objective of this study was to propose a non-destructive health evaluation
method with FM-EMD and Laplace wavelet correlation filtering for health evaluation of
wooden utility poles. The proposed FM-EMD method could separate closely spaced modes
into multiple single modes by shifting a frequency to transform closely spaced modes from
a high-frequency zone to a low-frequency zone. Subsequently, a reverse transformation
was performed to ensure the accuracy of the instantaneous frequency and damping factor
of the decomposed signal of each single mode. Laplace wavelet correlation filtering was
used to pick up the instantaneous frequency and damping factor of the decomposed signal
of each single mode. Both instantaneous frequencies and damping factors of wooden utility
poles were studied here, which are crucial for health evaluation of wooden utility poles.

The rest of this paper is organized as follows. Theories of FM-EMD and Laplace
wavelet correlation filtering are briefly reviewed in Section 2. Section 3 explains the
proposed method with FM-EMD and Laplace wavelet correlation filtering to extract instan-
taneous frequencies and damping factors of decomposed signals of dynamic responses of a
structure from confusing multimodal signals. Section 4 explores the proposed method for
health evaluation of wooden utility poles in the field. Finally, some conclusions are given
in Section 5.

2. Theoretical Background
2.1. FM-EMD Method

FM-EMD is an improvement over the traditional EMD regarding solving the multiple-
mode confusion problem, which is based on the frequency shifting process. It can overcome
the drawbacks of traditional EMD regarding the failure to separate multiple confusing
modes. Specifically, given a measured signal x(t), where t is time, that has multiple
modes and many spectral lines in the frequency spectrum, FM-EMD performs frequency
modulation by shifting the frequency from a higher frequency zone to a lower frequency
zone and adjusting the amplitude ratio to reduce the mixing degree of multiple modes
before the FM-EMD decomposing process. In order to improve the efficiency of signal
processing, a measured real signal x(t) is first transformed to a complex signal X(t) using
the Hilbert transform that can be represented as

H[x(t)] =
1
π

P
∫ ∞

−∞

x(t′)
t− t′dt′ = x(t)· 1

πt
, (1)

X(t) = x(t) + ĩH[x(t)], (2)
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where ĩ=
√
−1 and P is the principal value of the singular integral. An appropriate modula-

tion frequency ω0 is selected to transform the analytical signal X(t) from a higher frequency
zone to an analytical signal Z(t) in a lower frequency zone. The analytical signal Z(t) can be
represented as

Z(t) = X(t)·e−ĩ·ω0·t = Zr(t) + ĩZj(t), (3)

where ω0 is a modulation frequency that can be set based on actual demands, and Zr(t) and
Zj(t) are real and imaginary parts of Z(t), respectively. Assume that there are two closely
spaced frequencies f 1 and f 2. FM-EMD can effectively separate multiple closely spaced
spectral lines if the selected ω0 can make the frequency ratio and amplitude ratio of two
frequencies satisfy the requirements [22]{

f1/ f2 < 0.5
a1 f1 > a2 f2

, (4)

where f 1 < f 2, and a1 and a2 are the amplitudes of f 1 and f 2, respectively. Therefore,
the mixing degree of multiple modes is decreased by a shifting frequency, which can
be successfully decomposed using FM-EMD. All the local maxima and minima of Zr(t)
and Zj(t) are separately identified, and their upper and lower envelopes are then formed
by interpolating the local maxima and minima of Zr(t) and Zj(t) with cubic spline lines,
respectively. All the extrema of Zr(t) and Zj(t), which are larger than the local maxima of
Zr(t) and Zj(t) or smaller than their local maxima, should be covered in these two envelopes.
The mean values of the upper and lower envelopes of Zr(t) and Zj(t) are denoted as medr1
and medj1, respectively. The differences between Zr(t) and its mean value medr1 and between
Zj(t) and its mean medj1 are {

hr1 = Zr(t)−medr1
hj1 = Zj(t)−medj1

. (5)

The EMD method was developed to decompose a signal into IMFs based on the
assumption that a signal consists of different simple IMFs, which is some collection of
individual and almost mono-component signals. An IMF is a function that satisfies the
following two conditions: (1) the number of extrema and the number of zero-crossings
must either be the same or differ at most by one in the whole data set, and (2) the mean
value at any point between envelopes defined by local maxima and minima is zero [23]:

(a) The number of extremal points Ne, including the maxima and minima, and the number
of zero-crossing points Nz must satisfy

(Nz − 1) ≤ Ne ≤ (Nz + 1). (6)

(b) At any point, the local maxima fmax(t) and local minima fmin(t) must satisfy

fmax(t) + fmin(t)
2

= 0. (7)

