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Abstract: Mission-critical wireless sensor networks require a trustworthy and punctual routing proto-
col to ensure the worst-case end-to-end delay and reliability when transmitting mission-critical data
collected by various sensors to gateways. In particular, the trustworthiness of mission-critical data
must be guaranteed for decision-making and secure communications. However, it is a challenging
issue to meet the requirement of both reliability and QoS in sensor networking environments where
cyber-attacks may frequently occur and a lot of mission-critical data is generated. This study proposes
a trust-based routing protocol that learns the trust elements using Q-learning to detect various attacks
and ensure network performance. The proposed mechanism ensures the prompt detection of cyber
threats that may occur in a mission-critical wireless sensor network and guarantees the trustworthy
transfer of mission-critical sensor data. This paper introduces a distributed transmission technology
that prioritizes the trustworthiness of mission-critical data through Q-learning results considering
trustworthiness, QoS, and energy factors. It is a technology suitable for mission-critical wireless
sensor network operational environments and can reliably operate resource-constrained devices. We
implemented and performed a comprehensive evaluation of our scheme using the OPNET simulator.
In addition, we measured packet delivery rates, throughput, survivability, and delay considering
the characteristics of mission-critical sensor networks. The simulation results show an enhanced
performance when compared with other mechanisms.

Keywords: mission-critical wireless sensor network; trust-based routing; Q-learning; reinforcement
learning; QoS

1. Introduction

Mission-critical wireless sensor networks (MC-WSNs) are environments that sup-
port mission-critical operations such as emergency response, battlefield surveillance, and
large-scale data collection. In most applications, sensors need to support various critical
missions, such as fire alarms and battlefield environment detection [1]. To support MC-
WSN characteristics, tasks must be executed flexibly with limited bandwidth and energy.
Moreover, such networks must have a high time efficiency to handle critical missions in a
timely manner. They must also be sufficiently trustworthy to defend against attacks [2].
Thus, mission-critical applications should be able to ensure the worst-case end-to-end
delay and reliability when transmitting data to gateways from sensors such as biosensors,
temperature sensors, and nuclear sensors.

However, a large amount of data can be generated in an emergency, and it is chal-
lenging to guarantee network stability owing to environmental changes. Therefore, it is
essential to design a routing protocol that guarantees reliability by considering the char-
acteristics of the sensor and network conditions. When the amount of significant sensor
data increases, the network may be exposed to various cyber threats by malicious nodes.
When the malicious action of stealing or dropping mission-critical data occurs, it becomes
challenging to transmit the sensor data to the gateway, which can significantly affect the
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mission operation. To solve these problems, studies that consider trust evaluation, end-
to-end delay, and energy as metrics are actively being conducted. Recently, research on
learning these metric elements to improve reliability has also attracted attention.

This study proposes a trust-based routing protocol that learns the trust elements using
Q-learning to detect various attacks and ensure performance. Machine learning methods
can be typically classified into supervised learning/unsupervised learning/reinforcement
learning. Q-learning, a well-known reinforcement learning (RL) method, can be a useful
technique for achieving adaptive trustworthiness in harsh environments [3,4]. It considers
the history of significant testing results from previous data reporting intervals. The reason
we use Q-learning is that it is appropriate to receive a reward for every hop while transmit-
ting data from the source node to the destination. As a result, the trust reputation for each
sensor node is determined using Q-learning, which helps identify malicious nodes [5]. The
proposed scheme is divided into local trust evaluation and global trust evaluation with
Q-learning to satisfy the mission-critical application requirements and to discover the most
trusted path. The proposed technique focuses on how to quickly and securely transmit
mission-critical data to its destination by learning as well as calculating trustworthiness
and QoS factors.

We propose a distributed transmission technology that prioritizes the reliability of
mission-critical data through the Q-learning result considering trustworthiness, QoS, and
energy factors. This method can solve the problem of reduced network performance when
data is transmitted over a single path. The proposed distributed transmission method
ensures reliability by transmitting mission-critical data with the highest priority to the path
of MAX-Q value and transmits data of relatively low importance through the suboptimal
path that satisfies each requirement. This method can satisfy the requirements of all mission-
critical data while ensuring the reliability of the most important data first. In addition, it
is possible to stably operate devices with limited resources with technology suitable for
mission-critical wireless sensor network operating environments by proposing flexible
weights in consideration of energy. We propose a flexible threshold considering the link
condition to detect malicious nodes effectively. It is possible to detect malicious nodes
according to data occurrence and attack situations effectively.

For performance evaluation, we measure packet delivery rate, throughput, surviv-
ability, and delay according to simulation time and malicious node rate. The proposed
technology resulted in a higher packet delivery rate and throughput compared to other
schemes and confirmed the low end-to-end delay. In addition, the survivability of the
node was confirmed to be superior compared to other schemes. As a result, the proposed
technology has proven to be an optimal solution for mission-critical wireless network
environments.

1.1. Motivation

The purpose of almost multipath routing protocols is to use multipath as a substitute
route when the network link is broken [6]. However, if large amounts of data are being
transmitted, transmission over a single alternative route can be difficult to attain using
only bandwidth management and queuing techniques. In addition, advanced attacks such
as unplanned on-off are still difficult to detect and prevent the achievement of targeted
missions. For these reasons, the requirements for mission-critical data may not be met,
which can have the worst consequences for mission operations.

