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Abstract: In recent years, much effort has been devoted to the development of applications capable
of detecting different types of human activity. In this field, fall detection is particularly relevant,
especially for the elderly. On the one hand, some applications use wearable sensors that are integrated
into cell phones, necklaces or smart bracelets to detect sudden movements of the person wearing
the device. The main drawback of these types of systems is that these devices must be placed
on a person’s body. This is a major drawback because they can be uncomfortable, in addition to
the fact that these systems cannot be implemented in open spaces and with unfamiliar people. In
contrast, other approaches perform activity recognition from video camera images, which have many
advantages over the previous ones since the user is not required to wear the sensors. As a result, these
applications can be implemented in open spaces and with unknown people. This paper presents a
vision-based algorithm for activity recognition. The main contribution of this work is to use human
skeleton pose estimation as a feature extraction method for activity detection in video camera images.
The use of this method allows the detection of multiple people’s activities in the same scene. The
algorithm is also capable of classifying multi-frame activities, precisely for those that need more than
one frame to be detected. The method is evaluated with the public UP-FALL dataset and compared
to similar algorithms using the same dataset.

Keywords: fall detection; activity recognition; machine learning; human skeleton; images sequence

1. Introduction

The detection and recognition of human activities have attracted the attention of
researchers around the world in recent years. In this research field, fall detection using
machine learning techniques has become very important due to the aging of the population
in developed countries and the increase in the cost of hospitalizations [1]. For that reason,
this kind of application has been growing due to the implementation of safety measures [2]
in high-risk work environments, shopping malls, hospitals, nursing homes [3], etc.

These solutions have been implemented both for closed private places and in open
public spaces, so there is an essential difference between indoor and outdoor scenarios.

On the one hand, in controlled indoor spaces, such applications use sensors, such
as gyroscopes, accelerometers, inertial sensors, barometers, etc., for fall detection. Such
sensors can be embedded in smartphones, wearable necklaces, or smart bracelets. They
can also be placed directly on the waist or chest of the person [4]. However, they have
the disadvantage that the devices must be attached to the subjects’ bodies. This can be
uncomfortable and is not always feasible because these types of sensors must be worn
constantly and in many cases present battery and wireless connection problems [5–7].
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On the other hand, outdoor approaches may perform human activity detection and
recognition through video images. The use of video images has some advantages over
the wearable sensor-based approaches: (a) users do not need to wear any sensors, (b) the
approach can be implemented in open spaces and not only in a laboratory environment,
and (c) there can be more than one person in the scene [8]. Many works dedicated to
human activity detection from video cameras can be found in the literature. In some cases,
they use pose detection through a human skeleton as a feature extraction method. These
approaches allow the detection of various types of activities such as walking, running,
jumping, jogging, or falling, among others. They also enable the detection of more than
one person in the same scene, which is a substantial advantage over other approaches [9].
For example, in [10] the authors present a network-based fall detection in videos, where
experiments show a high sensitivity of 98.46% on the multiple cameras fall dataset and
100% on the UR-Fall [11] dataset.

In this context, we previously presented [12] a vision-based approach for fall detection
and activity recognition using human skeleton estimation for feature extraction. It can
detect several subjects in the same scene, so it uses a filtering method to detect the activity
of a single person of interest, discriminating the skeleton of the other subjects. It can also be
used in real open and uncontrolled environments, where a large number of people can be
present at the same time in the scene, for example, in a shopping mall. The method has been
evaluated with the public databases UP-Fall [13] and UR-Fall [11]. In both cases, the results
outperformed other systems using the same dataset [14], achieving a 98.84% accuracy and
an F1-Score of 97.41%, which performs fall detection using a k-nearest neighbor (KNN)
classifier. This system uses pose detection of the human skeleton as an input feature.

Despite the very good results obtained, some activities were not well recognized
because more than one frame is required to identify them accurately. This implies that the
activity cannot be classified instantaneously, so it needs more time to be detected. That is,
the activity starts at an initial state and requires intermediate steps before it reaches the
final state so that it can be properly recognized as an activity. Therefore, a method that uses
only one frame to detect this type of activity is not adequate. Several articles related to this
topic have been published recently. For example, in [15], the authors present a deep neural
network approach consisting of an automatic encoder followed by a CNN, where the model
is trained with image sequences. In [16], the authors propose a method for human fall
detection with CNNs. The system uses the concept of “dynamic imaging”, which combines
the frames of a video into a single image to identify action sequences. In [17], the authors
propose a multi-camera system for video-based fall detection. They augment the estimation
of human pose (OpenPifPaf algorithm) by supporting multi-camera, multi-person tracking
and an LSTM neural network to predict classes. The method achieves an F1 score of 92.5%
on the UP-Fall dataset.

To be able to detect activities that cannot be detected with a single frame, some
modifications are made to our previous works. The result is what is presented here, in
which the main contribution is the development of a method capable of detecting those
activities that cannot be recognized using a single frame. The major effort is made in the
feature extraction stage rather than the machine learning methods, which shows a better
performance in comparison with previous works. Regardless of the classification method,
in all cases the results are improved. In this approach, the feature extraction method seeks
to obtain the pose of the subject to which the activity is identified and for which a skeleton
detection algorithm that has delivered excellent results in previous work is used [12]. This
method has been proven with different datasets and machine learning algorithms showing
better results than previous works [18–20]. Therefore, the main contributions of this
work are:

• The use of several frames of a video to recognize an activity is proposed. This ap-
proach allows us to correctly detect those activities that require a time greater than the
period required to capture a frame. The use of several frames of a video is proposed to
recognize an activity. Note that this approach allows performing two kinds of classifi-
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cation problems: bi-classification (fall/not fall), and multi-classification (recognition
of more than two activities). The proposed method provides better results than those
reported in previous works, including those activities that were recognized with only
one frame. That is why the method represents a global improvement in the detection
of activities.

• This approach differs from many existing works in that the effort is made in the
feature extraction stage by proposing to use skeleton features to estimate the human
pose in a frame. Unlike previous works, the feature vector is formed by combining
skeleton features from several consecutive frames. In this paper, we describe a study
to specifically determine the frames needed to detect activities.

