
Citation: Mao, W.-L.; Chiu, Y.-Y.; Lin,

B.-H.; Wang, C.-C.; Wu, Y.-T.; You,

C.-Y.; Chien, Y.-R. Integration of Deep

Learning Network and Robot Arm

System for Rim Defect Inspection

Application. Sensors 2022, 22, 3927.

https://doi.org/10.3390/s22103927

Academic Editor: Biswanath Samanta

Received: 24 March 2022

Accepted: 19 May 2022

Published: 22 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Integration of Deep Learning Network and Robot Arm System
for Rim Defect Inspection Application
Wei-Lung Mao 1, Yu-Ying Chiu 1, Bing-Hong Lin 1, Chun-Chi Wang 1, Yi-Ting Wu 1, Cheng-Yu You 1

and Ying-Ren Chien 2,*

1 Department of Electrical Engineering, Graduate School of Engineering Science and Technology,
National Yunlin University of Science and Technology, Yunlin 640301, Taiwan;
wlmao@yuntech.edu.tw (W.-L.M.); ice.eye@aandf.com.tw (Y.-Y.C.); katari@aandf.com.tw (B.-H.L.);
d11010202@yuntech.edu.tw (C.-C.W.); m10812013@yuntech.edu.tw (Y.-T.W.);
m10812014@yuntech.edu.tw (C.-Y.Y.)

2 Department of Electrical Engineering, National Ilan University, Yilan 260007, Taiwan
* Correspondence: yrchien@niu.edu.tw; Tel.: +886-3-9317396

Abstract: Automated inspection has proven to be the most effective approach to maintaining quality
in industrial-scale manufacturing. This study employed the eye-in-hand architecture in conjunction
with deep learning and convolutional neural networks to automate the detection of defects in forged
aluminum rims for electric vehicles. RobotStudio software was used to simulate the environment and
path trajectory for a camera installed on an ABB robot arm to capture 3D images of the rims. Four types
of surface defects were examined: (1) dirt spots, (2) paint stains, (3) scratches, and (4) dents. Generative
adversarial network (GAN) and deep convolutional generative adversarial networks (DCGAN) were
used to generate additional images to expand the depth of the training dataset. We also developed a
graphical user interface and software system to mark patterns associated with defects in the images.
The defect detection algorithm based on YOLO algorithms made it possible to obtain results more
quickly and with higher mean average precision (mAP) than that of existing methods. Experiment
results demonstrated the accuracy and efficiency of the proposed system. Our developed system has
been shown to be a helpful rim defective detection system for industrial applications.

Keywords: robotic arm; rim defect detection; YOLO algorithm; deep convolutional generative
adversarial networks (DCGAN)

1. Introduction

Light alloy castings are widely used to reduce the weight of electric vehicles (e.g., wheel
rims and steering boxes); however, a high degree of variability in the casting process necessi-
tates careful visual inspection of all such devices. The non-destructive inspection of manufac-
tured items based on computer vision has proven highly effective and efficient; however, the
inability of such systems to deal with non-planar objects from multiple angles necessitates
manual inspections by human operators, which is expensive and time-consuming.

The automated inspection of tire rims is generally performed using X-ray analysis
or conventional image processing [1–3]. In the current study, we constructed an auto-
mated system to detect defects on the forged aluminum rims of electric vehicles, using
deep learning and convolutional neural networks [4–7]. The proposed system adopted
the eye-in-hand architecture, which involves a charge-coupled device (CCD) camera on
an ABB robotic arm with a graphical user interface to provide control over the camera
trajectory and an adjustable light-emitting diode (LED) lighting system. The captured
images are then analyzed using an object detection algorithm. We evaluated the YOLO
v3 and YOLO v4deep learning models, both of which are lightweight, unsupervised, and
efficient. These networks have previously been used to determine whether a mask has been
put on correctly [8], to detect surface defects in the equipment in power substations [9], and