We attempt to ensure trustworthiness and QoS by transmitting the data through all
multiple possible routes that satisfy the requirements of each packet. Our mechanism
ensures the successful detection of malicious nodes using flexible methods in MC-WSN
and guarantees the trustworthy transfer of data. The proposed technology can provide
clearer and more accurate trust evaluation through Q-learning in MC-WSN and transmit
mission-critical data. As a result, The MC-WSN gateway quickly and correctly gather
mission-critical data vital for situational awareness and operations.



Sensors 2022, 22, 3975 3 of 17

1.2. Contributions

The major contributions of our mechanism can be summarized as follows:

• Design of an intelligent Q-learning based routing protocol by considering both trust-
worthiness and QoS (Quality of Service) requirements for MC-WSNs

• Design of a flexible threshold mechanism that contemplates link bandwidth and data
usage to increase the probability of malicious node detection.

• Efficient energy management of resource-constrained sensor nodes by placing flexible
weights according to the node’s status.

• Proposal of a trust evaluation method and intelligent routing protocol that meets the
requirements of mission-critical applications.

The remainder of the paper is as follows. We will review related works in Section 2.
In Section 3, we present our proposed mechanism in detail. The performance evaluation is
discussed in Section 4. Finally, we conclude our paper and arrange the summary in Section 5.

2. Related Work

Trust-based routing is a scheme that discovers and maintains trusted paths by using a
measure of trustworthiness derived from trust evaluation. In this section, we review exist-
ing trust-based routing methods that can be utilized in MANETs and WSNs. AOTDV [7]
is a trust-based multipath routing method that extends AOMDV [8], which maintains
multiple paths during the route discovery phase. AOMDV is one of the representative
multi-path routing protocols and proposes a method for creating loop-free multi-paths.
However, it is vulnerable to attacks by malicious nodes because it focuses on delivering
data without considering the trustworthiness factor. AOTDV has been further proposed to
solve these problems.

In AOTDV, a source node can create multiple loop-free paths to a destination during
the route discovery process. A destination will respond with at most k shortest paths
as candidates that satisfy the trust requirements of data packets. Each node has trust
evaluation results composed of trust values and a hop count. After the trust path has been
created, the source node allocates paths that satisfy the trustworthiness required to generate
mission-critical data packets and then generates the data. As an intelligent agent, each
node evaluates its neighbors’ behaviors and selects the shortest trusted path to forward
packets. However, this scheme cause problem like bottlenecks because it can allocate only a
single path for transmitting mission-critical data even though multiple paths are kept for an
alternative when the allocated path becomes failed to use. In addition, AOTDV considers
trustworthiness and hop count factors as a routing metric, so it is difficult to guarantee the
QoS requirements of mission-critical data or the survivability of sensor devices.

TQR [9] proposed the view of trust and QoS metrics evaluation to create a trust-based
QoS model. They introduce the definition of trust and QoS parameters estimation into a
classic routing to enhance the security of networks. The proposed trust model obtained the
degree of trust between nodes from the direct and indirect trust. In addition, due to the
NP-completeness of the multi-QoS constraints problem, they only consider the link delay
as the QoS constraint requirement for establishing trusted routing. They measured the
expected transmission count (ETX), trustworthiness, transmission delay, and propagation
delay in calculating the metric. They focus on exploring a feasible way to estimate the
available link delay requirement by considering link quality and incorporating a trust-
aware scheme into the route discovery procedure to enhance the security of the network.
However, the delay cumulated in the queue was not regarded, and only a single path
was used for data transmission, making trustworthy communication challenging. TQR
considers trustworthiness and QoS factors as routing metrics, but it is difficult to derive
accurate values without learning historical data. Moreover, the survivability of the sensor
device can be reduced because the energy factor is not taken into account.

CENTERA [10] uses the powerful gateway to collect trust values from individual nodes
and evaluate the best paths after isolating “malicious” nodes. Gateway establishes a global
view of the network and evaluates three quality metrics: maliciousness, cooperation, and
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compatibility. The gateway estimates the battery of every node-based and evaluates several
metrics for every node. Gateway periodically collects trust values from the individual
nodes about the number of packets sent through neighbors. Gateway utilizes a method
to disseminate updated routing information to all the network nodes such that each node
knows its uplink nodes to forward their packets to the gateway and its next-hop downlink
node forwards its own packets through it. However, CENTERA considers only the packet
forwarding ratio to perform the trust evaluation of the individual nodes. CENTERA is not
suitable for mission-critical wireless sensor networks because it is vulnerable to denial of
service or on-off attacks and does not consider the priority of data.

SQEER [11] is devised based on energy and trust modeling for enhancing the security
of WSN and also to optimize the energy. The trust modeling utilizes a technique with a
security mechanism for providing trust scores. A cluster-based trust routing protocol is
designed in which the cluster head has been selected based on trust scores and QoS metrics
to perform trust routing. In addition, trust scores, namely direct, indirect and overall
trust scores, are evaluated for enhancing the security of communication. The final path
algorithm has been allocated based on energy, path trust, and hop count to carry out the
secure routing process. However, SQEER is limited in the MC-WSN environment because
it transmits data by assigning it to a single path without considering the priority according
to the importance of the mission of the tactical data. Moreover, it is not suitable because
there are no considerations to satisfy the performance requirements of mission-critical data.