• To show the improved detection performance, the approach is validated using different
ML methods to build an activity classifier. Better results are obtained for most of the
machine learning methods used.

• Finally, the robustness and versatility of the approach have been validated with two
different datasets, achieving in both cases better results compared to those previously
reported in the literature.

The rest of the paper is organized as follows. Section 2 presents some fall detection
approaches that can be found in the literature. In addition, the UP-Fall database, which will
be used later to test the developed algorithm, is briefly described. Sections 3 and 4 describe
the developed algorithm. Section 5 shows the machine learning models and evaluation
metrics used. Section 6 shows the experimental results and a comparison with previous
results for the UP-Fall dataset. Finally, Section 7 summarizes the main conclusions and
future work.

2. Fall Detection Datasets and Related Work

A considerable number of works related to activity detection with sensors can be
found in the literature. Many of them present some drawbacks such as frequent battery
replacement, high costs, use of wearable devices, sensing distance, computational load,
etc. Several recent works have focused on human posture detection from video images
to avoid some of these drawbacks. These approaches can be divided into two groups: (a)
works that process video images to detect activities using artificial intelligence techniques
(SVN, CNN, YOLO, etc.) directly from those images; (b) research that uses human skeleton
feature detection (e.g., obtained with OpenPose, AlphaPose, etc.) in video images to
classify activities, also with artificial intelligence techniques to improve the results. The
use of skeleton detection can improve the training time effectively as well as eliminate the
effects of blurriness, light, and shadows. Some of those activities cannot be classified using
only one frame. That is why some recent research has focused on activity detection from
image sequences.

Table 1 shows a summary of the state of the art of works related to activity detection.
The first column is the reference to each article. The second column indicates whether the
approach is able to detect multiple activities or not and how many. The third column shows
whether the paper uses an algorithm for pose detection with skeleton detection. The fourth
column indicates whether the developed algorithm uses image sequences to classify the
activities. The fifth column indicates whether the method uses depth sensors for detection.
The sixth column shows the artificial intelligence algorithm used in each case. The last
column shows the dataset used to perform the tests.



Sensors 2022, 22, 3991 4 of 21

Table 1. State of the art for human activity recognition by video images. Please consider the following
meaning X—Yes, X—No.

Ref Multi
Activity Skeleton Sequence Cam

RGB Model Dataset

[21] X X X X CNN UR-Fall
[22] X X X X NanoDet-Lite UR-Fall
[23] X X X X MCCF UR-Fall
[24] X X X Depth 2D CNN-GRU UR-Fall
[25] X X X Depth CNN-SVM UR-Fall
[26] X X X Depth RVM own
[27] X X X Depth ST-GCN TST-Fall
[28] X X X X CNN-YOLO CMD-Fall
[29] X X X X CNN own
[30] X X X X KNN-SVM BOMNI
[31] X X X X CNN own
[17] X own X X LSTM UP-Fall
[32] X own X X AutoEncoder UP-Fall
[10] X OpenPose X X LSTM UR-Fall
[33] X PoseNet X X GRU UR-Fall
[34] X OpenPose X X LSTM-GRU UR-Fall
[21] X OpenPose X X SVM UR-Fall
[35] X OpenPose X X SVM UR-Fall
[36] X OpenPose X X LSTM CMU
[37] X PoseNet X X CNN own
[38] X PoseNet X X CNN-RNN own
[39] X OpenPose X Depth RF SDU-Fall
[40] X own X X GRU SDU-Fall
[41] - OpenPose X - - -
[14] X AlphaPose X X KNN UP-Fall
[42] X(5) X X X DAG-SVM own
[43] X(7) Yolo v3 X X 3D CNN PKU-MMD
[44] X(4) OpenPose X Depth DNN FDD
[45] X(8) own X Depth MC-LSTM TST-Fall

[12] X(12) AlphaPose X X
RF-SVM

MLP-KNN UP-Fall

As can be seen, 63% of the reviewed literature uses skeletons for activity detection, and
the most used method is OpenPose. Only 20% of the works can detect multiple activities.
The most used public datasets for testing are: UR-Fall (30%), UP-Fall (16%), and own
datasets (16%), while 70% of the articles report the use of sequences for activity detection.

The most commonly used database is UR-Fall, and one of the articles using this
database is [21] in which the authors present enhanced dynamic optical flow. Their ex-
perimental results showed that the fall detection accuracy improved about 3% and the
processing time between 40 and 50 ms.

In the application presented in [22], the authors propose a deep learning fall detection
framework for a mobile robot. This method runs three times faster than YOLOv3-tiny on a
Raspberry Pi without any hardware accelerator and with good detection performance.

In [23], the authors presented a dense block-based drop detection method with a
multi-channel convolutional fusion (MCCF) strategy. This method shows excellent results
for fall detection over the same dataset (F-score of 0.973).

In [24], the authors developed an architecture to classify human fall events using 2D
CNN and GRU. Experimental results with this dataset show that the proposed model
obtains an accuracy of 99%. Although the proposal has a good performance, it has the
disadvantage of using the depth information of the databases with which they test and
validate their approach. This makes fall detection easier to detect and more difficult to
apply since it is more common to use RGB images in real environments.
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In [25], the authors proposed a method capable of detecting human falls in video
sequences using multi-channel CNN and SVM. The results are competitive with those
obtained by the state of the art on the UR-Fall dataset.

In [34], the authors proposed methods that apply OpenPose for real-time multi-person
2D pose estimation and movement. These methods were tested with RNN and LSTM
models to learn the changes in human joint points in continuous time. Experiments over
UR-Fall show that they can detect falls with a recognition accuracy of up to 98.1% and
98.2%, respectively.

The work presented in [37] describes a vision-based fall tracking method where upper
body joints are grouped into one segment to increase the fall classification ratio. This
method can be beneficial to achieve efficient tracking of human activities and provide a
useful technique to distinguish falls from other daily life activities.

