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Abstract: We present TIMo (Time-of-flight Indoor Monitoring), a dataset for video-based monitoring
of indoor spaces captured using a time-of-flight (ToF) camera. The resulting depth videos feature
people performing a set of different predefined actions, for which we provide detailed annotations.
Person detection for people counting and anomaly detection are the two targeted applications. Most
existing surveillance video datasets provide either grayscale or RGB videos. Depth information,
on the other hand, is still a rarity in this class of datasets in spite of being popular and much more
common in other research fields within computer vision. Our dataset addresses this gap in the
landscape of surveillance video datasets. The recordings took place at two different locations with
the ToF camera set up either in a top-down or a tilted perspective on the scene. Moreover, we provide
experimental evaluation results from baseline algorithms.

Keywords: time-of-flight; depth imaging; person detection; anomaly detection; dataset; machine
learning; deep learning; neural networks

1. Introduction

Traditionally, surveillance cameras are RGB or IR cameras. For the realization of robust
automatic building management functions, time-of-flight depth cameras offer, however,
some unique benefits. First of all they are more robust to illumination and color variations,
and allow natural geometrical background removal. The depth information they provide
allows to detect, classify and localize persons and objects precisely in 3D space. Moreover
people are much less likely to be identifiable in depth data compared to RGB. Thus,
monitoring places and at the same time preserving peoples’ privacy can be reconciled to
a much better degree. For these reasons, the first building management systems based
on time-of-flight technology have been around for about ten years [1], which realizes a
few basic building management functions such as people counting or single access control.
Future time-of-flight sensors with higher sensitivity and resolution (see [2,3] with references
therein) in combination with novel deep-learning algorithms promise to both enhance the
performance of existing building management systems and realize novel functions as the
behaviour analysis of persons and detection of anomalous situations [4,5].

The affordability of consumer depth cameras has made them a popular and widely
used sensing device for the computer vision research community. Examples of frequently
used depth cameras in this context are the Microsoft Kinect [6], Intel RealSense [7], or
the Asus Xtion [8]. The fact that depth cameras provide 3D geometric information of the
scene is beneficial for various various applications, such as action recognition [9] or gesture
classification [10]. With our introduced dataset TIMo, we want to foster research towards
robust and high performing person detection and novel smart building functions such as
the detection of anomalies.
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An advantage of our dataset over existing ones is the choice of more modern hard-
ware. Our recordings were captured using a Microsoft Azure Kinect camera, which features
higher image resolution, higher field-of-view and lower distance error compared to the
Microsoft Kinect V2 [2,11]. In addition to the depth images, we also provide the correspond-
ing infrared images, since they are a byproduct of the IR-based ToF depth measurement
principle and comparisons between the depth and IR modality are thus also possible with
the dataset. Examples of both IR and depth images are shown in Figure 1.

Figure 1. Example frames from our dataset. (Top): a scene from tilted view, (Bottom): a scene from
top-down view. (Left): IR image, (Right): Depth image with depth encoded as color.

Some anomaly datasets additionally suffer from a very limited number of anomalous
events. This is sometimes due to the fact that they use actual surveillance footage where
anomalies tend to be rare. While there are advantages to using data from real-world
anomalies, it can severely limit the amount of data available for testing anomaly detection
algorithms. Our dataset features a large number of anomalies that facilitates testing at scale.

The rise of deep neural networks as the primary approach for solving computer
vision problems leads to a demand for very large datasets that support training and
testing complex models. Our dataset consists of about 1500 recordings with 44 different
subjects and in total sums up to more than 612,000 individual video frames, which makes
it suitable for the development of data-hungry approaches. Additionally, 243 sequences
with 22,700 labeled frames with 3D bounding boxes and segmentation mask are provided
for person detection with counting purposes. It is moreover relatively easy to generate
high quality synthetic data for depth videos in case the real data is not sufficient, since
computation of depth is a customary step of computer graphics pipelines anyway. The
TiCAM dataset is an example of how synthetic depth data can complement real data [12].