TBSIOP [12] utilizes three distinct WSN attributes to compute a node’s likelihood of
being malicious. These attributes are in energy depletion, acknowledgment, and forwarding
data packets, and these attributes are used for trust computation. TBSIOP deals with
the selection of the best relay candidate among the potential forwarder candidates. The
potential forwarder node will be chosen from a set of forwarder nodes based on trust values
and probabilities of being selected from the forwarder list. TBSIOP proposes a method
of selectively transmitting specific data without classifying mission-critical data. In this
case, large-capacity data cannot be processed and the QoS factor of mission-critical data is
not satisfied.

ATRP [13] has been proposed that encompasses direct trust, indirect trust, and witness
trust, considering multiple factors (resources and security) in its trustworthiness and using
pairwise comparison. The proposed mechanism allows further evaluations of additional
potential nodes at several hops, which helps to balance the energy consumption and
prolong the network lifetime. The objective of the ATRP is to propose an efficient trust-
based routing protocol for the selection of relay nodes in distributed WSNs based on
multiple trust factors and multilevel trust evaluations using the Q-learning technique. The
protocol employs multiple evaluations at multiple layers rather than single-hop evaluations.
The consideration of multiple factors in the ATRP balances the load distribution in the
network and provides a more accurate selection of the next forwarder. In the proposed
approach, both successful and failed transmissions contribute to the calculation of the
Q-values. The control mechanism unit in the ATRP is responsible for ensuring that the
trust value is valid and reliable. There are three components in the control mechanism
unit: number of interactions, decay time factor, and timeliness measurement. However,
it is difficult to detect intelligent behaviors such as on-off attacks using this scheme, and
it is hard to guarantee the QoS of mission-critical applications by proposing an energy-
oriented reward function. In addition, ATRP is a protocol that is not suitable for operation
in a mission-critical wireless sensor network environment because it does not sufficiently
consider a method to satisfy the requirements of mission-critical data.

Compared with such existing methods, trust-based intelligent routing is novel in
terms of three aspects. First, a mission-oriented path allocation algorithm is proposed
to meet the requirements of trustworthiness and QoS in MC-WSNs. Second, we suggest
a Q-learning-based trust routing technology that detects clever attacks and ensures the
reliability of mission-critical applications. Third, we propose a flexible weight for the
energy and detection ratio in MC-WSNs. The proposed method can detect and exclude
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various cyber-attacks through a learning method and a flexible blacklist threshold method.
Additionally, it can solve bottleneck problems and ensure the reliability of mission-critical
data by using effective distributed multi-path routing.

3. Proposed Scheme: MC-TIRP

This section proposes a mission-critical trust-based intelligent routing protocol (MC-
TIRP). The proposed scheme consists of several components for trusted route discovery,
trust evaluation, and trust update and maintenance. This section also introduces the process
for deriving trust values from MC-WSNs as the basis of the discovery and maintenance of
a trustworthy and reliable path using Q-learning. As a first step, the proposed algorithm
performs the process of discovering multiple paths, excluding malicious nodes based on
the trust evaluation value. After finding a trust-based multi-path, Q-learning is performed
by considering trustworthiness, QoS, and energy factors to transmit mission-critical data
in a distributed manner. In addition, learning results reflect historical records, so it can
effectively counteract malicious nodes that perform on-off attacks at specific times. The
algorithm operates in a distributed transmission method that sacrifices data of relatively
low importance to ensure the reliability of data transmission with high mission importance
in consideration of the PBAS (precedence based assured service) concept. Finally, the trust
route maintenance and update phase manages multiple routes and processes data. This
step ensures distributed data transmission while periodically managing and maintaining
the calculated trust value for multipath. It also enables flexible response in case of network
problems. We define the notation of the proposed scheme in Table 1.

Table 1. Notation related to the proposed scheme.