Sensors 2022, 22, 3927. https://doi.org/10.3390/s22103927 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103927
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3013-0290
https://doi.org/10.3390/s22103927
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103927?type=check_update&version=3

Sensors 2022, 22, 3927 2 of 17

to detect ships in aerial radar images [10]. The use of deep learning in a system such as this
requires a large number of images presenting flaws of every conceivable type; however,
obtaining such images can be difficult. In [11], researchers created adversarial networks
(DCGAN, LSGAN, and WGAN) to overcome an insufficient number of images for their
training model. GANs and DCGANs have been used to establish systems by which to
monitor one-dimensional current waveforms [12]. GANs have been used to increase the
accuracy of CNNs for the diagnosis of bladder cancer [13]. DCGANs have been used to
expand the dataset of chest X-ray images to enhance classifier performance [14].

In the current study, the images generated using GAN failed to meet our standards;
however, DCGAN provided usable results. We therefore combined the original images
with photos generated using DCGAN in training YOLO v3 and YOLO v4 and assessed the
results. This research contributes to our understanding of detection systems for curved
metal surfaces and the application of deep learning networks to detection applications.

The structure of the research work is as described below. Section 2 discusses the
overall system architecture. Section 3 describes the related works. Experiments and results
are presented in Section 4. Conclusions are presented in Section 5.

2. System Design

In most existing defect detection systems, the camera(s) is mounted in a fixed position
while the workpiece is moved, such that the images used for inspection are aligned ver-
tically relative to the workpiece. Unfortunately, this approach is ill-suited to objects with
irregular and/or curved surfaces due primarily to the difficulty of capturing images from
multiple angles. In the current study, we adopted the eye-in-hand approach to defect detec-
tion, wherein the camera is attached to an ABB robotic arm, and multiple lights are used
to provide illumination. A PC-based controller integrates the camera equipment with the
control system for the arm. Figure 1 presents an image showing a practical implementation
of the proposed system.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 18

v4deep learning models, both of which are lightweight, unsupervised, and efficient. These

networks have previously been used to determine whether a mask has been put on cor-

rectly [8], to detect surface defects in the equipment in power substations [9], and to detect

ships in aerial radar images [10]. The use of deep learning in a system such as this requires

a large number of images presenting flaws of every conceivable type; however, obtaining

such images can be difficult. In [11], researchers created adversarial networks (DCGAN,

LSGAN, and WGAN) to overcome an insufficient number of images for their training

model. GANs and DCGANs have been used to establish systems by which to monitor

one-dimensional current waveforms [12]. GANs have been used to increase the accuracy

of CNNs for the diagnosis of bladder cancer [13]. DCGANs have been used to expand the

dataset of chest X-ray images to enhance classifier performance [14].

In the current study, the images generated using GAN failed to meet our standards;

however, DCGAN provided usable results. We therefore combined the original images

with photos generated using DCGAN in training YOLO v3 and YOLO v4 and assessed

the results. This research contributes to our understanding of detection systems for curved

metal surfaces and the application of deep learning networks to detection applications.

The structure of the research work is as described below. Section 2 discusses the over-

all system architecture. Section 3 describes the related works. Experiments and results are

presented in Section 4. Conclusions are presented in Section 5.

2. System Design

In most existing defect detection systems, the camera(s) is mounted in a fixed posi-

tion while the workpiece is moved, such that the images used for inspection are aligned

vertically relative to the workpiece. Unfortunately, this approach is ill-suited to objects

with irregular and/or curved surfaces due primarily to the difficulty of capturing images

from multiple angles. In the current study, we adopted the eye-in-hand approach to defect

detection, wherein the camera is attached to an ABB robotic arm, and multiple lights are

used to provide illumination. A PC-based controller integrates the camera equipment

with the control system for the arm. Figure 1 presents an image showing a practical im-

plementation of the proposed system.

Figure 1. Photographic image showing a practical implementation of the proposed system.

