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Abstract: Automated inspection has proven to be the most effective approach to maintaining quality
in industrial-scale manufacturing. This study employed the eye-in-hand architecture in conjunction
with deep learning and convolutional neural networks to automate the detection of defects in forged
aluminum rims for electric vehicles. RobotStudio software was used to simulate the environment and
path trajectory for a camera installed on an ABB robot arm to capture 3D images of the rims. Four types
of surface defects were examined: (1) dirt spots, (2) paint stains, (3) scratches, and (4) dents. Generative
adversarial network (GAN) and deep convolutional generative adversarial networks (DCGAN) were
used to generate additional images to expand the depth of the training dataset. We also developed a
graphical user interface and software system to mark patterns associated with defects in the images.
The defect detection algorithm based on YOLO algorithms made it possible to obtain results more
quickly and with higher mean average precision (mAP) than that of existing methods. Experiment
results demonstrated the accuracy and efficiency of the proposed system. Our developed system has
been shown to be a helpful rim defective detection system for industrial applications.

Keywords: robotic arm; rim defect detection; YOLO algorithm; deep convolutional generative
adversarial networks (DCGAN)

1. Introduction

Light alloy castings are widely used to reduce the weight of electric vehicles (e.g., wheel
rims and steering boxes); however, a high degree of variability in the casting process necessi-
tates careful visual inspection of all such devices. The non-destructive inspection of manufac-
tured items based on computer vision has proven highly effective and efficient; however, the
inability of such systems to deal with non-planar objects from multiple angles necessitates
manual inspections by human operators, which is expensive and time-consuming.

The automated inspection of tire rims is generally performed using X-ray analysis
or conventional image processing [1–3]. In the current study, we constructed an auto-
mated system to detect defects on the forged aluminum rims of electric vehicles, using
deep learning and convolutional neural networks [4–7]. The proposed system adopted
the eye-in-hand architecture, which involves a charge-coupled device (CCD) camera on
an ABB robotic arm with a graphical user interface to provide control over the camera
trajectory and an adjustable light-emitting diode (LED) lighting system. The captured
images are then analyzed using an object detection algorithm. We evaluated the YOLO
v3 and YOLO v4deep learning models, both of which are lightweight, unsupervised, and
efficient. These networks have previously been used to determine whether a mask has been
put on correctly [8], to detect surface defects in the equipment in power substations [9], and
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to detect ships in aerial radar images [10]. The use of deep learning in a system such as this
requires a large number of images presenting flaws of every conceivable type; however,
obtaining such images can be difficult. In [11], researchers created adversarial networks
(DCGAN, LSGAN, and WGAN) to overcome an insufficient number of images for their
training model. GANs and DCGANs have been used to establish systems by which to
monitor one-dimensional current waveforms [12]. GANs have been used to increase the
accuracy of CNNs for the diagnosis of bladder cancer [13]. DCGANs have been used to
expand the dataset of chest X-ray images to enhance classifier performance [14].

In the current study, the images generated using GAN failed to meet our standards;
however, DCGAN provided usable results. We therefore combined the original images
with photos generated using DCGAN in training YOLO v3 and YOLO v4 and assessed the
results. This research contributes to our understanding of detection systems for curved
metal surfaces and the application of deep learning networks to detection applications.

The structure of the research work is as described below. Section 2 discusses the
overall system architecture. Section 3 describes the related works. Experiments and results
are presented in Section 4. Conclusions are presented in Section 5.

2. System Design

In most existing defect detection systems, the camera(s) is mounted in a fixed position
while the workpiece is moved, such that the images used for inspection are aligned ver-
tically relative to the workpiece. Unfortunately, this approach is ill-suited to objects with
irregular and/or curved surfaces due primarily to the difficulty of capturing images from
multiple angles. In the current study, we adopted the eye-in-hand approach to defect detec-
tion, wherein the camera is attached to an ABB robotic arm, and multiple lights are used
to provide illumination. A PC-based controller integrates the camera equipment with the
control system for the arm. Figure 1 presents an image showing a practical implementation
of the proposed system.
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Figure 1. Photographic image showing a practical implementation of the proposed system.

The workpiece in the current study was forged aluminum wheel rims (see Figure 2a),
a numerical rendering of which is presented in Figure 2b. Forged aluminum wheel rims are
subject to a wide range of defects, including dirt spots, paint stains, scratches, and dents,
respectively presented in Figure 3a–d.
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Figure 3. Defects typical of aluminum rims: (a) dirt spot, (b) paint stain, (c) scratch, and (d) dent.