In Table 1, it can be seen that the works [43–45] are the most similar to the present
work. The characteristics to be taken into account are: (a) fall detection, (b) recognition of
different activities, and (c) the use of skeletons and a sequential frame analysis methodology,
resulting in good performance (accuracy over 90%). It is important to note that the present
work cannot be properly compared with the three mentioned works due to the fact that
the training and validation datasets are different (The present work uses the UP-Fall and
UR-Fall datasets to compare directly with [12]). On the other hand, the datasets used
in [44,45] (FFD and TST-Fall, respectively) have images with depth information from the
use of kinect cameras, which makes the method much easier to apply. However, it is not
very practical to use non-conventional depth cameras. Based on the above, the present
work uses a novel method in which datasets acquired from conventional cameras are
considered. In addition, a greater number of activities are recognized than almost all the
works mentioned in the review.

On the other hand, Table 2 shows the most used datasets for fall detection (reflected in
Table 1). The first column names and references each dataset. The second column shows
the fall type included in each dataset. The third column shows other kind of activities
(different from falling) included in the dataset. The fourth column indicates the number of
attempts or sequences performed for each activity and fall. Finally, Columns 5 and 6 show
the methods used by the original authors to evaluate their dataset and the performance
obtained with each method. It should be noted that Table 2 shows the performance obtained
by the original authors of each dataset, while Table 1 shows the performance obtained in
the most recent works that use the same datasets.

Table 2. Vision-based datasets for fall detection.

Dataset Fall Types Other
Activities Trials ML

Method Performance

SDUFall
[46]

Fall to
the floor

Sitting,
walking,

squatting,
lying,

bending

6 actions
10 times

Bag of
words model

built upon
curvature

scale space
features

Accuracy:
79.91%,

Sensitivity
81.91%,

Specificity
76.62%

SFU-IMU
[47]

15
types

of falls

Walking,
Standing,

Rising,
Ascending

stairs,
Picking up
an object

3
repetitions SVM

Sensitivity
96%,

Specificity
96%



Sensors 2022, 22, 3991 6 of 21

Table 2. Cont.

Dataset Fall Types Other
Activities Trials ML

Method Performance

UR-Fall
[11]

From
standing,

from sitting
on a chair

Lying,
walking,

sitting down,
crouching

down

70
sequences SVM

Accuracy:
94.99%,

Precision
89.57%,

Sensitivity
100%,

Specificity
91.25%

CMD-FALL
[48]

While
walking,
lying on
the bed,

sitting on
the chair

Horizontal
movement

20
actions

CNN:
Res-TCN

F1-Score
(Activity):

39.38%,
F1-Score

(Fall):
76.06%

Fall-Dataset
[49]

Fall to
the floor

Standing,
sitting,
lying,

bending and
crawling

CNN Accuracy:
74%

PKU-MMD
[50]

Drinking,
waving hand,

putting on
the glassed,

hugging,
shaking. . .

6
sequences

RNN
SVM

LSTM

F1-Score:
52.6%
13.1%
33.3%

K-Fall
[51]

15
types

of falls

21
types of
activities

Conv-LSTM

Accuracy:
99.32%,
Recall:
99.3%

UP-Fall
[13]

Forward
using hands,

forward
using
knees,

backward,
sideward,

sitting

Walking,
standing,

sitting,
picking up
an object,
jumping,
laying,

kneeling
down

3
repetitions

RF
SVM
MLP
KNN

Accuracy:
32.33%
34.40%
27.08%
34.03%

3. Methodology of the Proposed Approach

The present work focuses on improving the performance of fall detection and activity
recognition using video data. The main hypothesis is that the results obtained in [12] can
be improved by carrying out a sequential analysis of frames, instead of analyzing and
classifying each frame independently, even using the same machine learning models and
the same datasets.

A sequence of several frames is used for the recognition of an activity instead of
detecting the activity with a single frame. This allows the correct detection of activities
that require more time than the period required for the capture of a single frame, thus
improving the performance in those activities that previously were not recognized with a
single frame. Therefore, the proposed method represents an overall improvement in the
detection of activities.

Here, the use of skeletal features to estimate the human pose in a frame focuses the
effort on the feature extraction stage, differentiating from the works in the state of the art.
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Unlike previous works, the feature vector is formed by combining the skeletal features of
several consecutive frames. We describe a study to specifically determine the number of
frames needed to detect an activity. The approach is validated using various ML methods
for activity recognition, obtaining better results for most of the machine learning methods
used. Finally, the robustness and versatility of the approach is validated with two different
datasets, obtaining in both cases superior results compared to those previously reported in
the literature.

The proposed methodology for fall detection and activity recognition is shown in
Figure 1. The proposed method is divided into two parts: feature extraction and activity
recognition using different machine learning models. The process begins with the collection
of video images, followed by the extraction of features by estimating the pose of the human
skeleton, and then the selection of sliding time windows for training machine learning
models that predict the fall or activity for each time window.

Figure 1. Workflow for activity recognition.

3.1. Selection of Sliding Windows

The novelty of the proposal includes the combination of consecutive skeleton features
by considering image frame sequences through a sliding windows approach (SW). The
design of these windows is shown in Figure 2. The process consists of defining the size
of the windows in seconds, so that each window will cover the number of frames equal
to the fps of the video times the size of the window (SWL = f ps × seconds). So, for an
18 fps video with 1 s windows, each window will span 18 frames (SWL = 18). Finally, each
window scrolls one frame to the right of the previous one until one window spans the last
frame of the video.

The total number of sliding windows can be determined by Equation (1), as follows:

SWm = #FramesVideo − SWL + 1, (1)

where #FramesVideo is the total number of frames of the video.
Each window spans an SWL number of frames, and each frame contains the activity

of one person. Following the methodology proposed in [12], each frame will have the
51 skeleton characteristics associated with the person’s pose and the label associated with
the activity performed in that frame. This means that each sliding window will contain
SWL skeletons with their respective associated tag. The size of the sliding window can be
determined by (1, SWL, 51).
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Frame1
Stand

Skeleton1

Framek

Backward fall
Skeletonk

Framez

Backward fall
Skeletonz

Framen

Backward fall
Skeletonn

Time[s]0

SW1

SW2

SW3

SWm

[ Skeleton1 , . . .                 Skeletonk,                    . . .             SkeletonSWL ]

[ Skeletonm , . . . Skeletonk+m-1 ,          . . .     . . .                Skeletonn ]

.
. .

.
. .

.
. .

.

.

.

. . . . . . . . . 