The first components of the IMFs of Zr(t) and Zj(t) are denoted as cr1 and cj1, respec-
tively. By subtracting cr1 and cj1 from their original data, residues rr1 and rj1 of Zr(t) and
Zj(t) can be represented as {

rr1 = Zr − cr1
rj1 = Zj − cj1

, (8)

respectively. If rr1 and rj1 still contain information about other components of the IMFs of
Zr(t) and Zj(t), set rr1 and rj1 as the new data and repeat the above sifting process to obtain
the first components cr1 and cj1 of the IMFs of Zr(t) and Zj(t), respectively. This sifting
process must be repeated until hr and hj satisfy



Sensors 2022, 22, 4007 6 of 26


Srd =

∫ T
0
|(hr(k−1)(t)−hrk(t))|2

h2
rk(t)

dt

Sjd =
∫ T

0
|(hj(k−1)(t)−hjk(t))|2

h2
jk(t)

dt
, (9)

where k is the number of orders of the IMFs of Zr(t) and Zj(t), hr(k−1)(t) and hr(k)(t) are the
time series of two consecutive processing results in the sifting IMFs of Zr, hj(k−1)(t) and
hj(k)(t) are the time series of two consecutive processing results in the sifting IMFs of Zj,
and T is the time span of the signal. When Srd and Sjd reach values in the range of 0.2~0.3,
based on the practical experience [24], the sifting process stops. Finally, Zr(t) and Zj(t) are
separately decomposed into n IMFs, which are{

Zr(t) = ∑n
i=1 cri + rrn

Zj(t) = ∑n
i=1 cji + rjn

, (10)

where i is the mode number. All IMFs are the results of decomposed data Z(t) that dif-
fer from the original signal x(t). Due to the inverse decay and frequency shifting, the
instantaneous frequency and damping factor of Z(t) decrease. The decomposed IMFs of
Z(t) are {

Xr(t) = ∑n
i=1 cri·eĩ·ω0·t + rrn·eĩ·ω0·t

Xj(t) = ∑n
i=1 cji·eĩ·ω0·t + rjn·eĩ·ω0·t

, (11)

where Ci are the IMFs that are separated using FM-EMD, and each IMF is a single-mode
signal. Based on Equation (11), the original signal x(t) can be written as

x(t) = Re(X(t)) = Re
(

Xr(t) + ĩ·Xj(t)
)
= ∑n

i=1 Ci + Rn. (12)

2.2. Laplace Wavelet Correlation Filtering
2.2.1. Laplace Wavelet

A Laplace wavelet is a unilateral attenuation function, which can be defined as [17]

ψ(ω, ζ, τ, t) = ψr(t) =

Ae
− ζ√

1−ζ2 ω(t−τ)
e−jω(t−τ), tε[τ, τ + Ws],

0, elsewise
(13)

where ω∈R+ is the wavelet center frequency in the frequency domain; ζ∈[0, 1) ⊂R+ is the
damping factor that controls the decay rate of the exponential envelope in the time domain
and hence regulates the resolution of the wavelet, which simultaneously corresponds to
the frequency bandwidth of the wavelet in the frequency domain; τ∈R+ is the time index;
A is an arbitrary scaling factor; and Ws is the range that ensures the Laplace wavelet to be
compactly supported, which has a nonzero finite length.

The Laplace wavelet is constructed in consideration of the engineering application de-
mand. It has properties of unilateral attenuation in the absence of orthogonality properties,
which means that the Laplace wavelet cannot be used by the traditional wavelet transform.
Matching pursuit is a self-adaptive wavelet decomposition method that can decompose
a signal into a linear expansion of a group of basic functions [25]. These basic functions
are all from the wavelet dictionary and can best match the signal structure. Correlation
filtering is, in essence, a matching pursuit process.
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2.2.2. Correlation Filtering

The correlation between a dynamic signal of a system x(t) and its Laplace wavelet can
be obtained using an inner product operation that can be represented as

〈ψr(t), x(t)〉 =||ψr||2||x||2||cos θ, (14)

where ψr(t) is one of the dictionary wavelets Ψ that are generated by discrete gridding of
the parameter space, which are

Ω =
{

ω1, ω2 . . . ωp
}
⊂ R+

Z =
{

ζ1, ζ2 . . . ζq
}
⊂ [0, 1)

T = {τ1, τ2 . . . τr} ⊂ R
γ ∈ Γ = Ω× Z× T

Ψ = {ψ(ω, ζ, τ, t) : ω ∈ Ω, ζ ∈ Z, τ ∈ T}

. (15)

The similarity between the signal x(t) generated from the system and the properties of
its Laplace wavelet can be represented as