The rest of the paper is structured as follows: Section 2 puts our dataset into context
with respect to existing ones. Section 3 then details the content and process of acquisition
of our recordings and the accompanying annotations. We provide results of baseline
algorithms for the target applications in Section 4 and conclude our work in Section 5.
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2. Related Work

This section gives an overview of the landscape of existing datasets and a brief sum-
mary of related work on anomaly detection and person detection, as those are the two main
application the dataset is aimed at being used for.

2.1. Datasets

The popularity of depth-sensing technology has led to a large number of datasets to be
released featuring RGB videos with an additional depth channel, or, in short, RGB-D. While
pure RGB datasets can sometimes be compiled using existing recordings (such as videos
on online video platforms), RGB-D data usually has to be recorded specifically for the
dataset. A review of some of these datasets is given in [13]. Table 1 shows an overview of a
number of datasets related to the one we present either by providing similar data modalities,
annotations or aiming at a similar estimation problem. Some provide static scans of indoor
spaces, e.g., Stanford 2D-3D-Semantics [14] or ScanNet [15] and are commonly used for
tasks such as semantic segmentation of point clouds. Our dataset differs from this type of
datasets in that it does not focus on the reconstruction of the static geometry of the indoor
space but instead on capturing human action performed within the scene. In this regard, it
is more similar to datasets used for action recognition such as UTD-MHAD [16] or NTU
RGB+D [17] and NTU RGB+D 120 [18]. However, these datasets were not created for the
applications of anomaly detection or people counting. The camera angles and the nature
of the recorded scenes make them unsuitable for these tasks. Therefore, there is a need
for datasets particularly geared towards the development of algorithms for monitoring
indoor spaces.

Existing datasets for anomaly detection usually provide only RGB data, e.g., the
Shanghai-Tech dataset [19] or UCF-Crime [20]. Our dataset fills this existing gap by
providing depth data of realistic scenarios and following camera angles as they would be
common in a surveillance context.

Unlike some other datasets, such as [18], we did not aim for a large variety of back-
grounds or illumination in the data. This limitation is a consequence of the time-consuming
process of calibration and the risk of having correlations between the background and
the content of sequences, which has the potential to compromise the learning process and
results when using machine learning. In addition, background variations are less relevant
in depth data. We therefore committed to record only a few scenes and put more focus on
a large and well-balanced variance of subjects and actions and on providing high quality
supplementary information, e.g., camera calibration parameters.

2.2. Anomaly Detection

A good general overview of techniques for detecting anomalies—or outliers depending
on the terminology used—can be found in [21].

Research towards video anomaly detection (VAD) became a more popular research
topic in the course of the mid- to late-2000s. A common technical base of the methods from
that era are optical flow estimations and object trajectories to which, e.g., a Hidden Markov
Models is the applied technique [22,23].

In the more recent past, anomaly detection research has followed the general direction
of pattern recognition research and is now mostly dominated by deep learning-based
methods [24–26]. Examples of how VAD is approached using deep learning include
learning representations of normality using autoencoder-based architectures [27] or—if the
problem is posed in a supervised way—e.g., contrastive learning [28].

2.3. Person Detection

Overall the topic of depth-based or depth-supported person detection is not widely
presented in state-of-the-art publications. There are some noticeable publications, methods
of which can potentially utilize and benefit from the presented dataset. The work of
Tan et al. [29] describes a method for pedestrian detection based on RGB-D information
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with improved HHA encoding of depth maps [30]. The approach from [31] learns an upper
body person template from depth images for further close-range person detection. For
the task of mobile person detection, the approach of Choi et al. [32] utilizes depth images
from early generation of Kinect camera, which are a subject of segmentation with further
candidate classification. In a method by Xia et al. [33], depth images from Kinect are
used to generate a contour based on the Canny edge detector [34]. A head template is
matched to the resulting image in order to find the person’s location. For the mechanical
safety applications, the approach of Zhou et al. [35] detects a person in RGB frames
and then finds the associated distance to the person to prevent entering the dangerous
area. Wetzel et al. [36] use a fusion of information from multiple depth cameras for person
detection from different viewpoints.

Table 1. Comparison of related datasets to our dataset. The 3D joints refers to joints of the human
body such as they are used in human pose estimation.