[ Skeleton2 , . . .                 Skeletonk+1,                    . . .             SkeletonSWL+1 ]

[ Skeleton3 , . . .                 Skeletonk+2,                    . . .             SkeletonSWL+2 ]
.

. .
.

. .

Figure 2. Sliding Windows for activity recognition.

3.2. Feature Vector Construction

Once the sliding windows are designed, the goal is to predict the activity correspond-
ing to each window. To do that, one skeleton is obtained for each frame of the sliding
window. After that, each skeleton is labeled using a machine learning model. Finally, the
statistical mode is used to output the most frequent label of the sliding window. Thus,
each sliding window has a single tag/label associated with the activity performed in that
time interval. To build the features vector to train and validate the ML models and taking
into account that each window has a size in three dimensions, it is necessary to resize
each window size to two dimensions, so each window will have the following shape:
(1, SWL × 51).

The first 51 columns correspond to the features of the first skeleton, and the last
51 columns correspond to the 51 features of the last skeleton. Finally, the feature vector and
the label vector will have the form:

(SWm × #Videos, SWL × 51), (2)

and the size of labels vector is:

(SWm × #Videos, 1), (3)

where #Videos varies depending on the number of videos in the dataset.
The following section shows the parameters selected in the construction of this vector

and an optimization proposal to correctly detect all activities.

4. Study of Feature Vector Parameters Settings

As in [12], the estimation of the human pose is performed using AlphaPose [52],
available at https://www.mvig.org/research/alphapose.html (accessed on 20 January
2022). AlphaPose is an open-source method to detect the pose of one or more subjects
in the scene. Its methodology consists of taking RGB images as input and performing
pose detection with a model previously trained with the COCO dataset. For each subject
detected in the image, there is a set of 17 key points or joints with coordinates (x,y) that
compose a skeleton. In addition, it provides an individual joint score s for each key point
and also, an overall detection score for the (17 × 3) attributes. The features are obtained to
train a classifier that detects falls and recognizes activities. In this way, a sequence of RGB
images or a video is converted into a sequence of joints and scores that form the features.
Vector shells are used to learn to distinguish the different actions.

https://www.mvig.org/research/alphapose.html
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4.1. Exhaustive Search

An objective function is defined as: recall maximization as a function of window size
(W), number of skeletons (S), and number of features (F):

Max_Recall(W, S, F) ≈ 100% (4)

Taking into account how a skeleton is obtained from the pose of a person, there are
some restrictions to consider:

• Videos or images must have only one person; so if there is more than one person in
the scene, only the characteristics of the person of interest are used, and the skeletons
of the other people are discriminated.

• The duration of the video must be longer than the window size (W).
• The duration of the activity must be longer than or equal to the window size (W).
• When obtaining the skeleton features for each video frame, the key-points must always

be 17 per person.

Once the images without people have been eliminated and the filter designed in [12] is
applied (which selects only the skeleton of the person of interest in the images that contain
more than one person), the size of the window (W) must be greater than 0 s and less than or
equal to T seconds: 0 < W ≤ T. Therefore, for this work, three window sizes were selected:
0.5, 1, and 2 s. Taking into account that for each frame of the window there is a skeleton,
the feature vector can be optimized using all the skeletons of the window or less; then, the
number of skeletons (S) in the window can be less or equal to the frames per second of the
video (fps) times the size of the window.

1 < S ≤ ( f ps × W) (5)

1 < S ≤ SWL (6)

4.2. Data Acquisition

To test the hypothesis that the use of temporary sliding windows can improve results
in [12], the UP-Fall database [13] was selected for a more direct comparison.

Data acquisition was performed using the same methodology described in [12], skele-
ton features of the person pose were extracted for each frame of the videos in the UP-Fall
dataset. The videos in UP-Fall have 18 fps (frames per second).

The experiments were performed using the UP-Fall dataset, which was divided using
70% for training and 30% of the data for testing. Four classification models were validated:
random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), and
K-nearest neighbor (KNN). For each model, 10 rounds of cross-validation were carried out.

The exhaustive search technique was selected to find the candidate that optimizes the
feature vector by reducing the number of skeletons per window without sacrificing system
performance. This exhaustive search was implemented with Matlab 2020b (Windows OS)
and Python 3.6 (training and validation).

4.3. Skeletons Selection

Given that UP-Fall videos are 18 fps, that the maximum number of skeletons S per
window W is f ps × W and that the number of features is 51 × S, then:

• For W = 0.5 s: 2 ≤ S ≤ f ps × 0.5.
• For W = 1 s: 2 ≤ S ≤ f ps × 1.
• For W = 2 s: 2 ≤ S ≤ f ps × 2.

An example of the selection of skeletons per sliding window is shown in Figure 3.
Considering a window of 1 s duration, the exhaustive search of two skeletons up to f ps×W
or SWL skeletons (S) per window was performed.
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SW1 [ Skeleton1 , SkeletonSWL]

S = 2

SW1 [ Skeleton1 , Skeletonk , SkeletonSWL]

S = 3

SW1 [ Skeleton1 , Skeleton3 , . . . , Skeletonk+1 , . . . , SkeletonSWL-1]

S = SWL-1

SW1 [ Skeleton1 , Skeleton2 , Skeleton3 , Skeleton4 ,   . . .   Skeletonk , Skeletonk+1 , Skeletonk+2 ,   . . .   SkeletonSWL-1 , SkeletonSWL]

S = SWL

.

.

.

Figure 3. Selection of number of skeletons per window.

The selection of the skeletons for each window is defined by the following code:

for ws in {0.5, 1.0, 2.0} do
for s in {1...FPS} do

feature_vector = new Matrix{ frames_of_video.size \
- (ws * FPS) + 1 , 51 * (s+1) }
frames = new Vector{ s+1 }
for x in {0...s} do

frames[x] = (x / s) * ((ws * FPS) - 1)
frames[s] = (ws * FPS) - 1
i = 0
while (i <= (frames_of_video.size - (ws * FPS))) do

f = 0
for frame in frames do

feature_vector[i][f] = frames_of_video[frame+i]
f++

i++

where:
S0: Initial position of the skeleton.
Si: Position of the skeleton to be selected.
F: The data number of the feature vector (51 × S).