The imaging system in the current study was based on a color CMOS camera (GS3-
U3-51S5C-C; Canada APO Spart) to obtain images at a high sampling rate in real-time (see
Table 1).

Table 1. Specifications of the industrial camera GS3-U3-51S5C-C.

Firmware 2.25.3 Gain Range 0 dB~48 dB

Resolution 2448 × 2048 Exposure Range 0.006 ms~32 s

Frame Rate 75 FPS Interface USB3.1

Chrome Color Dimensions/Mass 44 mm × 29 mm × 58 mm/90 g

Sensor Sony IMX250, CMOS,2/3” Power Requirements 5 V via USB3.1 or 8~24 V via GPIO

Readout Method Global shutter Lens Mount C-mount

In the following, we outline the methods used to plan the path of the robot arm. In
RobotStudio, we first constructed an operating environment, including CAD files of the
arm, industrial camera, and wheel rims (see Figure 4). We then created a coordinate map
of the tools (camera) and workpiece (wheel rim). We then specified the surface area to be
inspected. The resulting generation path was meant to align the camera perpendicular to
the surface of interest (see Figure 5). A simulated detection path is presented in Figure 6.

RobotStudio SDK was used to control the robot arm while displaying real-time operat-
ing information and scanning results. In addition, external hardware for image recognition,
adjusting imaging parameters, and controlling the multi-angle light source was integrated
within the robot arm. Figure 7 presents the basic control interface, Figure 8 presents the
automation interface, and Figure 9 presents the test results interface.
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Figure 9. Test results interface.

Our objective in this research was to automate the optical detection of defects in forged
wheel rims. Experiments were designed to address (1) the collection of images showing
examples of defects, (2) the methods used to expand the training dataset, (3) training of the
convolutional neural network, (4) planning and simulation of the robot path, (5) capturing
real-time images as the robot arm is moving, (6) algorithmic image analysis, and (7) the
human-machine interface. A flowchart of the various experiments is presented in Figure 10.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18 
 

 

path, (5) capturing real-time images as the robot arm is moving, (6) algorithmic image 

analysis, and (7) the human-machine interface. A flowchart of the various experiments is 

presented in Figure 10. 

 

Figure 10. Flowchart showing the experiments conducted in this study. 

3. Related Works 

3.1. GAN and DCGAN 

Goodfellow et al. [15] developed a framework comprising generative networks and 

adversarial networks to train two models, including (1) a generator (G) to capture data 

distributions and (2) a discriminator (D) to differentiate between actual and erroneous 

defects. The objective of the G model is to maximize the likelihood that the discrimination 

(D) model will make mistakes. The objective of the D model is to differentiate between 

actual and erroneous samples. This system iteratively trains both G and D models [16]. 

Figure 11 presents a schematic diagram showing the basic architecture of an adversarial 

network. 

Noise

G
Generator

Real
Samples

D
Discrminator

Is D 
Correct?

Wheel rims
flawed

Generated
Fake

Samples

Fine Tune Training

 

Figure 11. The basic architecture of the GAN network. 

Discriminator (D) is a binary classifier that classifies data generated by generator (G) 

as real or unreal. Generator (G) seeks to minimize its loss function based on data classified 

as real by Discriminator (D). The modeling method is as Equation (1). This means that the 

objective functions of G and D are inverse (log(D(x)), log(1 − D(G(z))), where z refers to 

Figure 10. Flowchart showing the experiments conducted in this study.



Sensors 2022, 22, 3927 6 of 17

3. Related Works
3.1. GAN and DCGAN

Goodfellow et al. [15] developed a framework comprising generative networks and
adversarial networks to train two models, including (1) a generator (G) to capture data
distributions and (2) a discriminator (D) to differentiate between actual and erroneous defects.
The objective of the G model is to maximize the likelihood that the discrimination (D) model
will make mistakes. The objective of the D model is to differentiate between actual and
erroneous samples. This system iteratively trains both G and D models [16]. Figure 11
presents a schematic diagram showing the basic architecture of an adversarial network.
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Discriminator (D) is a binary classifier that classifies data generated by generator (G)
as real or unreal. Generator (G) seeks to minimize its loss function based on data classified
as real by Discriminator (D). The modeling method is as Equation (1). This means that
the objective functions of G and D are inverse (log(D(x)), log(1 − D(G(z))), where z refers
to noise with a uniform, normal, or Gaussian distribution. The goal of optimization is to
bring the probability distribution of G close to that of D, thereby generating images that
resemble actual images of defects. Maximum likelihood estimation (MLE) is used to solve
the optimization problem.

minmax(D, G) = Ex∼pdata[logD(x)] + Ez∼pz[log(1− D(G(z)))], (1)

where x is a real image from the true data distribution pdata; z is a noise vector sampled
from distribution pz (e.g., uniform or Gaussian distribution); and training is performed in
a minimax game with the global optimum of pz converging to pdata.