Dataset Year
# Sequences
(# Frames)

Data Modalities Camera Hardware Annotations Environment

TIMo Anomaly Detection (ours) 2021
1588

(612 K)
IR, Depth

MS Kinect
Azure

Anomaly Frames Indoor

TIMo Person Detection (ours) 2021
243

(23.6 K)
IR, Depth

MS Kinect
Azure

2D/3D Object BBox,
2D Segm. Masks

Indoor

ShanghaiTech Campus [19] 2018
437

(317 K)
RGB

RGB
Camera

Anomaly Frames,
Anomaly Masks

Outdoor

UTD-MHAD [16] 2015
861

(45 K)
RGB, Depth,
3D Joints, ID

MS Kinect v1 Action Classes Indoor

NTU-RGB+D 120 [18] 2019
114 K
(4 M)

RGB, Depth,
3D Joints, Inertia

MS Kinect v2 Action Classes Indoor

UCF-Crime [20] 2018
1900

(13.8 M)
RGB

RGB
Camera

Anomaly Frames
Indoor +
Outdoor

TiCAM (Real) [12] 2021
533

(6.7 K/118 K)
RGB, IR, Depth

MS Kinect
Azure

2D/3D Object BBox,
2D Segm. Masks
Action Classes

Car Cabin

DAD [28] 2020
386

(2.1 M)
IR, Depth

CamBoard
pico flexx

Anomaly Frames Car Cabin

CUHK Avenue [37] 2013
37

(31 K)
RGB

RGB
Camera

Anomaly Frames,
Anomaly BBoxes

Outdoor

UCSD Ped 1 + 2 [38] 2010
70 + 28

(14 K + 4.6 K)
Grayscale

Grayscale
Camera

Anomaly Frames,
partly Anomaly

Masks
Outdoor

Subway Exit + Entrance [23] 2008
1 + 1

(137 K + 72 K)
Grayscale

Grayscale
Camera

Anomaly Frames,
rough Anomaly

Locations

Subway
Station

IITB-Corridor [39] 2020
368

(484 K)
RGB

RGB
Camera

Anomaly Frames
Outdoor

(Corridor)

3. TIMo Dataset

Here we describe the content of the dataset as well as the process of recording.
Sections 3.1 and 3.3 cover the data modalities, the choice of hardware and scene and how
recordings were carried out. Sections 3.4–3.6 give more details about the content and
annotations we provide in the dataset. Section 3.7 gives a quantitative overview of the
dataset in the form of statistics.
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3.1. Data Modalities

We provide the infrared (IR) images and the depth maps estimated by the Microsoft
Azure Kinect camera. The camera in principle also features recording RGB images, which
we use in some of the figures for visualization purposes. Note, however, that our focus lies
on depth data and hence we do not provide RGB frames in the public dataset and there are
also no annotations for the RGB modality.

3.2. Setup

Recordings took place at two different locations, which we refer to as Scene 1 and
Scene 2. Scene 1 is an open office area with a small kitchen and a seating area. For this scene
the Microsoft Azure Kinect camera was installed in two different positions. There was a
tilted-view mounting in which the camera was able to monitor a large portion of the room
including the four entrance possibilities, which are shown in Figure 2d. The sequences
were recorded in such a way that unwanted correlations between the occurrence of an
anomalous event and the entrances used by the actors are avoided. In addition, the camera
was mounted on a metal frame above the entrance B with a top-down view, monitoring
people entering or leaving the room through a hallway.

The same top-down mounting orientation has been used in Scene 2 but with more
flexibility. There, the monitored area is less confined, allowing persons to cross the scene
in all directions. Moreover, the camera is mounted on a lift, allowing to vary the camera
height. Figure 2a–c show the different camera mounting setups. For the two different
mounting orientations, the camera configuration was different, as described below.

An important advantage of our recording setup compared to most other ones shown
in Table 1 is the use of the latest generation of time-of-flight sensor technology. We can thus
achieve measurements with less noise and higher resolution. For a detailed comparison of
the Kinect devices, we refer to [2,11].