The workpiece in the current study was forged aluminum wheel rims (see Figure 2a),

a numerical rendering of which is presented in Figure 2b. Forged aluminum wheel rims

are subject to a wide range of defects, including dirt spots, paint stains, scratches, and

dents, respectively presented in Figure 3a–d.

Figure 1. Photographic image showing a practical implementation of the proposed system.

The workpiece in the current study was forged aluminum wheel rims (see Figure 2a),
a numerical rendering of which is presented in Figure 2b. Forged aluminum wheel rims are
subject to a wide range of defects, including dirt spots, paint stains, scratches, and dents,
respectively presented in Figure 3a–d.

Sensors 2022, 22, 3927 3 of 17Sensors 2022, 22, x FOR PEER REVIEW 3 of 18

(a) (b)

Figure 2. (a) Image of actual aluminum rim; (b) numerical rendering of the aluminum rim.

(a) (b) (c) (d)

Figure 3. Defects typical of aluminum rims: (a) dirt spot, (b) paint stain, (c) scratch, and (d) dent.

The imaging system in the current study was based on a color CMOS camera (GS3-

U3-51S5C-C; Canada APO Spart) to obtain images at a high sampling rate in real-time (see

Table 1).

Table 1. Specifications of the industrial camera GS3-U3-51S5C-C.

Firmware 2.25.3 Gain Range 0 dB~48 dB

Resolution 2448 × 2048 Exposure Range 0.006 ms~32 s

Frame Rate 75 FPS Interface USB3.1

Chrome Color Dimensions/Mass 44 mm × 29 mm × 58 mm/90 g

Sensor
Sony IMX250,

CMOS,2/3”
Power Requirements

5 V via USB3.1 or 8~24 V via

GPIO

Readout

Method
Global shutter Lens Mount C-mount

In the following, we outline the methods used to plan the path of the robot arm. In

RobotStudio, we first constructed an operating environment, including CAD files of the

arm, industrial camera, and wheel rims (see Figure 4). We then created a coordinate map

of the tools (camera) and workpiece (wheel rim). We then specified the surface area to be

inspected. The resulting generation path was meant to align the camera perpendicular to

the surface of interest (see Figure 5). A simulated detection path is presented in Figure 6.

Figure 2. (a) Image of actual aluminum rim; (b) numerical rendering of the aluminum rim.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 18

(a) (b)

Figure 2. (a) Image of actual aluminum rim; (b) numerical rendering of the aluminum rim.

(a) (b) (c) (d)

Figure 3. Defects typical of aluminum rims: (a) dirt spot, (b) paint stain, (c) scratch, and (d) dent.

The imaging system in the current study was based on a color CMOS camera (GS3-

U3-51S5C-C; Canada APO Spart) to obtain images at a high sampling rate in real-time (see

Table 1).

Table 1. Specifications of the industrial camera GS3-U3-51S5C-C.

Firmware 2.25.3 Gain Range 0 dB~48 dB

Resolution 2448 × 2048 Exposure Range 0.006 ms~32 s

Frame Rate 75 FPS Interface USB3.1

Chrome Color Dimensions/Mass 44 mm × 29 mm × 58 mm/90 g

Sensor
Sony IMX250,

CMOS,2/3”
Power Requirements

5 V via USB3.1 or 8~24 V via

GPIO

Readout

Method
Global shutter Lens Mount C-mount

In the following, we outline the methods used to plan the path of the robot arm. In

RobotStudio, we first constructed an operating environment, including CAD files of the

arm, industrial camera, and wheel rims (see Figure 4). We then created a coordinate map

of the tools (camera) and workpiece (wheel rim). We then specified the surface area to be

inspected. The resulting generation path was meant to align the camera perpendicular to

the surface of interest (see Figure 5). A simulated detection path is presented in Figure 6.

Figure 3. Defects typical of aluminum rims: (a) dirt spot, (b) paint stain, (c) scratch, and (d) dent.