Our use of machine learning for the detection of defects requires a large amount of
training data corresponding to defects in the real world. However, it is not easy to collect
a large number of instances of a given type of defect or to deal with wheels presenting
multiple defects. In the current study, we sought to overcome this limitation by generating
additional samples using both GAN and DCGAN. In 2016, Radford et al. [17] proposed
a DCGAN system in which convolutional neural networks are used for discriminators
and generators. Compared to the original GAN, DCGAN provides superior stability,
ease of convergence, and image samples of superior quality. The architecture of DCGAN
is comparable to that of GAN; however, both the generator and the discriminator use
convolutional neural networks. In each convolutional layer, batch regularization is applied
to the generator and discriminator to enhance stability.
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3.2. YOLO v3 and v4

When dealing with deep neural networks, training effectiveness depends on depth.
Prior to the development of ResNet [18], increasing the number of training layers often led
to gradient disappearance or explosion, which could seriously compromise accuracy. In
2018, Redmon and Farhadi [19] updated YOLO (version v3), using ResNet to resolve the
problem of gradient disappearance and explosion in conjunction with multi-scale feature
maps to enhance detection and predictive performance for small objects [20].

YOLO v3 employs the feature pyramid network (FPN) architecture, which uses multi-
scale feature mapping to facilitate the detection of objects. For example, a 416 × 416 image
might undergo downsampling 32 times, 16 times, and eight times to obtain feature maps at
three different scales. Figure 12 illustrates the architecture of YOLO v3 [21].
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In 2020, Bochkovskiy et al. [22] developed YOLO v4 based on numerous detection
optimization schemes analysis. The resulting algorithm uses fewer parameters in the
main network to enhance calculation speed and recognition accuracy. Figure 13 shows the
architecture of YOLO v4.

3.2.1. Input

YOLO v4 uses the Mosaic method for image amplification, which involves the zoom-
ing, cropping, and stitching of four photos extracted from the input dataset.
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3.2.2. Backbone

YOLO v4 represents an attempt to improve the operating speed of neural networks
by implementing the Cross Stage Partial Network (CSPNet) [23] structure using fewer
convolution groups in the convolutional layer (1–8 groups) and then combining CSPNet
with ResNeXt50 and Darknet53. This network architecture was shown to enhance the learn-
ing ability of CNNs with a corresponding effect on prediction accuracy while eliminating
computational bottlenecks to reduce memory usage.

3.2.3. Neck

YOLO v4 employs Spatial Pyramid Pooling technology [24] and Path Aggregation
Network technology [25] for optimization in the Neck, intending to fuse local and global fea-
tures to improve the results obtained using the final feature map. Essentially, this involves
combining four feature maps of different scales to expand the horizon of perception.

3.2.4. Head

In the Head, YOLO v4 adopts the predictive framework of YOLO v3, wherein the
creation of a bounding box is based on offset and confidence levels. The backbone is
based on the smooth, continuous, self-regularized, and non-monotonic Mish activation
function [26]:

f (x) = xtanh(so f tplus(x)) = xtanh(ln(1 + ex)) (2)

The features of YOLO v4 are outlined in the following:

(1) Bag of Freebies (BoF) for backbone: CutMix [27] and Mosaic are used for data aug-
mentation, whereas DropBlock [28] and Class label smoothing [29] are used to avoid
overfitting regularizers.

(2) BoF for detector: Complete intersection over union loss (CIOU loss) is used to im-
prove convergence accuracy, while cross mini-batch normalization (CmBN) is used to
reduce the computational burden, and self-adversarial training (SAT) is used for data
enhancement [9], and DropBlock and Mosaic are used for data augmentation.

(3) Bag of Specials (BoS) for backbone: CSPNet is used to improve accuracy and reduce
memory usage and implement the Mish activation function and multi-input weighted
residual connections (MiWRC).

(4) BoS for detector: A spatial attention module (SAM-block) is used to improve training
efficiency in implementing distance intersection over union (DIoU-NMS), the SPP-
block, the PAN path-aggregation block, and the Mish activation function.