Kr = cos θ =
√

2
|〈ψr(t), x(t)〉|
||ψr||2||x||2

, (16)

where Kr is a correlation coefficient that is determined by the parameter vector {ω, ζ, τ}. For
a given time index τ, the inner product operation in Equation (14) searches for a maximum
correlation coefficient across the instantaneous frequency ω and damping factor ζ of a
decomposed signal. Define ω and ζ as a given frequency and damping factor of peak
correlation in the Laplace wavelet. The relationship between the maximum correlation
coefficient Kτ and a local peak value Kτ

r is

Kτ = max
ω ∈ Ω

ζεZ

Kτ
r = K{ω,ζ,τ}. (17)

The correlation filter approach can calculate the similarity between x(t) and its Laplace
wavelet, which can also work as a transform from the time domain to a parameter domain.
The given frequency ω and damping factor ζ associated with the maximum correlation
coefficient Kτ are based on the measured data x(t).

3. Proposed Method with FM-EMD and Laplace Wavelet Correlation Filtering for
Non-Destructive Health Evaluation

Since the correlation filtering technology is based on the principle of the waveform
similarity matching theory and the waveform of an impact response signal often behaves
similar to the Laplace wavelet, the instantaneous frequency and damping factor of the
decomposed signal of each single mode can be obtained using Laplace wavelet correlation
filtering with high precision. Therefore, a non-destructive health evaluation method with
FM-EMD and Laplace wavelet correlation filtering was proposed for health evaluation
of wooden utility poles. In order to clearly describe the proposed non-destructive health
evaluation method with FM-EMD and Laplace wavelet correlation filtering, a flow chart of
the proposed method is shown in Figure 3.
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Figure 3. Flow chart of the proposed method for non-destructive health evaluation.
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Step 1: Initialize parameters and variables of the proposed method. Define the number
of modes as n and the real signal x(t) collected from accelerometers installed on tested
wooden poles is then transformed to a complex signal with the Hilbert transform to obtain
the analytical signal X(t) using Equations (1) and (2). Choose an appropriate modulation
frequency ω0 to transform the analytical signal from a high-frequency zone to a low-
frequency zone using Equation (3).

Step 2: Only if the selected ω0 can make the frequency ratio and amplitude ratio of two
closely spaced spectral lines at frequencies f 1 and f 2 satisfy the requirements in Equation
(4), the proposed FM-EMD method can be performed with the following steps 2.1–2.6.

Step 2.1: Identify all extrema of Zr(t) and Zj(t) and collect all local maxima of Zr(t) and
Zj(t) using cubic spline lines as upper envelopes of Zr(t) and Zj(t).

Step 2.2: Collect the local minima of Zr(t) and Zj(t) by cubic spline lines to generate
the lower envelopes of Zr(t) and Zj(t).

Step 2.3: The mean values of upper and lower envelopes of Zr(t) and Zj(t) are de-
noted as medr1 and medj1, respectively. In addition, the differences hr1 and hj1 between
the upper and lower envelopes of Zr(t) and Zj(t) and their mean values are obtained
using Equation (5). Ideally, hr1 and hj1 should be the first IMF components of Zr(t) and
Zj(t), respectively.

Step 2.4: If hr1 and hj1 do not satisfy the IMF requirements in Equations (6) and (7),
hr1 and hj1 are set as the original signals and repeat steps 2.1–2.3 until the requirements in
Equations (6) and (7) are satisfied. The obtained first IMF components of Zr(t) and Zj(t) are
denoted as cr1 and cj1, respectively. Then, obtain the residues rr1 and rj1 by subtracting cr1
and cj1 from their original signals in Equation (8), respectively.

Step 2.5: If rr1 and rj1 still contain dynamic information of other components, treat
them as new data and repeat the above sifting process to obtain the next IMFs cr2 and cj2.
Such a process is repeated until the predetermined criteria shown in Equation (9) reach
values in the range of 0.2~0.3.

Step 2.6: If the sifting process satisfies the IMF requirements in Equations (6) and (7),
Zr(t) and Zj(t) are separately decomposed into n IMFs, and cr1-crn, cj1-cjn, and the final
residues rrn and rjn are obtained using Equation (10).