3.2.1. Top-Down View

For top-down recordings we used the wide field-of-view (WFOV) configuration of the
Azure Kinect (120°× 120°). The native resolution of the sensor in WFOV configuration is
1024× 1024 pixels. We employed a 2× 2 binning technique which reduces the resolution
down to 512× 512 pixels but at the same time yields a higher operating range, which is
0.25 m–2.88 m. The capturing rate is set to 30 frames per second (FPS). Top-down view data
were recorded in Scene 1 and Scene 2. The camera height above ground was in Scene 2
varied between 2.25 m, 2.50 m and 2.75 m, while in Scene 1 it was fixed to 2.50 m.

3.2.2. Tilted-View

All tilted-view data were recorded in Scene 1. For these recordings we used the narrow
field-of-view (NFOV) configuration (75°× 65°). The tilt angle is roughly 41°. The native
resolution of the sensor in NFOV configuration is 576× 640 pixels. Same as for the top-
down configuration, we used a frame rate of 30 FPS and 2× 2 binning, which results in a
resolution of 288× 320 pixels.

The maximum guaranteed depth operating range for the NFOV configuration with
2× 2 binning is 5.46 m. For the recordings from the tilted-view camer, a this is not enough
range to cover the complete scene. As is usual for time-of-flight cameras, the data quality
also depends significantly on the remission properties of the surface in question. Neverthe-
less, we observed that we obtain adequate depth measurements for the relevant parts of
the scene up to about 10 m in our setup.
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(a) (b)

(c) (d)
Figure 2. Recording setups used for capturing the dataset. The position of the Azure Kinect is marked
with a red square. (a) Camera mounting for tilted-view in Scene 1. (b) Setup for top-down view in
Scene 2 (camera not installed yet). (c) Setup for top-down view in Scene 1. (d) Entrances in in Scene 1.
Subjects were told to use specific entrances during recording (e.g. enter at A and leave through D).

3.3. Acquisition

The test cases were defined prior to recording according to a test matrix, which aims
at preventing unintentionally introduced correlations in the dataset. The anomalies in the
anomaly dataset also belong to pre-defined test cases. The camera was calibrated according
to a world coordinate system before each recording session. For recording, the test subjects
were instructed to enter and leave the scene through a specific entrance. For the tilted-view
scene, there are four such entrances. In the top-down-view scenes, the test subjects cross
the scene either in the X- or Y-direction of the camera coordinate system. The subjects
perform a given action after entering the scene and then leave again. The instructions on
how an action was to be performed were kept rather vague in order to have some degree
of variance between performances of the same action type. A full list of the choreographies
can be found on the dataset website https://vizta-tof.kl.dfki.de/building-data-format/
(accessed on 22 April 2022).

3.4. Post-Processing

Post-processing of the data and the annotations is kept to a minimum in order to allow
users to choose between using the raw data or applying custom normalization themselves.
Images in the person detection dataset are undistorted and remapped to the common
pinhole camera model. The original rotation and translation matrices are also provided
per sequence for its further conversion to the 3D world coordinate system (e.g., in the form
of a point cloud). The segmentation masks and 2D bounding boxes are provided in the
coordinates of the undistorted and remapped images (see Section 3.6 for more details on
the annotations).

https://vizta-tof.kl.dfki.de/building-data-format/
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3.5. Data Format

The IR and depth videos are stored as individual frames in the Portable Network
Graphics (PNG) format with a single 16-bit channel. The pixel values in the depth images
directly correspond to the depth measurements in millimeters. A pixel value of 0 is used as
a special value to indicate that there is no valid depth estimation for this pixel. Note that
the example frames shown in this paper have been transformed with respect to value range
and contrast for better visualization.

The video sequences and individual frames follow a common naming scheme which
includes the most relevant information directly in the file name. It includes the choreography, a
sequence ID, the camera height, a timestamp and a calibration ID. More details on the naming
scheme can also be found on the dataset website.

3.6. Annotations

We provide annotations for people and objects in the form of 2D and 3D bounding
boxes and segmentation masks for the person detection dataset and anomaly annotations
for the anomaly dataset. For the anomaly dataset, both tilted view data recorded in
Scene 1 and top-down data recorded in Scene 2 were annotated. For the person detection
dataset, data from both scenes recorded in the top-down configuration were annotated.
The annotations were done manually using a software tool that was developed specifically
for the purpose of annotating 3D data [40].