Notation Description

B The bandwidth (raw data rate) of the link

EIniti The initial energy of node i

EQTV Energy-based QoS and Trust Value

EResi The residual energy of node i

ETT Expected Transmission Time

ETX Expected Transmission Count

Fi, j The number forwarded by node j

MC-TIRP Mission-Critical Trust based Intelligent
Routing Protocol

PFR Packet Forwarding Ratio

PTV Path Trust Value

Si, j The number of packets sent by node i to node j

ω Weight factor

X The size of the packet

α Learning rate

γ Blacklist threshold

µ Decay factor

3.1. Trusted Route Discovery Component

In this component, a route discovery method works similarly to the basic AOMDV.
However, there are differences in the method processes. Nodes perform direct observations,
indirect observations, and witness observations to find a trusted route. Trust discovery
works closely with trust evaluation to share the necessary trust and learning values. The
source node broadcasts the RREQ (Route Request) to find trusted paths to the gateway node.
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Intermediate nodes receiving the request message reply to the source node with trust infor-
mation. The nodes check the blacklist, except the malicious node. The intermediate node
considers the trust value and multiple loop-free route discovery processes and broadcasts
the RREQ. When the destination receives the RREQ message, it responds with the RREP
(Route Reply) and reward. In a wireless environment, more routes may exist according to
various situations, and this can be set according to the operator’s judgment. In the paper,
we set up to maintain a maximum of five valid trust paths. The reason is that we assumed
five types of mission-critical data to be distributed over a trusted path. The source node can
transmit data over trusted paths formed on the basis of Q-learning. Mission-critical data
can be transmitted over a path with the maximum Q-value. Data of relatively low mission
importance can be transmitted randomly over trustworthy paths. We presumed that data
packets A and B had high priority, and packets C, D, and E had a relatively low priority;
however, the definition could be obtained according to the preferences and intentions of
the operator.

3.2. Trust Evaluation Component

In this paper, trust evaluation is classified into local trust evaluation and global trust
evaluation. First, local trust evaluation derives local trust based on the trustworthiness,
QoS, and energy value evaluated by each node and learns by receiving it as a reward. This
method detects and excludes malicious nodes through flexible thresholds in the process of
deriving local trusts and transfers mission-critical data to a trusted alternative path. It also
proposes a flexible weighting method to ensure reliability while managing the energy of
resource-constrained devices. Global trust evaluation is calculated based on the local trust
value of the nodes included in the multi-path, and it learns by deriving a global trust for
the entire path and receiving it as a reward. As a result, the optimal path can be learned
and the data with the highest mission criticality can be transferred to a safe path.

3.2.1. Local Trust Evaluation

Trust evaluation is derived by learning based on the results of the discovery component.
The sensor nodes monitor the behavior of neighboring nodes and apply a formula that
considers the packet forwarding ratio (PFR), expected transmission time (ETT), and energy.

PFRi, j =
Fi, j (t)
Si, j (t)

(1)

PFR is derived by observing the packet-forwarding behavior of neighboring nodes
using the promiscuous mode, as shown in Equation (1). Si, j (t) is the number of packets
sent by node i to node j, and Fi, j (t) is the number forwarded by node j. This method can
detect nodes maliciously dropping packets through PFR calculation and simply obtain
the reliability of the link. However, a simple method of calculating PFR is difficult to
detect advanced attacks such as on-off that are performed according to a specific time. We
utilize a flexible blacklist threshold and Q-learning to address this. A blacklist threshold
value (γ) is defined and is used to identify malicious nodes (0 ≤ γ ≤ 0.75). The blacklist
threshold considers the mission-critical tactical network of nodes and is measured as shown
in Equation (2).

Blacklist threshold(γ) =
Link bandwidth

Current bandwidth
(2)

Link bandwidth is the maximum rate of data transfer across a given link. The current
bandwidth is an estimate of the Current bandwidth of the network interface in bits per
second (bps). The reason for the above calculation is to determine whether an attack by a
malicious node is occurring or the communication status is bad. Low Current bandwidth
usage increases the blacklist threshold to detect malicious nodes with low drop attacks.
High Current bandwidth usage makes it difficult to determine whether an attack from a
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malicious node or a bottleneck is causing network performance degradation. The blacklist
threshold is reduced to help in the discreet resolution of malicious node exclusions [14].

Trust evaluation is classified into types: direct, indirect, and witness trust [13]. Direct
trust is derived by evaluators by observing the behavior of their direct neighbor nodes.
Indirect trust is the recommended value calculated for the target node obtained from the
evaluator’s indirect node. When it is difficult to perform an accurate trust evaluation
using only direct trust, it is possible to perform a more accurate trust evaluation from
calculations based on recommendations received from indirect nodes. The indirect trust
value for calculating the total trust value is forwarded from the direct node to the source
node. A witness trust is a value by which a proven direct node evaluates an indirect node
and recommends the value to the source node. The difference between indirect and witness
trusts is that the indirect trust is calculated and recommended by indirect nodes, whereas
the witness trust is done by certified direct nodes. We consider not only direct trust but also
indirect witness trust for a more accurate and effective trust evaluation. The QoS factor of
links is measured using ETT, as shown in Equation (3).

ETT = ETX× X
B

(3)

ETT improves ETX (Expected Transmission Count) by considering the differences in
link transmission rates. ETT is an appropriate QoS factor to satisfy the delay requirements
of mission-critical data. X denotes the size of the packet (for example, 1024 bytes), and B
denotes the bandwidth (raw data rate) of the link [15]. ETT does not include the back-off
time spent waiting for the wireless channel [16].

In MC-WSN, if the devices cannot operate due to an energy discharge, it can have a
fatal impact on operations. Therefore, it is essential to calculate the reliability evaluation
considering energy. Resource-constrained devices that operate in a WSN environment require
recharging or exchange when their energy is depleted. The proposed technique calculates
the energy required for a resource-constrained device, as shown in Equation (4) below, where
EResi is the residual energy of node i, and EIniti is the initial energy of node i.

Energy =
EResi
EIniti

(4)

Using these derived factors, the node with insufficient residual energy calculates the
energy-based QoS and trust value (EQTV), as shown in Equation (5). The EQTV equation
calculates which metrics to prioritize: trustworthiness, QoS, and energy by weighting them
based on the node’s energy state.