Step 3: The decomposed IMFs are obtained using Equation (11).
Step 4: Construct the wavelet dictionary Ψ using Equation (16); then, compute the

correlation coefficient Ki
r in Equations (18) and (19):

〈ψr(t), im fi〉 =||ψr||2||im fi||2 cos θ, (18)

Ki
r = cos θ =

√
2
|〈ψr(t), im fi〉|
||ψr||2||im fi||2

, (19)

where imfi is the ith mode of the original vibration signal, ψr(t) is one of the dictionaries of
wavelets Ψ, and Ki

r is a matrix whose dimensions are determined by the parameter vector
{ω, ζ, τ}. Define ωi and ζi as parameters of the Laplace wavelet associated with the peak
correlation. The relationship between the peak value generated in this progress Ki

τ and a
local peak value Kτi

r is
Ki

τ = max
ω ∈ Ω

ζεZ

Kτi
r = K{ω,ζ,τi}. (20)

The given frequency ωi and damping factor ζi associated with the peak values Ki
τ can

represent the modal information of the ith mode of a wooden utility pole.
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4. Non-Destructive Inspection of Wooden Utility Poles in the Field

Field testing was conducted on three wooden utility poles. The embedment conditions
of the three tested wooden utility poles were similar, which were firm clay. The codes of
these poles were Nos. 57704, 244984, and 265173. A measurement system in this study
contained a PCB impact hammer, four PCB accelerometers, and a four-channel Spectral
Dynamics Bobcat spectrum analyzer.

4.1. Testing Setup

The PCB impact hammer was used in field testing to excite vibrations of wooden
utility poles. Impact hammer excitation is in a valid range that can make the power spectral
density of a vibration signal at frequencies up to 800 Hz. Since the PCB impact hammer has
a wide effective frequency range of up to 800 Hz, more vibration information of wooden
utility poles can be extracted from their frequency response functions. The configuration
parameters of the impact hammer are shown in Table 1. Four PCB accelerometers were
used in field testing for data collection. The parameters of the PCB accelerometers are listed
in Table 2. The Spectral Dynamics Bobcat spectrum analyzer was used in field testing for
data acquisition and analysis. Specifications of the Bobcat spectrum analyzer are listed
in Table 3. During the wooden utility pole testing, the environment temperature remains
within 17 ◦C to 20 ◦C. The moisture contents of the tested wooden utility poles in the
third inch from the ground were in the range from 25% to 30% [26]. The influences of
the environmental temperature, moisture contents of wooden utility poles, and impact
hammer excitation on vibration testing results were small.

Table 1. Configuration parameters of the PCB impact hammer.

Item Value

Product model PCB 086D20
Sensitivity 1 mV/N

Measurement range ±5000 N
Resonant frequency ≥12 kHz

Constant current excitation 2 to 20 mA
Excitation voltage 20 to 30 V

Hammer mass 2.4 lb

Table 2. Detailed parameters of the PCB accelerometers.

Item Value

Product model PCB 352C66
Sensitivity 100 mV/g

Measurement range ±50 g
Resonant frequency ≥35 kHz

Frequency range 0.5 to 10,000 Hz
Phase response 2 to 6000 Hz

Broadband resolution 0.00016g rms
Note: g is the acceleration of gravity and rms means root mean square.

Table 3. Specifications of the Bobcat spectrum analyzer.

Item Value

Product model Spectral Dynamics Bobcat Shaker Controller
Number of input channels 2

Number of output channels 4
Voltage range 27 mV to 10 V

Maximum output amplitude ±12 V
Maximum output current 16 mA

Sampling rate 51,200 samples per second
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Some detailed information about the three tested wooden utility poles is listed in
Table 4. The measurement location of each accelerometer or sensor is shown in Figure 4.
The four accelerometers were placed at 90◦ from each other on the same layer circle, and
there were three levels for each tested wooden utility pole. Due to the symmetry of the
three wooden utility poles, the data collected from each accelerometer at every level had
similar information. The data from sensor 4 at level 1 of each tested wooden utility pole
was analyzed in field testing here.

Table 4. Detailed descriptions and parameters of the tested wooden utility poles.

Item Description or Value

Wood species Southern yellow pine
Wood type Hardwood

National standard class 2
Cross-section shape Circular

Pole length 9144 mm
Groundline distance from the button 1676 mm
Circumference 6 feet from the button 865 mm

Circumference at the top 635 mm

Figure 4. Measurement point assignments of each wooden utility pole.

4.2. Extraction of Instantaneous Frequencies and Damping Factors of Decomposed Signals of
Dynamic Responses of Wooden Utility Poles

To obtain the relationship between instantaneous frequencies and damping factors of
decomposed signals of dynamic responses of tested wooden utility poles and their health
conditions, the instantaneous frequency and damping factor of the decomposed signal
of each single mode needed to be extracted from multiple closely spaced modes of the
acquired vibration signal with high precision.

A modal test was conducted on a wooden utility pole labeled as 57704, as shown in
Figure 5. The acquired vibration signal is shown in Figure 6. The impact response signal in
Figure 6a quickly damped out in about 0.1 s. The maximum amplitude of the waveform
was about 3 g in the time domain. There were many confusing closely spaced peaks in
the frequency domain in Figure 6b due to nonlinear properties of the wooden utility pole,
where spectral analysis of acquired vibration signals was conducted using MATLAB via
the fast Fourier transform. In order to identify changes in the instantaneous frequency and
damping factor of the decomposed signal of each single mode in different health conditions
of a wooden utility pole, it was required to decompose multiple close modes into several
single modes.
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Figure 5. Tested wooden utility pole labeled as 57704: (a) its embedment condition and (b) its label.