3.6.1. Anomaly Annotations

Anomaly annotations are provided as pairs of frame indices which indicate when
the anomalous event within the given sequence starts and ends. Note that the frames at
START_FRAME_IDX and END_FRAME_IDX both also belong to the anomalous event,
thus making it END_FRAME_IDX−START_FRAME_IDX + 1 frames long. A sequence
contains either exactly one anomalous event or none at all. The anomalies can involve a
single person (e.g., collapsing) or multiple people (e.g., arguing). We thus consider the
whole scene depicted by a certain video frame as either normal or anomalous depending
on the behaviour it features. Our definition of anomalous events and corresponding
choreographies in the recorded videos was inspired by related work, but is of course
context dependent. We therefore also provide the annotation of the choreography shown
in a video. By labelling each choreography either as normal or anomalous (or omitting it),
the ground truth of the dataset can be adjusted to the context and use case considered.

Examples of anomalies include left-behind objects, people arguing or throwing objects.
Figure 3 illustrates two instances of anomalous events within the dataset.

All choreographies that are not labeled as anomalous are consequently considered to
be normal. This includes activities such as getting coffee from the kitchen, talking with one
another or simply walking.

3.6.2. Person and Object Annotations

For person detection, we provide annotations for people and objects in the follow-
ing form:

• Two-dimensional (2D) segmentation masks per frame, saved as 8-bit PNG images.
Pixel values correspond to class and instance IDs respectively;

• Two dimensional (2D) bounding boxes per annotation, described as pixel coordinates
of rectangular around the annotated object. This data is presented in corresponding
CSV in a form of [x1, y1, x2, y2], where (x1, y1) and (x2, y2) are the coordinates of upper
left and lower right corner of the bounding box;

• Three-dimensional (3D) bounding boxes per annotation, presented in correspond-
ing CSV as a box center (cx, cy, cz) and its dimensions (dx, dy, dz) in the world
coordinate system.
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(a) Example frames from the CROSS_ARG choreography.

(b) Example frames from the COLLAPSE choreography.

Figure 3. Example frames of anomalies. Top row: RGB, bottom row: Infrared. (Please note that the
RGB data modality is only used for visualization here and not provided in the dataset).

Objects are annotated as a separated class only if they are not held by a person at the
specific frame. The 3D bounding boxes are generated automatically using the segmentation
masks, since the calibration of the camera allows a direct mapping between the 2D image
space and the 3D point clouds implicitly given in the form of the depth maps. We also used
interpolation between manual annotations to speed up the process in situations where
this could be done without impairing the quality of the annotations. All annotations were
additionally validated by a person different from the one who created the annotation.

Examples of these annotations are illustrated in Figure 4.
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(a) Example of bounding box in the 3D domain. (b) Example of 2D bounding box.

Figure 4. Visualization of annotations for the person detection/people counting dataset, generated
by [40].

3.7. Data Statistics

Tables 2 and 3 show the splits of datasets in training and testing data. Both the training
and testing set have been further split according to the complexity of the scenes. Scene 2
data were recorded with a camera mounted at different heights, and in this scene the variety
of movements is greater than in Scene 1, which explains the choice of these sequences for
training. In contrast, data from Scene 1 were captured with the camera mounted at 2.50 m
and were suggested to be used for testing. Complex top-down sequences were captured at
Scene 2 and split to training and testing sets based on the captured person and his activity.

The data splits are designed for usage with unsupervised learning techniques. There-
fore, the training set only consists of normal sequences. The test set mostly consists of
sequences that contain anomalies, but also contains some normal sequences as well. This
aims at facilitating the evaluation of the false positive rate. Because of the two different
camera configurations used in the recordings in Scene 1, both training and test set are
split accordingly.

Table 2. Data statistics of the anomaly dataset’s train and test split. The train split does not contain
anomalies since the split was made for usage with unsupervised methods. Note that some choreogra-
phies are used in both the tilted view as well as the top-down view, so the total number of unique
choreographies is less than the sum from the configurations.