EQTV = (ω1 × Energy) + ((ω2 × (PFR× (1− ETT))) (5)

ω1 = (1− Energy), ω2 = (1−ω1) (6)

In this study, we propose a flexible weight module to distribute weights adaptively
according to the status of a device. For this purpose, a flexible weight module that efficiently
manages energy is essential. In a sensor network composed of trusted nodes, this technique
applies a flexible weight based on the remaining energy. ω1 is determined based on the
residual energy, and ω2 is calculated using Equation (6) based on ω1. A node with sufficient
energy assigns a higher weight to reliability and QoS, and a node with insufficient energy
assigns a higher weight to energy. Therefore, it is possible to enhance survivability using
an energy-based flexible weighting method.

The derived trust value is calculated as the local trust level by applying the formula
below. Local trust is the trust-based value of the k neighbor nodes of node j and is calculated
as shown in Equation (7). Local trust is calculated as the average of EQTV values calculated
by neighboring nodes, and it is possible to evaluate local trust more accurately. n denotes
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the total number of k neighbor nodes and is derived by averaging the trust values evaluated
by n nodes.

LocalTrust =
1
n

n

∑
k=1

EQTVk, j(t). (7)

3.2.2. Global Trust Evaluation

Global trust evaluation is a method of receiving a reward from a destination node
when the mission-critical data requirements are satisfied. Each mission-critical application
has different requirements that must be met [14,17,18]. Therefore, although local trust
evaluation between nodes is vital, a reward system is activated when the requirements
along the entire path are satisfied. The global trust provides the average value of local trust,
as shown in Equation (8). The global trust is calculated as the average of the local trust
values of the nodes included in each path, and as a result, the trust value of the entire path
can be obtained.

GlobalTrust =
1
n

n

∑
k=1

LocalTrustp(t). (8)

In the case of end-to-end delay, global trust is compensated when the communication
requirements of IoT applications are less than 100 ms [16] and the PTV (Path Trust Value) is
higher than 0.65 [7] (0 ≤ PTV ≤ 1). We assign the minimum PFR of the nodes in the trusted
route to the PTV, as shown in Equation (9) [19,20]. PTV values can verify that the measured
path trust values meet the trust requirements of mission-critical data.

PTV = minPFR (9)

In this global trust evaluation, the reward is calculated when the packet sent from the
sensor node to the destination satisfies the mission-critical data requirements. This ensures
the reliability of data that meets the requirements of mission-critical applications.

3.2.3. Q-Learning Based Trust Evaluation

Q-learning is a form of model-free RL. RL is formulated using the Markov decision
process (MDP) and is defined as a quintuple (S,A,E,T,R), where S is the set of states of the
system, A is the set of actions performed by the agent that affects the system, E is the set
of external events that the agent has no control over, and T is the transition that connects
each state, action, and event. R is the reward that the agent receives for taking action [3,21].
A trust value is updated using the Q-learning technique, in which the agent learns an
action-value function, labeled Q (state, action), that describes the value of performing the
action in state s. Q-learning is implemented using Equation (10) [22,23]. Initially, all Q tables
are set to 0, and to update the Q value, each node evaluates the trust of neighboring nodes.

Q(s, a) = (1− α)×Q(s, a) +
(
α ×

[
Reward + µ×MAX Q

(
s′, a′

)])
. (10)

We define the state s as the trust status of each node and update it with rewards
according to the calculated local and global trust values. In addition, to reflect the trust
state of nodes and networks, the alpha ratio α is set to 0.5, and the decay factor µ is set to 0.9.
In particular, if a random action is frequently selected, the network performance may be
degraded, so epsilon is set to lower the random probability. The Q value is calculated based
on the trust value for each neighbor. The action a may be selected randomly according to
the epsilon value or according to the maximum Q value. The reward is received according
to the action result, and a new Q value is updated based on the Q-learning algorithm. In
the proposed approach, local trust can be calculated through trust information periodically
received from neighboring nodes. When the data packet arrives at the gateway, global trust
is applied as a reward.

Figure 1 shows an example of data transmission based on the priority of mission-
critical data. The source node excludes the path where the malicious node M is detected



Sensors 2022, 22, 3975 9 of 17

via trust evaluation and derives Q-values for each path based on local and global trust. The
source node then checks the Q-values of all paths and executes an algorithm to transmit
mission-critical data. Notice that mission-critical data A and B are transmitted over the
route with the max Q-value (Path 3). C, D, and E data of relatively low importance are
randomly transmitted among paths that satisfy each network requirement. As a result,
mission-critical data is transmitted through a path that guarantees reliability and QoS while
satisfying the requirements of each data.
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3.3. Trust Route Update and Maintenance Component

Path update and maintenance is the process of deciding how to update or maintain
routes if network status changes (e.g., data usage, link status, or the event of link discon-
nection). If the maintenance process identifies nodes that cannot function, it transmits
an error message to the source node. If the source and intermediate nodes have active
multipaths, they are updated to alternate paths, and transmission takes place. If there is no
trust path, the source node can execute a route discovery routine to discover a new trust
route. The path maintenance process validates the trusted path at certain time intervals.
When a trust route cache entry exceeds its validity time, a new trust route retrieval process
is started. Figure 2 shows a comprehensive flowchart of the trust-based intelligent routing
protocol scheme. Each sensor node calculates EQTV using flexible weights. To learn a
reliable path, the trust values of nodes and paths are periodically checked and updated
using a hello message with EQTV. After that, if the Epsilon value is above a certain level,
we check the importance of the mission data. The reason for choosing the Epsilon criterion
is that selecting random actions too often can degrade network performance. If the data to
be transmitted has high mission criticality, the max-Q value path is selected; otherwise, a
random path is selected. Finally, sensor nodes update the local trust value in the routing
table and learn as a reward.