Figure 6. (a) Vibration response signal of the wooden utility pole labeled as 57704 in the time domain
and (b) its corresponding frequency spectrum.

The first mode of the vibration response signal of the wooden utility pole is shown in
Figure 7. The instantaneous frequency and damping factor of the decomposed signal of each
single mode were extracted using Laplace wavelet correlation. The result of the correlation
coefficient Kτ was close to 1 when a particular Laplace wavelet successfully matched with
the single mode of the signal, as shown in Figure 7c. The second and third subgraphs in
Figure 7c indicated the instantaneous frequency f and damping factor ζ with the maximum
correlation coefficient Kτ at time τ. The red vertical line in Figure 7c indicated the time
τ when the correlation coefficient Kτ reached the maximum value. The purple dashed
circles indicated the instantaneous frequency f and damping factor ζ corresponding to the
maximum correlation coefficient Kτ at time τ. The decomposed vibration response of each
single mode in the time domain, its corresponding frequency spectrum, and the results of
Laplace wavelet correlation filtering were also obtained. Due to the space limitation of this
paper, only the results of the first three modes are displayed in Figures 7–9. The maximum
correlation coefficients Kτ of the first three modes of the wooden utility pole labeled
as 57704 were 0.981, 0.9798, and 0.9841, as shown in Figures 7c, 8c and 9c, respectively.
Instantaneous frequencies of the first three modes of the wooden utility pole labeled as
57704 were 25.5 Hz at 0.0375 s, 47 Hz at 0.225 s, and 70 Hz at 0.16 s, respectively. The
damping factors ζ with the maximum correlation coefficients Kτ of the first three modes
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were 0.042, 0.0185, and 0.018, respectively. Instantaneous frequencies and damping factors
of decomposed signals of the first 20 modes are listed in Table 5.

Figure 7. First mode in the vibration response signal of the wooden utility pole labeled as 57704:
(a) the vibration response of the first mode in the time domain, (b) the frequency spectrum of the first
mode, and (c) the results of Laplace wavelet correlation filtering of the first mode.

Table 5. Instantaneous frequencies and damping factors of decomposed signals of the first 20 modes
of the wooden utility pole labeled as 57704.

Mode
No. Max(Kτ) Corresponding Time

(s)
Instantaneous Frequency

(f/Hz)
Damping Factor

(ζ)

1st 0.981 0.038 25.50 0.042
2nd 0.980 0.225 47.00 0.019
3rd 0.984 0.160 70.00 0.018
4th 0.984 0.205 108.0 0.012
5th 0.969 0.165 168.0 0.012
6th 0.969 0.088 204.5 0.014
7th 0.951 0.143 216.0 0.011
8th 0.966 0.070 262.0 0.012
9th 0.963 0.105 322.0 0.011

10th 0.960 0.103 378.0 0.011
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Table 5. Cont.

Mode
No. Max(Kτ) Corresponding Time

(s)
Instantaneous Frequency

(f/Hz)
Damping Factor

(ζ)

11th 0.962 0.075 434.5 0.006
12th 0.962 0.075 493.0 0.007
13th 0.954 0.090 549.5 0.007
14th 0.901 0.045 606.5 0.003
15th 0.947 0.088 628.0 0.003
16th 0.959 0.070 682.0 0.005
17th 0.940 0.073 703.5 0.003
18th 0.949 0.075 745.5 0.003
19th 0.954 0.078 803.0 0.006
20th 0.946 0.068 869.5 0.005

Figure 8. Second mode in the vibration response signal of the wooden utility pole labeled as 57704:
(a) the vibration response of the second mode in the time domain, (b) the frequency spectrum of the
second mode, and (c) the results of Laplace wavelet correlation filtering of the second mode.
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Figure 9. Third mode in the vibration response signal of the wooden utility pole labeled as 57704:
(a) the vibration response of the third mode in the time domain, (b) the frequency spectrum of the
third mode, and (c) the results of Laplace wavelet correlation filtering of the third mode.

The instantaneous frequency and damping factor of the decomposed signal of each
single mode and the correlation coefficient Kτ between each single mode and constructed
Laplace wavelet atoms were obtained using the proposed method, as shown in Table 5.
Most correlation coefficients Kτ in Table 5 were larger than 0.95, which was close to 1,
which meant that the matching degree between each single mode and the Laplace wavelet
was excellent. Therefore, the extracted instantaneous frequency and damping factor of the
decomposed signal of each single mode could be used to reflect the vibration response
information of the wooden utility pole.