The imaging system in the current study was based on a color CMOS camera (GS3-
U3-51S5C-C; Canada APO Spart) to obtain images at a high sampling rate in real-time (see
Table 1).

Table 1. Specifications of the industrial camera GS3-U3-51S5C-C.

Firmware 2.25.3 Gain Range 0 dB~48 dB

Resolution 2448 × 2048 Exposure Range 0.006 ms~32 s

Frame Rate 75 FPS Interface USB3.1

Chrome Color Dimensions/Mass 44 mm × 29 mm × 58 mm/90 g

Sensor Sony IMX250, CMOS,2/3” Power Requirements 5 V via USB3.1 or 8~24 V via GPIO

Readout Method Global shutter Lens Mount C-mount

In the following, we outline the methods used to plan the path of the robot arm. In
RobotStudio, we first constructed an operating environment, including CAD files of the
arm, industrial camera, and wheel rims (see Figure 4). We then created a coordinate map
of the tools (camera) and workpiece (wheel rim). We then specified the surface area to be
inspected. The resulting generation path was meant to align the camera perpendicular to
the surface of interest (see Figure 5). A simulated detection path is presented in Figure 6.

RobotStudio SDK was used to control the robot arm while displaying real-time operat-
ing information and scanning results. In addition, external hardware for image recognition,
adjusting imaging parameters, and controlling the multi-angle light source was integrated
within the robot arm. Figure 7 presents the basic control interface, Figure 8 presents the
automation interface, and Figure 9 presents the test results interface.

Sensors 2022, 22, 3927 4 of 17Sensors 2022, 22, x FOR PEER REVIEW 4 of 18

Figure 4. Environment layout.

Figure 5. Select the machined surface.

Figure 6. Simulated detection path.

RobotStudio SDK was used to control the robot arm while displaying real-time op-

erating information and scanning results. In addition, external hardware for image recog-

nition, adjusting imaging parameters, and controlling the multi-angle light source was

integrated within the robot arm. Figure 7 presents the basic control interface, Figure 8

presents the automation interface, and Figure 9 presents the test results interface.

Figure 4. Environment layout.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18

Figure 4. Environment layout.

Figure 5. Select the machined surface.

Figure 6. Simulated detection path.

RobotStudio SDK was used to control the robot arm while displaying real-time op-

erating information and scanning results. In addition, external hardware for image recog-

nition, adjusting imaging parameters, and controlling the multi-angle light source was

integrated within the robot arm. Figure 7 presents the basic control interface, Figure 8

presents the automation interface, and Figure 9 presents the test results interface.

Figure 5. Select the machined surface.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18

Figure 4. Environment layout.

Figure 5. Select the machined surface.

Figure 6. Simulated detection path.

RobotStudio SDK was used to control the robot arm while displaying real-time op-

erating information and scanning results. In addition, external hardware for image recog-

nition, adjusting imaging parameters, and controlling the multi-angle light source was

integrated within the robot arm. Figure 7 presents the basic control interface, Figure 8

presents the automation interface, and Figure 9 presents the test results interface.

Figure 6. Simulated detection path.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18

Figure 7. Basic control interface.

Figure 8. Automated detection interface.

Figure 9. Test results interface.

Our objective in this research was to automate the optical detection of defects in

forged wheel rims. Experiments were designed to address (1) the collection of images

showing examples of defects, (2) the methods used to expand the training dataset, (3)

training of the convolutional neural network, (4) planning and simulation of the robot

Figure 7. Basic control interface.

Sensors 2022, 22, 3927 5 of 17

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18

Figure 7. Basic control interface.

Figure 8. Automated detection interface.

Figure 9. Test results interface.

Our objective in this research was to automate the optical detection of defects in

forged wheel rims. Experiments were designed to address (1) the collection of images

showing examples of defects, (2) the methods used to expand the training dataset, (3)

training of the convolutional neural network, (4) planning and simulation of the robot

Figure 8. Automated detection interface.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18

Figure 7. Basic control interface.