The gateway node updates the PTV and end-to-end (E2E) delay of the paths and
receives a global reward when the mission-critical requirements are satisfied. Finally, the
gateway node updates the global trust value in the routing table and learns as a reward. As
a result, the Q table of the path that satisfies the requirements is learned to enable efficient
path management.
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4. Performance Evaluation

We introduce the simulation environment settings, as described in Table 2. The
proposed protocol (MC-TIRP) was implemented using the OPNET and compared with the
ATRP, TQR, and AOTDV. The simulation was deployed with 100 nodes in a partial mesh
topology that was in a 1000 m × 1000 m area. A fixed gateway node and 99 sensor nodes
were used. We set the percentage of malicious nodes between 0 and 40% and performed on-
off attacks (including DoS and gray hole attacks). An attacker can launch all the behaviors
continuously, with 70% good behaviors and 30% bad behaviors [24,25]. Malicious nodes
performing grey hole attacks drop packets at a rate of 30%. A malicious node performing a
DoS attack could send a large number of packets to the target node. DoS attacks generate
various types of traffic, and the network situation changes dynamically.
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Table 2. Simulation environment settings.

Parameters Values

Simulator OPNET 18.0

Simulation time(s) 500

Routing MC-TIRP, ATRP, TQR, AOTDV

Number of nodes 100

Percentage of malicious nodes 0–40%

Attack model Gray hole attack, On-Off attack
Denial of Service attack

Traffic Type (Avg. Packet Size)

VoIP G. 723.1 (24 bytes)

Fire alarm, Chat (100 bytes)

Health, Temperature, Humidity Sensors (120 bytes)

Security, Smart Meter (200 bytes)

Bulk Data, CCTV Camera (2000 bytes)

MAC CSMA/CA

PHY 802.11b

α 0.5

µ 0.9

We used a constant bit rate (CBR) data traffic model by considering the type, size,
and sensor data transmissions in MC-WSNs [26–28]. In the experimental environment,
a larger amount of data than the link bandwidth capacity was transmitted to mimic the
MC-WSN condition. The PHY was set to 2 Mbps to imitate the resource-constrained
communication in the tactical network [29,30]. For performance evaluation, the end-to-end
delay, throughput, and packet delivery ratio (PDR) were analyzed. Delay refers to the
E2E delay from the time the sending node sent the packet to the time the destination node
received the packet. Throughput was measured by taking into the number of packets
transmitted within a given period. PDR was measured by taking into account the number
of packets transmitted and received, and the energy was calculated by determining the
initial energy and decreasing it according to the rate of packet delivery.

Figures 3–7 shows the network performance evaluation when the proportion of mali-
cious nodes is 30%.

Figure 3 shows the average PDR over elapsed time. AOTDV and TQR use trust metrics
to select the trust path; however, intelligent DoS attacks that generate various types of traffic
are difficult to detect. Damage from on-off attacks was accumulated due to the percentage
of malicious nodes (30%). We also set up a situation where a lot of sensor data exceeds
the link bandwidth. Therefore, the overall performance of the packet forwarding rate is
degraded. In the case of AOTDV and TQR, data transmission over a single path became the
bottleneck, resulting in an average PDR of less than 50%. As it is difficult to detect on-off
attacks using ATRP, damage accumulates, but the reward function considers only energy;
thus, it showed a lower PDR result than the proposed technique. The proposed MC-TIRP
scheme allocates trusted multipaths using Q-learning-based routing metrics that consider
reliability, QoS, and energy. As a result, MC-TIRP showed a PDR of about 70%, showing
the highest level among all mechanisms. Our scheme guarantees the load balancing effect
by transmitting high-importance data through the max Q-value path and transmitting
relatively low data distributed through other paths.
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Figure 3. Average PDR over elapsed time.