Finally, a feature vector was obtained for each possible candidate with which the ML
models are trained and validated. Each vector has the form:

((SWm × #Videos), F) (7)

Size of labels vector:
((SWm × #Videos), 1) (8)

4.4. Best Solution

The exhaustive search of the MaxRecall was carried out taking into account 10 cross-
validations for each possible W and S parameter.

From the results obtained by the exhaustive search, the recall obtained for each can-
didate pair W and S is plotted in Figure 4. This graph shows the maximization of the
recognition recall of the 12 UP-Fall activities when using sliding windows with skeleton
sequences instead of performing the frame-by-frame analysis proposed in [12].
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Figure 4. Exhaustive search graph.

Finally, the candidate with the highest recall for the entire system is selected:

• Recall = 96.43%.
• Window size (W) = 2 s.
• Number of skeletons for window (S) = 3.
• Number of features (F) = 153.

As can be seen in Figure 4, the next best candidates are found in the 2 s window with
18 and 35 skeletons. It is possible to conclude that the highest recall values are obtained
with 2 s windows. Since the exhaustive search is performed with the UP-Fall database,
using three skeletons works well for this database, it may be different from other databases.
On the other hand using three skeletons and choosing the first frame, the middle frame,
and the last frame makes sense to recognize an action that occurs in the full size of the
window. We believe that this is caused by the relative simplicity of the model, which is not
prone to overfitting and curse of dimensionality.

5. Metrics and Associated Parameters

As in [12], the skeleton sequences are preprocessed to eliminate empty frames and
because some images show other people in addition to the volunteer performing the action
to be recognized, the skeleton with the highest overall score is chosen. Thus, the other
skeletons are eliminated from the training process.

5.1. Models

The results of the proposed approach were validated by using the same experimental
methodology described in [12]. The experiments were performed using the UP-Fall dataset,
selecting 70% of the data for training and 30% of the data for testing. total of 10 rounds
of cross-validation were performed with five classification methods: random forest (RF),
support vector machine (SVM), multilayer perceptron (MLP), K-nearest neighbor (KNN),
and AdaBoost.

5.2. Metrics

This work uses the same performance metrics used in [12] for a direct comparison:

accuracy =
TP + TN

TP + FP + TN + FN
(9)

precision =
TP

TP + FP
(10)

recall =
TP

TP + FN
(11)
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specificity =
TN

TN + FP
(12)

F1 = 2 × precision × recall
precision + recall

, (13)

where:

• TP (True positives) = “fall” detected as “fall”;
• FP (False positives) = “not fall” detected as “fall”;
• TN (True negatives) = “not fall” detected as “not fall”;
• FN (False negatives) = “fall” detected as “not fall”.

6. Experimental Results

The results obtained from the proposed methodology are shown below.To verify that
the recall and the performance of the system, in general, can be maximized when using
sliding windows with skeleton sequences, all the experiments in the present work were
carried out using the methodology proposed in Section 3 and the parameters selected from
Section 4.

6.1. Fall Detection and Activity Recognition Using an LSTM

Firstly, to test deep learning models, an activity recognition experiment was performed
using the same feature vector described in Sections 3 and 4, for which an LSTM (long
short-term memory) neural network was designed, taking into account that the proposed
approach uses temporary window sliders with the skeleton sequences.

The structure used to determine the classification of feature sequences obtained in
the human pose detection phase has its nucleus in an LSTM network. The proposed
structure is composed of 51 input features for the LSTM with 100 hidden states, followed
by a fully-connected layer with 100 nodes, and finished by a softmax layer with 12 nodes.
These final nodes are related to the previous job classes [12], namely 12 activities in total:
falling forward on hands, falling forward on knees, falling backwards, landing sitting on an
empty chair, falling from the side, walking, standing, pick up an object, sit, jump, lie down,
and kneel. The first five activities correspond to human fall actions, and the next seven
correspond to simple daily human activities. The selected loss function was cross-entropy
loss with the Adam optimizer with a learning rate of 0.01.

It is necessary to clarify that the input to the network is a sequence of features extracted
from a temporal sequence of frames in which the feature set is related to the highest pose
estimation score detected in just one frame, i.e., the algorithm just detects one person
per frame.

The LSTM network was trained and validated using the UP-Fall database. A total
of 10 rounds of cross-validation with 70:30 partitions was performed. Finally, the results
obtained for the recognition of the 12 UP-Fall activities are: accuracy = 81.14%, precision =
27.76%, recall = 31.82% and F1-score = 29.53%. The low performance of the network was
attributed to the imbalance present in the 12 classes of the UP-Fall dataset. It is possible
that with more balanced datasets the performance of the network increases, even using the
same methodology proposed in this work (sequences of skeletons).

Based on the poor results obtained with the LSTM neural network, it was decided to
test the proposed method with well-known machine learning models; so the experiment
was divided into two parts: fall detection (bi-classifier system) and activity recognition
(multi-classifier system).

6.2. Fall Detection with UP-Fall

Fall detection was performed by means of binary classifiers. The input data was
the feature vector described in Sections 3 and 4. There were 220,660 frames, with which
203,525 sliding windows were created of which 43,469 (21.36%) windows corresponded to
sequences with falls and 160,056 (78.64%) to sequences without falls.
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As in [12], the original 12 class labels were converted so that all five types of dropouts
were encoded as “dropout” and the rest as “no dropout”. The five classification models
were trained separately (random forest, support vector machine, multi-layer perceptron, K-
nearest neighbor and AdaBoost) and validated by 10 rounds of cross-validation (k-fold = 10)
using 70:30 random partitions of the entire dataset.

The results obtained by each classifier are shown in Table 3 (performance of the
proposed method). The best results were obtained with RF that achieved an accuracy
of 99.81%, a recall of 99.81% and an F1-score of 99.56%. Table 3 compares the results
obtained from the proposed method with those obtained in [12]. It is possible to observe
that the use of sliding windows leads to improved performance for four out of the five
classification models.

The best confusion matrix for each of the five classification models is shown in Figure 5.
The classifier with the best performance is RF in which, of the 4,425 fall data, only 5 (0.11%)
were not recognized as such.