Figure 8. Automated detection interface.

Figure 9. Test results interface.

Our objective in this research was to automate the optical detection of defects in

forged wheel rims. Experiments were designed to address (1) the collection of images

showing examples of defects, (2) the methods used to expand the training dataset, (3)

training of the convolutional neural network, (4) planning and simulation of the robot

Figure 9. Test results interface.

Our objective in this research was to automate the optical detection of defects in forged
wheel rims. Experiments were designed to address (1) the collection of images showing
examples of defects, (2) the methods used to expand the training dataset, (3) training of the
convolutional neural network, (4) planning and simulation of the robot path, (5) capturing
real-time images as the robot arm is moving, (6) algorithmic image analysis, and (7) the
human-machine interface. A flowchart of the various experiments is presented in Figure 10.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18

path, (5) capturing real-time images as the robot arm is moving, (6) algorithmic image

analysis, and (7) the human-machine interface. A flowchart of the various experiments is

presented in Figure 10.

Figure 10. Flowchart showing the experiments conducted in this study.

3. Related Works

3.1. GAN and DCGAN

Goodfellow et al. [15] developed a framework comprising generative networks and

adversarial networks to train two models, including (1) a generator (G) to capture data

distributions and (2) a discriminator (D) to differentiate between actual and erroneous

defects. The objective of the G model is to maximize the likelihood that the discrimination

(D) model will make mistakes. The objective of the D model is to differentiate between

actual and erroneous samples. This system iteratively trains both G and D models [16].

Figure 11 presents a schematic diagram showing the basic architecture of an adversarial

network.

Noise

G
Generator

Real
Samples

D
Discrminator

Is D
Correct?

Wheel rims
flawed

Generated
Fake

Samples

Fine Tune Training

Figure 11. The basic architecture of the GAN network.

Discriminator (D) is a binary classifier that classifies data generated by generator (G)

as real or unreal. Generator (G) seeks to minimize its loss function based on data classified

as real by Discriminator (D). The modeling method is as Equation (1). This means that the

objective functions of G and D are inverse (log(D(x)), log(1 − D(G(z))), where z refers to

Figure 10. Flowchart showing the experiments conducted in this study.

Sensors 2022, 22, 3927 6 of 17

3. Related Works
3.1. GAN and DCGAN

Goodfellow et al. [15] developed a framework comprising generative networks and
adversarial networks to train two models, including (1) a generator (G) to capture data
distributions and (2) a discriminator (D) to differentiate between actual and erroneous defects.
The objective of the G model is to maximize the likelihood that the discrimination (D) model
will make mistakes. The objective of the D model is to differentiate between actual and
erroneous samples. This system iteratively trains both G and D models [16]. Figure 11
presents a schematic diagram showing the basic architecture of an adversarial network.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18

path, (5) capturing real-time images as the robot arm is moving, (6) algorithmic image

analysis, and (7) the human-machine interface. A flowchart of the various experiments is

presented in Figure 10.

Figure 10. Flowchart showing the experiments conducted in this study.

3. Related Works

3.1. GAN and DCGAN

Goodfellow et al. [15] developed a framework comprising generative networks and

adversarial networks to train two models, including (1) a generator (G) to capture data

distributions and (2) a discriminator (D) to differentiate between actual and erroneous

defects. The objective of the G model is to maximize the likelihood that the discrimination

(D) model will make mistakes. The objective of the D model is to differentiate between

actual and erroneous samples. This system iteratively trains both G and D models [16].

Figure 11 presents a schematic diagram showing the basic architecture of an adversarial

network.

Noise

G
Generator

Real
Samples

D
Discrminator

Is D
Correct?

Wheel rims
flawed

Generated
Fake

Samples

Fine Tune Training

Figure 11. The basic architecture of the GAN network.