4. Experimental Results
4.1. Collecting a Dataset of Images Showing Manufacturing Flaws

Our objective was to improve detection accuracy by making the defects large, diverse,
and distinct from the background to facilitate the training of the convolutional neural
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network. Figure 14 presents a photographic image showing the practical implementation
of the proposed defect detection system.
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Figure 14. Practical implementation of the proposed defect detection system.

Most of the rims used in this study had dirt spots and/or paint stains. From these
actual rims, we collected 245 images of defects. We compiled a total of 270 defects, including
230 dirt spots, 25 paint stains, and 15 dander defects. Figure 15 illustrates the distribution
of defect types as percentages. Figure 16 presents examples of the three types of defects.
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Figure 16. Photographs examples of the three types of defect addressed in this study.

4.2. Image Dataset

Automated systems designed to detect defects require a large number of samples
to achieve high recognition performance. Unfortunately, in the real world, assembling
a dataset of sufficient size can be exceedingly difficult. We used GAN and DCGAN to
generate images showing simulated defects in the current study. Generative models are
meant to generate a diverse set of images that closely resemble actual samples to augment
the training dataset.
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4.3. Image Augmentation and Scaling

Images measuring 2448 × 2048 were reduced to dimensions suitable for the generative
network (i.e., 270 images measuring 64 × 64). We employed the open-source library Keras to
create generative adversarial network models (GAN and DCGAN) for use in generating images
by which to train YOLO. Figure 17 presents a flowchart of the generative adversarial network.
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Figure 17. Flowchart showing the implementation of the proposed generative adversarial networks.

When the 2448 × 2048 image is directly input to the neural network, the output will
not highlight the characteristics of the flaw. First, we use the image processing software
to crop the flawed images to a size of 64 × 64, as shown in Figure 18 below. Then, the
270 pieces of 64 × 64 flaw images are stored in the dataset.
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Figure 18. Examples of cropped flawed images.

After importing the required packages, libraries, and image input dimensions into
GAN and DCGAN, we set the number of iterations and batch size for model training. Note
that there is no set standard for the number of iterations or batch size; however, the batch
size must not exceed the memory capacity. Note also that the size of these parameters is
proportional to the time required for training.

4.4. Training Results

As shown in Figure 19a, after running the GAN model through 10,000 iterations,
the flaws in the images began to take shape. Running 20,000 iterations (Figure 19b) or
30,000 iterations (Figure 19c) did not significantly affect the output images, which indicates
that the GAN model was unable to reach convergence when applied to this training dataset.

Figure 20a, 20b, and 20c respectively present the results of DCGAN after 10,000, 20,000,
and 30,000 iterations. After 10,000 iterations, the image has gradually become a prototype.
After 20,000 iterations, the noise began to interfere with the features of the defects; however,
the outline of the defects remained discernable. After 30,000 iterations, the flaws are easily
discerned, and the images with less noise are indistinguishable from the original samples,
which indicates that DCGAN achieved convergence.
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Figure 20. DCGAN training results: (a) 10,000 iterations; (b) 20,000 iterations; (c) 30,000 iterations.

A comparison of the images generated using DCGAN (30,000 iterations) and actual
images (Figure 21) revealed that the proposed dataset augmentation scheme was highly
effective in generating a diversity of realistic defects. Generated images (640 × 480) were
then stored for use in training YOLO.
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4.5. Training the Convolutional Neural Network

We respectively trained YOLO v3 and YOLO v4 using the original and DCGAN-
generated images. We then evaluated the four sets of training results in order to identify
the best image dataset (original images or generated images). We also sought to identify
the best network architecture for defect detection (YOLO v3 or YOLO v4). The training
process is illustrated in Figure 22.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 21. Comparison of actual photographic images and generated images. 

4.5. Training the Convolutional Neural Network 

We respectively trained YOLO v3 and YOLO v4 using the original and DCGAN-

generated images. We then evaluated the four sets of training results in order to identify 

the best image dataset (original images or generated images). We also sought to identify 

the best network architecture for defect detection (YOLO v3 or YOLO v4). The training 

process is illustrated in Figure 22. 

 

Figure 22. Flowchart showing experiments involving the application of original and generated im-

ages to YOLO v3 and YOLO v4. 