The second wooden utility pole labeled as 244984, as shown in Figure 10, was also
tested. The acquired waveform in the time domain is shown in Figure 11a and the impact
response signal quickly damped out in about 0.2 s; the time duration of the second wooden
utility pole was a little longer than that of the first wooden utility pole shown in Figure 6a.
The maximum amplitude of the waveform was about 1.2 g in the time domain, which was
also smaller than that of the first wooden utility pole in Figure 6a.
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Figure 10. Tested wooden utility pole labeled as 244984: (a) its embedment condition and (b) its label.

Figure 11. Vibration response signal and frequency spectrum of the wooden utility pole labeled as
244984: (a) the vibration response in the time domain and (b) the frequency spectrum.

There were some differences between the frequency spectra of the first and second
wooden utility poles, as shown in Figures 6b and 11b, respectively; the shapes and distri-
butions of their spectra were different from each other. The spectrum of the first wooden
utility pole in Figure 6b was mainly distributed in two clearly distinguishable regions. Most
spectral lines were located in the low- and medium-frequency regions between 0 Hz and
1000 Hz, and they had dominating vibration energies since the amplitudes of the frequency
components in this frequency region were relatively larger than those in the high-frequency
region between 1000 Hz and 1600 Hz. Although most spectral lines were also located in the
low- and medium-frequency region between 0 Hz and 1000 Hz in Figure 11b, the difference
between the frequency spectra in the low/medium- and high-frequency regions was not
as obvious as that in Figure 6b. The vibration signal of the second wooden utility pole
was decomposed into the first 20 separated single modes using the proposed FM-EMD
method and Laplace wavelet correlation filtering. The vibration responses in the time
domain and the frequency spectra and Laplace wavelet correlation filtering of the first
three single modes are shown in Figures 12–14. Maximum correlation coefficients Kτ of
the first three modes of the wooden utility pole labeled as 244984 were 0.9823, 0.9813, and
0.9858, as shown in Figures 12c, 13c and 14c, respectively. Instantaneous frequencies of
the first three modes of the wooden utility pole labeled as 244984 were 32 Hz at 0.0575 s,
54.5 Hz at 0.2325 s, and 86 Hz at 0.2725 s, respectively. The damping factors ζ with the
maximum correlation coefficients Kτ of the first three modes were 0.004, 0.03, and 0.0125,
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respectively. The instantaneous frequencies and damping factors of decomposed signals
of the first 20 modes of the wooden utility pole labeled as 244984 were extracted and are
listed in Table 6.

Figure 12. First mode in the vibration response signal of the wooden utility pole labeled as 244984:
(a) the vibration response of the first mode in the time domain, (b) the frequency spectrum of the first
mode, and (c) the results of Laplace wavelet correlation filtering of the first mode.

Table 6. Instantaneous frequencies and damping factors of decomposed signals of the first 20 modes
of the wooden utility pole labeled as 244984.

Mode
No. Max(Kτ) Corresponding Time

(s)
Instantaneous Frequency

(f/Hz)
Damping Factor

(ζ)

1st 0.982 0.058 32.00 0.004
2nd 0.981 0.233 54.50 0.030
3rd 0.986 0.273 86.00 0.013
4th 0.983 0.173 122.0 0.016
5th 0.986 0.190 163.5 0.012
6th 0.981 0.098 220.0 0.020
7th 0.982 0.135 257.0 0.014
8th 0.979 0.163 279.5 0.012
9th 0.984 0.114 326.5 0.012

10th 0.977 0.110 372.0 0.008
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Table 6. Cont.

Mode
No. Max(Kτ) Corresponding Time

(s)
Instantaneous Frequency

(f/Hz)
Damping Factor

(ζ)

11th 0.984 0.113 392.0 0.007
12th 0.984 0.125 458.0 0.009
13th 0.985 0.093 506.0 0.010
14th 0.981 0.118 570.0 0.008
15th 0.983 0.088 645.5 0.006
16th 0.982 0.150 702.0 0.005
17th 0.989 0.098 747.0 0.007
18th 0.936 0.130 799.0 0.002
19th 0.987 0.110 852.5 0.005
20th 0.960 0.125 931.5 0.004

Figure 13. Second mode in the vibration response signal of the wooden utility pole labeled as 244984:
(a) the vibration response of the second mode in the time domain, (b) the frequency spectrum of the
second mode, and (c) the results of Laplace wavelet correlation filtering of the second mode.
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Figure 14. Third mode in the vibration response signal of the wooden pole labeled as 244984: (a) the
vibration response of the third mode in the time domain, (b) the frequency spectrum of the third
mode, and (c) the results of Laplace wavelet correlation filtering of the third mode.