Table 3. Performance (mean ± standard deviation) obtained for each model of the proposed fall
detection system using UP-Fall. The best results are shown in bold.

Performance Ramirez et al. [12]

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

RF 99.34 ± 0.03 98.23 ± 0.17 98.82 ± 0.10 99.48 ± 0.05 98.52 ± 0.08
SVM 98.81 ± 0.07 98.15 ± 0.19 96.50 ± 0.27 99.47 ± 0.05 97.32 ± 0.17
MLP 97.39 ± 0.10 93.87 ± 0.85 94.57 ± 1.15 98.21 ± 0.29 94.21 ± 0.27
KNN 98.84 ± 0.06 97.53 ± 0.15 97.30 ± 0.24 99.29 ± 0.04 97.41 ± 0.16

Performance of the Proposed Method

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

RF 99.81 ± 0.04 99.30 ± 0.17 99.81 ± 0.07 99.81 ± 0.05 99.56 ± 0.09
SVM 93.37 ± 0.15 99.76 ± 0.05 69.12 ± 0.80 99.95 ± 0.01 81.66 ± 0.57
MLP 98.95 ± 0.14 97.62 ± 0.49 97.47 ± 0.86 99.35 ± 0.14 97.54 ± 0.33
KNN 99.69 ± 0.04 99.17 ± 0.18 99.39 ± 0.12 99.77 ± 0.05 99.28 ± 0.10
AdaBoost 99.71 ± 0.04 99.11 ± 0.14 99.52 ± 0.11 99.76 ± 0.04 99.31 ± 0.10
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Figure 5. Confusion matrix for fall detection for RF, KNN, SVM, MLP, and AdaBoost, respectively.
True positives (TP) are in the upper left corner; false positives (FP) are in the lower left corner; false
negatives (FN) are in the upper right corner; true negatives (TN) are in the lower right corner.
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Figure 6 compares the best model (RF: Windowing) of the proposed method with the
best model (RF: Frame by Frame) of the method proposed in Ramirez et al. [12]. It can be
seen from the two confusion matrices that even with the same datast and the same type of
classification model, the model trained with sliding windows shows better performance,
increasing the percentage of fall detection from 98.89% to 99.89%. As mentioned in the
previous sections, the difference between the two methods is that the present work performs
the detection of falls by means of sequences of frames, whereas in [12], detection is carried
out independently frame by frame.

Fa
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ll 98.89% 1.11%
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l

0.15% 99.85%
No

t F
al

l
0.47% 99.53%

Fall Not Fall Fall Not Fall

RF: Windowing RF: Frame by Frame

Figure 6. Comparison of confusion matrices for fall detection using UP-Fall: RF proposed method
(left) vs. Frame by Frame+RF (right) [12]. Best results are shown in red.

Table 4 compares our performance to other studies performing fall detection with
camera view skeleton sequences for fall detection and using the same database: UP-Fall. It is
possible to observe that the performance of our proposal exceeds the performance delivered
by the work carried out in [12,17,32]. Moreover, unfortunately, the works in [17,32] do not
implement activity recognition.

Therefore, it is possible to conclude that our hypothesis is proven, by showing that it
is possible to improve the results obtained with the same classification models proposed
in [12] that uses a single modality (RGB images) and the same dataset, along with human
skeletal sequences.

Table 4. Comparison with other methods using skeletons for fall detection with UP-Fall. Please note
that X—yes, X—No.

Methods Dataset CAM Skeleton Sequences Accuracy

Taufeeque et al. [17] UP-Fall RGB X 98.28%
Galvão et al. [32] UP-Fall RGB X 98.62%
Ramirez et al. [12] UP-Fall RGB X 99.34%
Our method UP-Fall RGB X 99.81%

6.3. Activity Recognition with UP-Fall

As described in Martínez-Villaseñor et al. [13], the UP-Fall dataset contains 12 different
types of actions of which the first 5 correspond to fall activities, falling forward with hands,
falling forward with knees, falling backward, landing sitting on an empty chair, and fall
sideways, and the next 7 correspond to human daily activities, walking, standing, picking
up an object, sitting, jumping, lying down, and kneeling down.
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Activity recognition is carried out using multi-class classifiers. As in the fall detection
case, the input data is the feature vector described in Sections 3 and 4, but in this case, each
sliding window contains 1 of the 12 UP-Fall activities. Of the 203,525 sliding windows,
1120 (0.55%) correspond to the activity falling forward with hands, 1102 (0.54%) to falling
forward with knees, 1384 (0.68%) to falling backward, 1109 (0.54%) to landing sitting on
an empty chair, 1371 (0.67%) to picking up an object, 38,787 (19.06%) to falling sideways,
50,997 (25.06%) to walking, 45,871 (22.54%) to standing, 1331 (0.65%) to sitting, 21,786
(10.7%) to jumping, 37,383 (18.37%) to lying down, and 1284 (0.63%) to kneeling down.
Finally, following the same methodology used in [12], the dataset is randomly split 10 times
into 70% for training and 30% for testing. The five models are validated separately (RF,
SVM, MLP, KNN and AdaBoost) and validated through 10 rounds (k-fold = 10) of cross-
validation.

Table 5 compares the results obtained in this work with the results obtained in
Ramirez et al. [12]. It is observed that the performance of all the models of the proposed
method exceeds the performance of all the models in Ramirez et al. except for the SVM. It
is also possible to observe that our best model outperforms the best model in Ramirez et al.

Table 5. Performance (mean ± standard deviation) obtained for each model of the activity recognition
system using UP-Fall.