TIMo Anomaly Dataset–Train Split

Configuration
# Sequences # Frames Unique Choreographies

Normal Anomalous Total Normal Anomalous Total Normal Anomalous

Tilted View 285 0 285 185,620 0 185,620 31 0

Top-down View 624 0 624 180,359 0 180,359 19 0

Total 909 0 909 365,979 0 365,979 36 0

TIMo Anomaly Dataset–Test Split

Configuration
# Sequences # Frames Unique Choreographies

Normal Anomalous Total Normal Anomalous Total Normal Anomalous

Tilted View 31 151 182 66,508 25,617 92,125 29 20

Top-down View 79 418 497 104,165 49,528 153,693 18 12

Total 110 569 679 170,673 75,145 245,818 34 22
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Table 3. Data statistics of the TIMo person detection dataset.

TIMo Person Detection Dataset

Data Type Sequences Frames Annotations

Training 125 6415 8501

Complex Training 34 7675 8186

Total 159 14,090 16,687

Testing 72 5089 6129

Complex Testing 12 3533 4971

Total 84 8622 11,000

4. Baseline Results

We provide baseline results for both anomaly detection and people counting based on
recent methods in the respective research area in the following. Since the main contribution
of the paper lies in the presentation of the a new dataset, the baseline algorithms are derived
from existing methods for RGB data.

4.1. Anomaly Detection Baseline

For anomaly detection, we employ an approach based on convolutional autoencoders
(CAE), which is one of the most commonly used methods in this context. The working
principle is learning a latent representation of normality by having the CAE learn to recon-
struct frames from the training set and computing loss as the mean squared error (MSE)
between input and reconstruction. When faced with frames from anomalous events, the
reconstruction by the network is expected to cause higher MSE. The loss is thus inter-
preted as the anomaly score. Since the training set consists only of normal samples, the
resulting anomaly detection approach is unsupervised. This approach was described by
Hasan et al. [27]. Our implementation uses a network with an encoder stage of three convo-
lutional layers with a kernel size of 5× 5 and a 2× 2 pooling layer after each convolutional
layer and a symmetric decoder stage. The filter size is reduced from initially 32 down
to 8 in the latent space and then increased to 64 again before the last convolutional layer
performs the frame reconstruction.

We additionally evaluated the results from a network based on the concept of a
Convolutional LSTM to the data [41]. It was previously already successfully used in
the context of VAD for RGB data [19]. Our specific model of the network consists of 6
ConvLSTM cells with a number of 8 hidden dimensions in each cell.

The performance is measured as frame-level area under the ROC curve (AUROC).
The results for both parts of the dataset—tilted view and top-down view—are reported in
Table 4. These results indicate that the dataset is challenging, but still in the realm of what
is possible to be approached with recent methods.

Table 4. Results of our anomaly detection baseline algorithm measured as the relative area under the
ROC curve (AUROC). The tilted view data was recorded at Scene 1 and the top-down view data at
Scene 2.

Anomaly Detection Dataset

Dataset Part CAE ConvLSTM

Tilted View 66.4% 62.8%

Top-down View 56.4% 62.2%
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4.2. Person Detection Baseline

The person detection dataset was evaluated with two instance segmentation network
architectures: Mask R-CNN [42] and YOLACT [43]. The original implementation was
modified to accept the original depth data instead of RGB. The evaluation of algorithms is
based on the mean average precision (mAP) metric and presented in Table 5. Results of
this evaluation show that the object detection and instance segmentation algorithms can be
trained on the proposed dataset with an acceptable level of accuracy. However, due to the
high requirements of most applications in the context of this task to reliably achieve very
high detection rates, the dataset appears to be adequately challenging for future research
and further improvements.

Table 5. Results of person detection on Mask R-CNN [42] and YOLACT [43].

Person Detection Dataset

Algorithm mAP Box mAP Mask

Mask R-CNN 92.9 % 92.8 %

YOLACT 88.6 % 93.0 %

5. Conclusions

We presented an extensive dataset of video sequences for monitoring indoor scenes
consisting of IR and depth videos captured by a time-of-flight camera of the latest gener-
ation. It consists of about 1600 sequences with a total of roughly 600,000 frames for the
anomaly detection use case and about 240 sequences and 24,000 frames for the person de-
tection and people counting use case. We described the data and the associated annotations
as well as the recording setup and process. The dataset aims at facilitating the development
of depth-based algorithms for monitoring indoor spaces in order to allow such functionality
to be implemented in a more privacy-preserving way.
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