Figure 4 shows the E2E delay over elapsed time. It is difficult to detect a node perform-
ing intelligent attacks using ATRP, but it transmits data distributed through Q-learning
considering energy factors; hence, it shows a lower delay than TQR and AOTDV, although
the malicious node ratio is 30%. However, The end-to-end latency was around 200 ms as
the packet processing time increased at the intermediate node due to the intelligent attack,
making it difficult to process mission-critical data effectively. AOTDV and TQR are also
ineffective at detecting intelligent attacks; therefore, they are vulnerable to DoS attacks that
generate various types of traffic. TQR uses a metric that considers both reliability and QoS
factors, resulting in a lower E2E delay than AOTDV. However, it is difficult to guarantee
the reliability of mission-critical data because of an E2E delay of about 300 ms. AOTDV
shows the highest average E2E delay compared to other mechanisms because it uses only
reliability metrics, not considering QoS factors while transmitting data over a single path.
MC-TIRP showed the lowest E2E delay compared with the other mechanisms because it
was learned considering reliability and QoS factors and distributed transmission according
to the priority of mission-critical data.
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Figure 5 shows the throughput over elapsed time. Throughput was measured by
estimating data transfers in terms of overhead, transmission rate, and packet size over
a given time period. MC-TIRP quickly found a reliable path considering trust, QoS,
and energy and showed a throughput of about 3200 kb/s. In MC-WSN, data must be
transmitted accurately and quickly, and the efficiency of the method was confirmed through
throughput. AOTDV and TQR showed similar results of around 2200 kb/s. ATRP is
ineffective at detecting on-off attacks, but because it selects a path based on Q-learning, it
shows higher throughput results than TQR and AOTDV.



Sensors 2022, 22, 3975 13 of 17

Sensors 2022, 22, x FOR PEER REVIEW 13 of 17 
 

 

throughput. AOTDV and TQR showed similar results of around 2200 kb/s. ATRP is inef-
fective at detecting on-off attacks, but because it selects a path based on Q-learning, it 
shows higher throughput results than TQR and AOTDV. 

 
Figure 5. Average throughput over elapsed time. 

Figure 6 shows the normalized cumulative distribution function (CDF) of the end-to-
end delay for mission-critical data A. CDF is calculated as the ratio of the number of re-
ceived packets. Mission-critical data must satisfy performance requirements and guaran-
tee QoS even in worst-case situations. The results show that MC-TIRP collects and pro-
cesses large quantities of data faster than other techniques, despite the fact that 30% of the 
nodes are malicious. This is due to the learning of the trust and QoS elements that effec-
tively excluded the malicious nodes so that the mission-critical data A was transmitted on 
the trusted paths. In the case of ATRP, it found the trusted path by learning the trust factor, 
but the CDF of end-to-end delay results was less than those of the proposed method be-
cause it rewarded only the energy factor and the priority of mission-critical data was not 
considered. However, mission-critical data were distributed and transmitted through 
learning considering the energy factor, resulting in higher CDF results than those of TQR 
and AOTDV. TQR and AOTDV show significantly lower CDFs according to the end-to-
end delay compared to the proposed technique. This is because the data were transmitted 
using one path, and the DoS attack continuously caused a bottleneck. 

 
Figure 6. Normalized CDF of end-to-end delay for received mission-critical data A. 

Figure 7 shows the results for the number of live nodes over time. To determine the 
number of live nodes, we set the initial energy constant values in a simulation environ-
ment without malicious nodes. To measure the residual energy, the rate was decreased 
every time a packet was transmitted. MC-TIRP and ATRP reflect efficient energy manage-
ment because trust learning is performed by considering residual energy as a trust metric. 
Therefore, according to the elapsed time, all nodes were live to check the possible com-

Figure 5. Average throughput over elapsed time.

Figure 6 shows the normalized cumulative distribution function (CDF) of the end-
to-end delay for mission-critical data A. CDF is calculated as the ratio of the number
of received packets. Mission-critical data must satisfy performance requirements and
guarantee QoS even in worst-case situations. The results show that MC-TIRP collects and
processes large quantities of data faster than other techniques, despite the fact that 30%
of the nodes are malicious. This is due to the learning of the trust and QoS elements that
effectively excluded the malicious nodes so that the mission-critical data A was transmitted
on the trusted paths. In the case of ATRP, it found the trusted path by learning the trust
factor, but the CDF of end-to-end delay results was less than those of the proposed method
because it rewarded only the energy factor and the priority of mission-critical data was
not considered. However, mission-critical data were distributed and transmitted through
learning considering the energy factor, resulting in higher CDF results than those of TQR
and AOTDV. TQR and AOTDV show significantly lower CDFs according to the end-to-end
delay compared to the proposed technique. This is because the data were transmitted using
one path, and the DoS attack continuously caused a bottleneck.
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Figure 7 shows the results for the number of live nodes over time. To determine the
number of live nodes, we set the initial energy constant values in a simulation environment
without malicious nodes. To measure the residual energy, the rate was decreased every time
a packet was transmitted. MC-TIRP and ATRP reflect efficient energy management because
trust learning is performed by considering residual energy as a trust metric. Therefore,
according to the elapsed time, all nodes were live to check the possible communication
results. As TQR changed the path more frequently while considering reliability and QoS
factors, more nodes survived than AOTDV. AOTDV shows the result of fewer nodes
surviving because the path did not change significantly when using the reliability metric.
It was found that approximately 20% of the nodes did not operate because there was no
residual energy. If there are nodes that fail to operate in an MC-WSN, they will not be able
to support mission operations, which can have devastating consequences.
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Figure 8 shows the PDR versus the percentage of malicious nodes. The result of the
percentage of malicious nodes can measure the performance of how quickly they react
when attacked. In the MC-WSN environment, the transmission rate of mission-critical data
is a very important factor, so accurate performance analysis is required. We measured the
PDR by increasing the proportion of malicious nodes from 0 to 40%. The average PDR was
calculated by taking into account MC-WSNs where there was a delay due to a bottleneck
because of the large amount of mission-critical data usage compared to the link bandwidth.
As the proportion of malicious nodes increases, they receive more attacks and increase
processing time, which decreases PDR. AOTDV and TQR showed a decrease in the PDR
as the percentage of malicious nodes increased. This is because both schemes suggest a
method that assigns a single path. MC-TIRP has demonstrated its ability to transmit data
more than other methods by using an algorithm that distributes and transmits data after
learning a trust metric. ATRP has difficulty in detecting on-off attacks, but because it selects
paths based on Q-learning, it shows higher PDR results than TQR and AOTDV.
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Figure 9 shows the E2E delay based on the proportion of malicious nodes. Considering
MC-WSN, even without a malicious node, there can be a 40 ms delay because mission-
critical data usage is set above the link bandwidth. As a result of the proposed MC-TIRP,
the latency did not exceed 50 ms even when the proportion of malicious nodes increased
to 40%. The proposed method was verified because the observed delay is lower than the
100 ms delay required in MC-WSN. Among the other schemes, ATRP did not meet the
required delay as the proportion of malicious nodes increased. It is difficult to guarantee
the QoS factor because ATRP considers only energy for the reward function. However, the
mission-critical data were distributed and transmitted through learning considering energy
factors, which resulted in a lower average E2E delay than that of AOTDV and TQR. In the
case of TQR and AOTDV, which used a method that measured trustworthiness and QoS, a
delay occurred because a single route was used for mission-critical data transmission.