We organized the training samples and annotation files to create a dataset for train-

ing. The distribution of flaws was as follows: dirt spots (85%), paint stains (9%), and dan-

der defects (6%). Note, however, that despite the nature of the defects, they appeared quite 

similar to dirt smears. This allowed us to merge the three types of the defect into a single 

classification category, hereafter referred to as a defect. Table 2 lists the details of datasets 

used in the four evaluations. 

Table 2. Dataset details used to evaluate image sets and CNNs. 

Experiment\Total Sample 
Total Number of 

Samples (Photos) 

Number of Train-

ing Samples (Pho-

tos) 

Number of Test-

ing Samples (Pho-

tos) 

YOLO v3 Original images 245 196 49 

YOLO v4 Original images 245 196 49 

YOLO v3 Original images 

+DCGAN 
545 436 109 

YOLO v4 Original images 

+DCGAN 
545 436 109 

4.6. CNN Detection Results 

The detection results were evaluated using the mean average precision (mAP) in 

model recognition and a confusion matrix. The concept of mAP is similar to that of 

Figure 22. Flowchart showing experiments involving the application of original and generated
images to YOLO v3 and YOLO v4.

We organized the training samples and annotation files to create a dataset for training.
The distribution of flaws was as follows: dirt spots (85%), paint stains (9%), and dander
defects (6%). Note, however, that despite the nature of the defects, they appeared quite
similar to dirt smears. This allowed us to merge the three types of the defect into a single
classification category, hereafter referred to as a defect. Table 2 lists the details of datasets
used in the four evaluations.

Table 2. Dataset details used to evaluate image sets and CNNs.

Experiment\Total Sample Total Number of
Samples (Photos)

Number of Training
Samples (Photos)

Number of Testing
Samples (Photos)

YOLO v3 Original images 245 196 49
YOLO v4 Original images 245 196 49

YOLO v3 Original images + DCGAN 545 436 109
YOLO v4 Original images + DCGAN 545 436 109

4.6. CNN Detection Results

The detection results were evaluated using the mean average precision (mAP) in model
recognition and a confusion matrix. The concept of mAP is similar to that of Intersection
over Union (IoU). Based on the schematic diagram in Figure 23, the IoU of sets A and B can
be calculated as follows:

IoU(A, B) =
A ∩ B
A ∪ B

, (3)

where set A denotes the predicted bounding box and set B indicates the ground-truth
bounding box.
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Figure 23. Schematic diagram illustrating the predicted and actual bounding boxes.

The confusion matrix comprised the following four elements:

• True Positive (TP): Correctly identified positive samples.
• True Negative (TN): Correctly identified negative samples.
• False Positive (FP): Incorrectly identified as positive samples (type-I error).
• False Negative (FN): Incorrectly identified as negative samples (type-II error).

After defining the four elements, we assessed the quality of the model by deriving the
corresponding Accuracy, Recall, and Precision as follows:

Accuracy =
TP + TN

(TN + TP + FN + FP)
(4)

Recall =
TP

(TP + FN)
(5)

Precision =
TP

(TP + FP)
(6)

In Figures 24 and 25, the blue line is the loss curve, and the red line is the mAP. In our
comparison of models after 2500 iterations, the mAP of YOLO v3 using only the original
images was 53.0%. Adding DCGAN images increased the mAP to 67.1%. The mAP of
YOLO v4 using only the original images was 65.5%. Adding DCGAN images increased the
mAP to 84.0%. Overall, YOLO v4 outperformed YOLO v3, and the inclusion of synthetic
images further improved performance.
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Figure 25. Training results for YOLO v4: (a) original images only (b) original images plus DCGAN
synthetic images.

The second stage of testing was performed using eight rims, comprising 25 defects.
Model prediction data are listed in Table 3, and the calculation results are listed in Table 4.
In the test results in Figure 26, defects are indicated by boxes.

Table 3. Model prediction data.

Analysis\Methods YOLO v3 YOLO v4 YOLO v3 + DCGAN YOLO v4 + DCGAN

TP 217 98 176 213
FP 268 67 153 56
FN 89 209 130 93
TN 562 770 677 774

Table 4. Calculated results.

Analysis\Methods YOLO v3 YOLO v4 YOLO v3 + DCGAN YOLO v4 + DCGAN

Total number of defects 306 307 306 306
detected 217 98 176 213
Accuracy 68.5% 75.8% 75% 86.8%

Recall 70.9% 31.9% 57.5% 69.6%
Precision 44.7% 59.3% 53.4% 79.1%

Sensors 2022, 22, x FOR PEER REVIEW 16 of 18 
 

 

Table 3. Model prediction data. 