Discriminator (D) is a binary classifier that classifies data generated by generator (G)

as real or unreal. Generator (G) seeks to minimize its loss function based on data classified

as real by Discriminator (D). The modeling method is as Equation (1). This means that the

objective functions of G and D are inverse (log(D(x)), log(1 − D(G(z))), where z refers to

Figure 11. The basic architecture of the GAN network.

Discriminator (D) is a binary classifier that classifies data generated by generator (G)
as real or unreal. Generator (G) seeks to minimize its loss function based on data classified
as real by Discriminator (D). The modeling method is as Equation (1). This means that
the objective functions of G and D are inverse (log(D(x)), log(1 − D(G(z))), where z refers
to noise with a uniform, normal, or Gaussian distribution. The goal of optimization is to
bring the probability distribution of G close to that of D, thereby generating images that
resemble actual images of defects. Maximum likelihood estimation (MLE) is used to solve
the optimization problem.

minmax(D, G) = Ex∼pdata[logD(x)] + Ez∼pz[log(1− D(G(z)))], (1)

where x is a real image from the true data distribution pdata; z is a noise vector sampled
from distribution pz (e.g., uniform or Gaussian distribution); and training is performed in
a minimax game with the global optimum of pz converging to pdata.

Our use of machine learning for the detection of defects requires a large amount of
training data corresponding to defects in the real world. However, it is not easy to collect
a large number of instances of a given type of defect or to deal with wheels presenting
multiple defects. In the current study, we sought to overcome this limitation by generating
additional samples using both GAN and DCGAN. In 2016, Radford et al. [17] proposed
a DCGAN system in which convolutional neural networks are used for discriminators
and generators. Compared to the original GAN, DCGAN provides superior stability,
ease of convergence, and image samples of superior quality. The architecture of DCGAN
is comparable to that of GAN; however, both the generator and the discriminator use
convolutional neural networks. In each convolutional layer, batch regularization is applied
to the generator and discriminator to enhance stability.

Sensors 2022, 22, 3927 7 of 17

3.2. YOLO v3 and v4

When dealing with deep neural networks, training effectiveness depends on depth.
Prior to the development of ResNet [18], increasing the number of training layers often led
to gradient disappearance or explosion, which could seriously compromise accuracy. In
2018, Redmon and Farhadi [19] updated YOLO (version v3), using ResNet to resolve the
problem of gradient disappearance and explosion in conjunction with multi-scale feature
maps to enhance detection and predictive performance for small objects [20].

YOLO v3 employs the feature pyramid network (FPN) architecture, which uses multi-
scale feature mapping to facilitate the detection of objects. For example, a 416 × 416 image
might undergo downsampling 32 times, 16 times, and eight times to obtain feature maps at
three different scales. Figure 12 illustrates the architecture of YOLO v3 [21].

Sensors 2022, 22, x FOR PEER REVIEW 8 of 18

Inputs
(batch_size, 416,416,3)

Conv2D
(batch_size, 416,416,32)

Res
(batch_size, 208,208,64)

Res
(batch_size, 104,104,128)

Res
(batch_size, 52,52,256)

Res
(batch_size, 26,26,512)

Res
(batch_size, 13,13,1024)

Conv2D 5L
(batch_size, 52,52,128)

Concat
(batch_size, 52,52,384)

Conv2D + Up2D
(batch_size, 52,52,128)

Conv2D 5L
(batch_size, 13,13,256)

Concat
(batch_size, 26,26,768)

Conv2D + Up2D
(batch_size, 26,26,256)

Conv2D 5L
(batch_size, 13,13,1024)

Darknet-53

FPN

Conv2D 3×3 + Conv2D 1×1
(batch_size, 52 ,52 ,75)

Conv2D 3×3 + Conv2D 1×1
(batch_size, 26 ,26 ,75)

Conv2D 3×3 + Conv2D 1×1
(batch_size, 13 ,13 ,75)

Figure 12. Schematic diagram showing the architecture of YOLO v3.