The third wooden utility pole labeled as 265173, as shown in Figure 15, was also tested.
The testing process was the same as those for the above two wooden utility poles labeled
as 57704 and 244984. The acquired waveform in the time domain is shown in Figure 16a. It
was found that the impact response signal damped out in 0.4 s, which was longer than those
of the above two wooden utility poles in Figures 6a and 11a. The maximum amplitude of
the waveform was about 0.4g in the time domain, which was also smaller than those of the
above two wooden utility poles.

Figure 15. Tested wooden utility pole labeled as 265173: (a) its embedment condition and (b) its label.
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Figure 16. Vibration response signal and frequency spectrum of the wooden utility pole labeled as
265173: (a) the vibration response in the time domain and (b) the frequency spectrum.

There were some differences in the frequency spectra of the three wooden utility poles
in Figures 6b, 11b and 16b. The shape and distribution of the spectrum in Figure 16b
were different from those of the other two wooden utility poles in Figures 6b and 11b.
Larger spectral peaks mainly appeared in the low- and medium-frequency regions and
peak amplitudes in the high-frequency region were closer to those in the low- and medium-
frequency regions. Therefore, the energy of the spectrum increased with the frequency in
the low/medium- and high-frequency regions and it was more uniformly distributed in
Figure 16b. Moreover, the maximum amplitude of the frequency spectrum of the wooden
utility pole labeled as 265173 was the smallest among the three wooden utility poles.
The acquired vibration signal was decomposed into 20 separated single modes using the
proposed FM-EMD method and Laplace wavelet correlation filtering. Similar to the first
two wooden utility poles labeled as 57704 and 244984, vibration responses in the time
domain, their frequency spectra, and the results of Laplace wavelet correlation filtering of
the first three modes are shown in Figures 17–19. The maximum correlation coefficients Kτ

of the first three modes of the wooden utility pole labeled as 265173 were 0.8847, 0.9768,
0.9668, as shown in Figures 17c, 18c and 19c, respectively. The instantaneous frequencies of
the first three modes of the wooden utility pole labeled as 265173 were 37 Hz at 0.03 s, 58 Hz
at 0.34 s, and 65.5 Hz at 0.155 s, respectively. The damping factors ζ with the maximum
correlation coefficients Kτ of the first three modes were 0.019, 0.009, and 0.014, respectively.
The instantaneous frequencies and damping factors of decomposed signals of the first
20 modes of the wooden utility pole labeled as 265173 are listed in Table 7.

Table 7. Instantaneous frequencies and damping factors of decomposed signals of the first 20 modes
of the wooden utility pole labeled as 265173.

Mode
No. Max(Kτ) Corresponding Time

(s)
Instantaneous Frequency

(f /Hz)
Damping Factor

(ζ)

1st 0.885 0.030 37.00 0.019
2nd 0.977 0.340 58.00 0.009
3rd 0.967 0.155 65.50 0.014
4th 0.993 0.253 77.50 0.015
5th 0.982 0.190 83.50 0.009
6th 0.918 0.148 89.50 0.011
7th 0.956 0.128 93.00 0.014
8th 0.920 0.083 98.00 0.015
9th 0.917 0.160 103.0 0.009

10th 0.906 0.145 104.5 0.011
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Table 7. Cont.

Mode
No. Max(Kτ) Corresponding Time

(s)
Instantaneous Frequency

(f /Hz)
Damping Factor

(ζ)

11th 0.900 0.168 106.0 0.012
12th 0.941 0.193 109.5 0.007
13th 0.920 0.208 113.0 0.005
14th 0.913 0.143 119.5 0.009
15th 0.942 0.130 128.5 0.011
16th 0.911 0.100 144.0 0.009
17th 0.916 0.093 146.5 0.012
18th 0.904 0.085 148.0 0.010
19th 0.932 0.120 153.5 0.008
20th 0.940 0.125 155.5 0.010

Figure 17. First mode in the vibration response signal of the wooden utility pole labeled as 265173:
(a) the vibration response of the first mode in the time domain, (b) the frequency spectrum of the first
mode, and (c) the results of Laplace wavelet correlation filtering of the first mode.
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Figure 18. Second mode in the vibration response signal of the wooden utility pole labeled as 265173:
(a) the vibration response of the second mode in the time domain, (b) the frequency spectrum of the
second mode, (c) and the results of Laplace wavelet correlation filtering of the second mode.

Figure 19. Cont.
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Figure 19. Third mode in the vibration response signal of the wooden utility pole labeled as 265173:
(a) the vibration response of the third mode in the time domain, (b) the frequency spectrum of the
third mode, (c) and the results of Laplace wavelet correlation filtering of the third mode.