Analysis\Methods YOLO v3 YOLO v4 YOLO 
v3+DCGAN 

YOLO 
v4+DCGAN 

TP 217 98 176 213 
FP 268 67 153 56 
FN 89 209 130 93 
TN 562 770 677 774 

Table 4. Calculated results. 

Analysis\Methods YOLO v3 YOLO v4 YOLO 
v3+DCGAN 

YOLO 
v4+DCGAN 

Total number of 
defects 

306 307 306 306 

detected 217 98 176 213 
Accuracy 68.5% 75.8% 75% 86.8% 

Recall 70.9% 31.9% 57.5% 69.6% 
Precision 44.7% 59.3% 53.4% 79.1% 

 
Figure 26. Photographs showing the locations of defects. 

We conducted further analysis of the best training model (YOLO v4+DCGAN) to 
determine whether increasing the number of iterations would increase detection accuracy. 
The results are listed in Table 5. The times required for the system to complete the 
inspections are listed in Table 6. 

Table 5. Detection accuracy as a function of the number of iterations. 

Methods\Analysis Accuracy Precision Recall 
YOLO v4+DCGAN (5000) 80.6% 66.4% 56.2% 
YOLO v4+DCGAN (4000) 63.7% 41.1% 80.0% 
YOLO v4+DCGAN (3000) 76.1% 54.4% 70.2% 
YOLO v4+DCGAN (2000) 86.8% 79.1% 69.6% 

Table 6. Computational efficiency of the proposed automated detection system. 

Methods\Time Robot detect Total 
YOLO v3 2 min 39 s 56.3 s 3 min 35.3 s 

YOLO v3+DCGAN 2 min 39 s 56.2 s 3 min 35.2 s 
YOLO v4 2 min 39 s 56.3 s 3 min 35.3 s 

YOLO v4+DCGAN(5000) 2 min 39 s 56.1 s 3 min 35.1 s 

We compared two image recognition algorithms and two image generation 
algorithms in this experiment. Overall, we determined that DCGAN was superior to the 
conventional GAN. The proposed system using YOLO v4 plus DCGAN achieved an 
accuracy of 86.8%. Furthermore, running the system through 20,000 iterations provided 

Figure 26. Photographs showing the locations of defects.

We conducted further analysis of the best training model (YOLO v4+DCGAN) to deter-
mine whether increasing the number of iterations would increase detection accuracy. The
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results are listed in Table 5. The times required for the system to complete the inspections
are listed in Table 6.

Table 5. Detection accuracy as a function of the number of iterations.

Methods\Analysis Accuracy Precision Recall

YOLO v4 + DCGAN (5000) 80.6% 66.4% 56.2%
YOLO v4 + DCGAN (4000) 63.7% 41.1% 80.0%
YOLO v4 + DCGAN (3000) 76.1% 54.4% 70.2%
YOLO v4 + DCGAN (2000) 86.8% 79.1% 69.6%

Table 6. Computational efficiency of the proposed automated detection system.

Methods\Time Robot detect Total

YOLO v3 2 min 39 s 56.3 s 3 min 35.3 s
YOLO v3 + DCGAN 2 min 39 s 56.2 s 3 min 35.2 s

YOLO v4 2 min 39 s 56.3 s 3 min 35.3 s
YOLO v4 + DCGAN(5000) 2 min 39 s 56.1 s 3 min 35.1 s

We compared two image recognition algorithms and two image generation algorithms
in this experiment. Overall, we determined that DCGAN was superior to the conventional
GAN. The proposed system using YOLO v4 plus DCGAN achieved an accuracy of 86.8%.
Furthermore, running the system through 20,000 iterations provided optimal results in
terms of detection accuracy with no significant increase in computation time.

5. Conclusions

This paper presents an automated system for the detection of defects on irregular
curved surfaces of aluminum, which are generally poorly suited to optical analysis. We
overcame these limitations using a multi-angle image capture scheme with multiple ad-
justable light sources. We also assessed the performance of the system using the YOLO v3
and YOLO v4 deep learning models.

Wheel rims can have as many as 90 types of flaws; however, it is difficult to obtain
a sufficient volume of training data for every type of flaw. We, therefore, used GAN and
DCGAN to enable the generation of additional images to augment the sparse datasets. This
approach proved highly effective in enhancing the accuracy, recall, and precision ratios of
YOLO v3 (+6.5%) and YOLO v4 (+37.7%).
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