Performance in Ramirez et al. [12]

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

RF 99.45 ± 1.02 96.60 ± 0.48 88.99 ± 0.56 99.70 ± 0.50 92.34 ± 0.39
SVM 99.65 ± 0.01 93.85 ± 0.65 87.29 ± 0.83 99.79 ± 0.01 90.20 ± 0.59
MLP 98.93 ± 0.17 85.39 ± 1.69 71.44 ± 2.30 99.34 ± 0.11 75.95 ± 1.84
KNN 99.60 ± 0.01 91.65 ± 0.55 84.17 ± 0.81 99.76 ± 0.01 87.35 ± 0.63

Performance of the Proposed Method

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

RF 99.91 ± 0.01 97.73 ± 0.28 95.60 ± 0.39 99.95 ± 0.01 96.63 ± 0.33
SVM 98.60 ± 0.04 95.60 ± 0.67 57.40 ± 0.60 99.14 ± 0.02 62.87 ± 0.81
MLP 99.28 ± 0.17 82.71 ± 2.23 78.97 ± 2.01 99.58 ± 0.10 79.89 ± 1.96
KNN 99.81 ± 0.01 92.49 ± 0.40 91.50 ± 0.37 99.89 ± 0.01 91.95 ± 0.35
AdaBoost 99.81 ± 0.03 95.53 ± 0.50 92.56 ± 0.38 99.89 ± 0.02 93.97 ± 0.39

Figure 7 compare thes confusion matrix of our best model (RF) versus the best model
in Ramirez et al. (Figure 8) [12] (RF). From the confusion matrix of our best model, it is
possible to observe that the performance of the classifier increases and that the system is
more accurate in recognizing each activity, managing to increase accuracy from 99.78% to
99.92% and recall from 88.97% to 96.03%. Our best model is capable of recognizing falling
activities with more than 90% accuracy and activities such as sitting, jumping, and kneeling
with 100%.

One of the biggest drawbacks in [12] is that when performing an analysis of indepen-
dent frames, the falling activities (first five activities) are often confused with other activities
such as lying down (Activity 11). This can be seen in the matrix of confusion of Figure 8.
Therefore, our original hypothesis that it is possible to improve the performance of clas-
sification models for activity recognition and avoid confusion between classes by using
skeleton sequences by means of optimized sliding windows is demonstrated (Section 4).

As Table 6 shows, our method outperforms results from similar work using camera-
view skeleton sequences for fall detection and activity recognition such as Wang et al. [43],
Zhu et al. [44] and Yin et al. [45] where they reach an accuracy of 95%, 99.04%, and 93.9%,
respectively, while we achieve an accuracy of 99.91%. It is important to point out, as
mentioned in the Section 2, the present work cannot be adequately compared with the three
mentioned works because the training and validation datasets are different. The present
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work uses the UP-Fall and UR-Fall datasets to compare directly with [11]. Furthermore, the
works of Zhu et al. [44] and Yin et al. [45] use images with depth information, which makes
the method much easier to design but not very practical because of the need to have depth
cameras. The latter proves the value of our method since, even though it is more complex
to develop, better results are achieved even using a single conventional camera. It is also
important to highlight the notorious imbalance of the 12 classes of the UP-Fall database.
Even so, our proposal manages to achieve high performance with each ML model when it
comes to recognizing any of the 12 activities.

1 91.47% 0.00% 0.00% 0.00% 0.00% 0.78% 0.00% 0.00% 0.00% 0.00% 7.75% 0.00%

2 0.93% 91.67% 0.00% 0.00% 0.00% 2.78% 0.00% 0.00% 0.00% 0.00% 3.70% 0.93%

3 0.00% 0.00% 91.47% 0.00% 0.00% 0.00% 0.78% 0.00% 0.00% 0.00% 7.75% 0.00%

4 0.00% 0.00% 0.00% 95.37% 0.00% 0.00% 0.93% 0.00% 0.00% 0.00% 3.70% 0.00%

5 0.00% 0.00% 0.71% 0.00% 90.07% 0.00% 0.71% 0.00% 0.00% 0.00% 8.51% 0.00%

6 0.00% 0.00% 0.00% 0.00% 0.00% 99.58% 0.00% 0.00% 0.00% 0.00% 0.42% 0.00%

7 0.04% 0.06% 0.08% 0.04% 0.00% 0.00% 99.69% 0.00% 0.10% 0.00% 0.00% 0.00%

8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.67% 0.00% 93.33% 0.00% 0.00% 0.00%

10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

11 0.11% 0.05% 0.08% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.65% 0.00%

20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
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Figure 7. Confusion matrices in activity recognition: Windowing+RF. Best results are shown in red.

Table 6. Other methods using skeletons for fall detection and activity recognition. Please consider
the following meaning X—Yes, X—No.

Methods Dataset CAM Activities Skeleton Sequences Accuracy

Wang et al. [43] PKU-MMD RGB 7 X 95.00%
Zhu et al. [44] FDD Depth 4 X 99.04%
Yin et al. [45] TST-Fall Depth 8 X 93.90%
Ramirez et al. [12] UP-Fall RGB 12 X 99.65%
Our method UP-Fall RGB 12 X 99.91%
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1 76.11% 3.54% 0.00% 0.00% 0.00% 0.00% 2.65% 0.00% 0.00% 0.00% 17.70% 0.00%

2 2.44% 73.98% 0.00% 0.00% 0.00% 0.81% 2.44% 0.00% 0.00% 0.00% 18.70% 1.63%

3 0.00% 0.00% 66.09% 0.57% 5.17% 4.02% 4.02% 0.00% 0.00% 0.00% 20.11% 0.00%
4 0.00% 0.69% 0.69% 79.17% 0.69% 1.39% 3.47% 0.00% 0.00% 0.00% 13.89% 0.00%

5 0.00% 0.00% 2.21% 0.55% 84.53% 0.00% 2.21% 0.55% 0.00% 0.00% 9.94% 0.00%

6 0.00% 0.00% 0.00% 0.00% 0.00% 98.54% 0.02% 0.00% 0.00% 0.02% 1.41% 0.00%

7 0.02% 0.04% 0.02% 0.00% 0.02% 0.04% 99.77% 0.00% 0.02% 0.00% 0.09% 0.00%

8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

9 0.00% 0.00% 0.00% 0.00% 0.00% 0.62% 7.45% 0.62% 90.68% 0.00% 0.62% 0.00%

10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

11 0.07% 0.02% 0.02% 0.05% 0.00% 0.33% 0.00% 0.00% 0.00% 0.02% 99.48% 0.00%

20 0.00% 0.00% 0.00% 0.00% 0.00% 0.68% 0.00% 0.00% 0.00% 0.00% 0.00% 99.32%
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Target Class

Model: RF Accuracy = 99.78% Recall = 88.97%
Activity recognition: RF using Frame by Frame

Figure 8. Confusion matrices in activity recognition: Frame-by-Frame+RF. Best results are shown
in red.