Sensors 2022, 22, 3975 15 of 17

Sensors 2022, 22, x FOR PEER REVIEW 15 of 17 
 

 

to 40%. The proposed method was verified because the observed delay is lower than the 
100 ms delay required in MC-WSN. Among the other schemes, ATRP did not meet the 
required delay as the proportion of malicious nodes increased. It is difficult to guarantee 
the QoS factor because ATRP considers only energy for the reward function. However, 
the mission-critical data were distributed and transmitted through learning considering 
energy factors, which resulted in a lower average E2E delay than that of AOTDV and 
TQR. In the case of TQR and AOTDV, which used a method that measured trustworthi-
ness and QoS, a delay occurred because a single route was used for mission-critical data 
transmission. 

 
Figure 9. Delay plotted against the proportion of malicious nodes. 

Figure 10 shows the throughput based on the proportion of malicious nodes. 
Throughput can show similar standard deviation results depending on the situation, even 
with an increase in malicious nodes. The reason is that processing more large amounts of 
data at any given time can increase overall average throughput. AOTDV and TQR indi-
cated a throughput of about 2100–2400 kb/s, which decreased when the proportion of ma-
licious nodes increased. It is difficult to maintain throughput in MC-WSNs, which require 
ensured trustworthiness and transmission importance of data. ATRP uses Q-learning to 
adaptively select routes, resulting in a throughput of about 2500 kb/s. The proposed MC-
TIRP showed a throughput of about 3300 kb/s even when the malicious node ratio in-
creased to 40%, confirming that it can reliably process mission-critical data. 

 
Figure 10. Throughput plotted against the proportion of malicious nodes. 

5. Conclusions 
This study proposes an MC-TIRP that detects malicious nodes in MC-WSNs and 

transmits mission-critical data through paths that guarantee trustworthiness and reliabil-
ity. MC-WSN must ensure the transmission of mission-critical data. Therefore, reliability 
attributes as well as methods to ensure sufficient energy, trustworthiness, and reliability 

Figure 9. Delay plotted against the proportion of malicious nodes.

Figure 10 shows the throughput based on the proportion of malicious nodes. Through-
put can show similar standard deviation results depending on the situation, even with an
increase in malicious nodes. The reason is that processing more large amounts of data at
any given time can increase overall average throughput. AOTDV and TQR indicated a
throughput of about 2100–2400 kb/s, which decreased when the proportion of malicious
nodes increased. It is difficult to maintain throughput in MC-WSNs, which require ensured
trustworthiness and transmission importance of data. ATRP uses Q-learning to adaptively
select routes, resulting in a throughput of about 2500 kb/s. The proposed MC-TIRP showed
a throughput of about 3300 kb/s even when the malicious node ratio increased to 40%,
confirming that it can reliably process mission-critical data.
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5. Conclusions

This study proposes an MC-TIRP that detects malicious nodes in MC-WSNs and
transmits mission-critical data through paths that guarantee trustworthiness and reliability.
MC-WSN must ensure the transmission of mission-critical data. Therefore, reliability at-
tributes as well as methods to ensure sufficient energy, trustworthiness, and reliability are
essential. The technique proposed in this paper supports quick and safe data transmission
while fulfilling these requirements. The proposed technique for the survivability of sensor
devices focuses on maximizing performance and minimizing calculations for trustwor-
thiness, energy, and delay compared to other technologies. It was found that MC-TIRP
demonstrates superior performance in terms of E2E delay, PDR, throughput, and energy
when compared to competing mechanisms. In the future, research should be conducted to
ensure the trustworthiness of mission-critical data through improved learning and trust
evaluation techniques.
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