4.3. Health Evaluation of the Three Wooden Utility Poles Based on Instantaneous Frequencies and
Damping Factors

In order to observe the rules of the obtained instantaneous frequencies and damping
factors from measured vibration response signals of the three wooden utility poles labeled
as 57704, 244984, and 265173, the extracted instantaneous frequencies and damping factors
of the three wooden utility poles are shown in Figures 20 and 21, respectively.

Figure 20. Instantaneous frequencies of decomposed signals of the first 20 modes of the three wooden
utility poles.

It can be seen from Figure 20 that the instantaneous frequencies varied approximately
linearly from the 1st to the 20th modes of the three wooden utility poles. The instantaneous
frequencies of the wooden utility pole labeled as 265173 were much smaller than those of
the wooden utility poles labeled as 57704 and 244984, which could mean that the stiffness of
the wooden utility pole labeled as 265173 was smaller than those of the other two wooden
utility poles, and there might exist some damage in this wooden utility pole. In addition,
the instantaneous frequencies of decomposed signals of the wooden utility pole labeled as
244984 were similar to those of the wooden utility pole labeled as 57704. Therefore, there
was a preliminary diagnosis conclusion that wooden utility poles labeled 57704 and 244984
could be healthy and the wooden utility pole labeled as 265173 could be damaged.
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Figure 21. Damping factors of decomposed signals of the first 20 modes of the three wooden
utility poles.

According to the damping factor results of the three wooden utility poles in Figure 21,
the damping factors of the damaged wooden utility pole labeled as 265173 were larger than
those of the two healthy wooden utility poles. Larger damping factors indicated that there
could be damage in the wooden utility poles. Noticeably, all the damping factors of the
wooden utility pole labeled as 244984 were larger than those of the wooden utility pole
labeled as 57704, which indicated that the wooden utility labeled as 57704 was healthier
than the wooden utility pole labeled as 244984. It is noted that the use of damping factors
can more clearly distinguish the health conditions between the wooden utility poles labeled
as 244984 and 57704 than the use of instantaneous frequencies.

The traditional hole-drilling inspection test was applied to the three wooden utility
poles to validate the results from the proposed method. The traditional test results showed
that there was decay inside the wooden utility pole labeled as 265173; the pole was indeed
considered damaged and it should be immediately repaired or replaced. The traditional
test results showed that the other two poles were healthy. While there might exist some
minor damage in the wooden utility pole labeled as 244984, the damage did not affect its
usual usage and the pole was judged as healthy. However, it needed constant attention
and maintenance. The traditional test results were consistent with the results from the
proposed method.

5. Conclusions

The instantaneous frequency and damping factor of the decomposed signal of each
single mode of the measured vibration response signal of a wooden utility pole could be
extracted to realize non-destructive health evaluation. The proposed FM-EMD method
could decompose multiple modes of a wooden utility pole into several single modes. The
instantaneous frequency and damping factor of the decomposed signal of each single mode
could be identified using Laplace wavelet correlation filtering.

The instantaneous frequency and damping factor of the decomposed signal of each
single mode of each of the three wooden utility poles labeled as 57704, 244984, and 265173
were successfully used to determine their health conditions. The instantaneous frequencies
of the first 20 modes of the wooden utility pole labeled as 265173 changed from 37 Hz
to 83.5 Hz, as shown in Figure 20. The instantaneous frequencies of the first 20 modes
of wooden poles labeled as 57704 and 244984 changed from 25.5 Hz to 168 Hz and from
32 Hz to 163.5 Hz, respectively. The increase rate of instantaneous frequencies of the first
20 modes of the wooden utility pole labeled as 265173 with the mode number was much
smaller than those of the wooden utility poles labeled as 57704 and 244984. Based on
the increase rates of the instantaneous frequencies of the first 20 modes of the wooden
utility poles, it was judged that the lower stiffness increase rate of the wooden utility pole
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labeled as 265173 was caused by some damage in the pole. Additionally, the damping
factors of the first 20 modes of the wooden utility pole labeled as 265173 were larger than
those of wooden poles labeled as 244984 and 57704. The damping factors of the wooden
utility pole labeled as 244984 were noticeably larger than those of the wooden utility pole
labeled as 57705 since the latter was healthier than the former. Larger damping factors of
the wooden utility pole labeled as 265173 indicated that it could be damaged. Consistent
with the traditional hole-drilling inspection test results, the wooden utility poles labeled
as 57704 and 244984 were deemed healthy, and the wooden utility pole labeled as 265173
was damaged. Some maintenance suggestions for the two wooden utility poles labeled
as 265173 and 244984 can be drawn: the wooden utility pole labeled as 265173 must be
immediately repaired or replaced to avoid a potential failure accident and the wooden
utility pole labeled as 244984 needed some maintenance to strengthen it.
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