6.4. Fall Detection with UR-Fall

To check the efficiency and robustness of the proposed method, the experiments were
repeated with another dataset, UR-Fall [11]. UR-Fall has 9800 frames with which 5712
sliding windows are created, of which 1870 (32.74%) correspond to falls and 3842 (67.26%)
to not-falls. As with the UP-Fall database, the same five fall detection classification models
are trained and validated with 10 rounds of cross-validation using 70:30 partitions.

Table 7 compares the results obtained with the proposed method versus the results
obtained in Ramirez et al. [12]. Even though the performance of the [12] fall detection
system using UR-Fall was already quite good, it can be seen that by using sliding windows
with skeleton sequences it is possible to increase the performance of the fall detection
system. As Table 7 shows, our best model (RF) outperforms the best model in Ramirez et al.

The confusion matrix of our best model (RF) using UR-Fall is shown in Figure 9
(left). Here, it is possible to observe that the model can detect falls with 100% precision.
Therefore, based on the results obtained, the hypothesis is demonstrated that by using
optimized sliding windows (Section 4) with skeleton sequences, it is possible to increase
the performance of fall detection systems even when using other datasets.
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Table 7. Performance (mean ± standard deviation) obtained for each model of the proposed fall
detection system using UR-Fall. Best results are shown in bold.

Performance in Ramirez et al. [12]

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

RF 99.11 ± 0.43 99.18 ± 0.59 97.53 ± 1.81 99.71 ± 0.21 98.34 ± 0.80
SVM 98.60 ± 0.30 96.50 ± 0.88 98.37 ± 0.88 98.69 ± 0.32 97.42 ± 0.60
MLP 90.79 ± 4.14 86.63 ± 13.60 83.06 ± 11.61 93.69 ± 8.15 83.19 ± 5.55
KNN 98.88 ± 0.31 98.41 ± 0.96 97.41 ± 1.11 99.43 ± 0.33 97.90 ± 0.60
AdaBoost 98.95 ± 0.31 98.42 ± 0.98 97.67 ± 1.12 99.43 ± 0.34 98.04 ± 0.59

Performance of the Proposed Method

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

RF 99.51 ± 0.33 99.35 ± 0.68 99.15 ± 0.71 99.69 ± 0.32 99.25 ± 0.51
SVM 96.39 ± 0.92 90.60 ± 2.17 99.36 ± 0.55 94.94 ± 1.34 94.77 ± 1.23
MLP 92.18 ± 4.71 88.53 ± 8.62 89.42 ± 17.04 93.39 ± 5.82 87.39 ± 10.58
KNN 99.28 ± 0.39 98.88 ± 0.64 98.95 ± 0.84 99.45 ± 0.31 98.91 ± 0.58
AdaBoost 99.42 ± 0.34 99.25 ± 0.63 98.99 ± 0.80 99.64 ± 0.30 99.12 ± 0.52
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Figure 9. Comparison of confusion matrices for fall detection using UR-Fall: RF proposed method
(left) vs. Frame-by-Frame+RF (right) [12]. Best results are shown in red.

Table 8 compares our performance to other studies performing fall detection with
camera view using a skeleton for fall detection and using the same database, UR-Fall. It is
possible to observe that the performance of our proposal exceeds the performance delivered
in all the works cited in the table.

Table 8. Comparison with other methods using skeletons for fall detection with UR-Fall. Please
consider the following meaning X—Yes, X—No.

Methods Dataset CAM Skeleton Sequences Accuracy

Guan et al. [10] UR-Fall RGB X 99.00%
Kang et al. [33] UR-Fall RGB X 99.46%
Lin et al. [34] UR-Fall RGB X 98.20%
Chhetri et al. [21] UR-Fall RGB X 95.11%
Dentamaro et al. [35] UR-Fall RGB X 99.00%
Ramirez et al. [12] UR-Fall RGB X 99.11%
Our method UR-Fall RGB X 99.51%

Finally, Table 9 shows the execution time for 10 cross-validations of each ML model.
All models were trained and validated on a Notebook with an Apple M1 Chip (8 cores) and
16GB RAM. On average, each model took 0.59 s considering the creation of the Jason file
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with the AlphaPose skeleton data, and 0.07 s for reading the file and making the prediction
for each frame.

From Table 9, it is possible to conclude that the KNN model is the best option consid-
ering its high accuracy rates and its fast execution performance.

Table 9. Execution times for 10 k-fold of cross validations for each ML model.

Training and Validation Times [s]

Model Fall Detection
with UP-Fall

Activity Recognition
with UP-Fall

Fall Detection
with UR-Fall

RF 1644.32 2262.06 23.54
SVM 64,696.15 120,464.13 31.04
MLP 981.78 4913.33 317.17
KNN 376.60 439.88 1.23
AdaBoost 3148.76 3936.27 49.81

7. Conclusions

This paper has proposed and tested a method for fall detection and activity recognition
from RGB video sequences estimating the pose of a person in the entire video sequence. The
feature vector is implemented by means of skeleton features that contain information about
the pose of the person contained in the video. The proposal was evaluated using the UP-
Fall database through five machine learning models (RF, SVM, MLP, KNN and AdaBoost),
with which a good performance of the method was demonstrated that surpassed other fall
detection systems and activity recognition referenced in the state of the art.

The main contribution of this work is that by using skeletons, it is possible to represent
the joints of the human body, correctly estimating the pose of a person, which allows
detecting a fall or correctly recognizing a daily activity. In addition, the use of time
sequences of these skeletons makes it possible to significantly reduce the confusion between
classes by correctly recognizing very similar activities. On the other hand, it is shown that
by designing the feature vector from skeleton sequences, it is possible to reduce the amount
of data by using only some of the skeletons without decreasing system performance.

For future work, we intend to test the proposal on real videos, since it has only been
tested on datasets created in the laboratory and under controlled environments. Also, the
construction of an activity recognition system of several people in the same video needs
to be considered. In addition, the development of an algorithm for tracking one or more
people in different scenes will be considered. Such an algorithm could recognize all the
activities carried out and search or create datasets for activity recognition with multiple
people and multiple cameras in different scenes.
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