In 2020, Bochkovskiy et al. [22] developed YOLO v4 based on numerous detection

optimization schemes analysis. The resulting algorithm uses fewer parameters in the main

network to enhance calculation speed and recognition accuracy. Figure 13 shows the ar-

chitecture of YOLO v4.

Stage two Stage one

Figure 13. Schematic diagram showing the YOLO v4 object detection architecture.

3.2.1. Input

YOLO v4 uses the Mosaic method for image amplification, which involves the zoom-

ing, cropping, and stitching of four photos extracted from the input dataset.

Figure 12. Schematic diagram showing the architecture of YOLO v3.

In 2020, Bochkovskiy et al. [22] developed YOLO v4 based on numerous detection
optimization schemes analysis. The resulting algorithm uses fewer parameters in the
main network to enhance calculation speed and recognition accuracy. Figure 13 shows the
architecture of YOLO v4.

3.2.1. Input

YOLO v4 uses the Mosaic method for image amplification, which involves the zoom-
ing, cropping, and stitching of four photos extracted from the input dataset.

Sensors 2022, 22, 3927 8 of 17

Sensors 2022, 22, x FOR PEER REVIEW 8 of 18

Inputs
(batch_size, 416,416,3)

Conv2D
(batch_size, 416,416,32)

Res
(batch_size, 208,208,64)

Res
(batch_size, 104,104,128)

Res
(batch_size, 52,52,256)

Res
(batch_size, 26,26,512)

Res
(batch_size, 13,13,1024)

Conv2D 5L
(batch_size, 52,52,128)

Concat
(batch_size, 52,52,384)

Conv2D + Up2D
(batch_size, 52,52,128)

Conv2D 5L
(batch_size, 13,13,256)

Concat
(batch_size, 26,26,768)

Conv2D + Up2D
(batch_size, 26,26,256)

Conv2D 5L
(batch_size, 13,13,1024)

Darknet-53

FPN

Conv2D 3×3 + Conv2D 1×1
(batch_size, 52 ,52 ,75)

Conv2D 3×3 + Conv2D 1×1
(batch_size, 26 ,26 ,75)

Conv2D 3×3 + Conv2D 1×1
(batch_size, 13 ,13 ,75)

Figure 12. Schematic diagram showing the architecture of YOLO v3.

In 2020, Bochkovskiy et al. [22] developed YOLO v4 based on numerous detection

optimization schemes analysis. The resulting algorithm uses fewer parameters in the main

network to enhance calculation speed and recognition accuracy. Figure 13 shows the ar-

chitecture of YOLO v4.

Stage two Stage one

Figure 13. Schematic diagram showing the YOLO v4 object detection architecture.

3.2.1. Input

YOLO v4 uses the Mosaic method for image amplification, which involves the zoom-

ing, cropping, and stitching of four photos extracted from the input dataset.

Figure 13. Schematic diagram showing the YOLO v4 object detection architecture.

3.2.2. Backbone

YOLO v4 represents an attempt to improve the operating speed of neural networks
by implementing the Cross Stage Partial Network (CSPNet) [23] structure using fewer
convolution groups in the convolutional layer (1–8 groups) and then combining CSPNet
with ResNeXt50 and Darknet53. This network architecture was shown to enhance the learn-
ing ability of CNNs with a corresponding effect on prediction accuracy while eliminating
computational bottlenecks to reduce memory usage.

3.2.3. Neck

YOLO v4 employs Spatial Pyramid Pooling technology [24] and Path Aggregation
Network technology [25] for optimization in the Neck, intending to fuse local and global fea-
tures to improve the results obtained using the final feature map. Essentially, this involves
combining four feature maps of different scales to expand the horizon of perception.

3.2.4. Head

In the Head, YOLO v4 adopts the predictive framework of YOLO v3, wherein the
creation of a bounding box is based on offset and confidence levels. The backbone is
based on the smooth, continuous, self-regularized, and non-monotonic Mish activation
function [26]:

f (x) = xtanh(so f tplus(x)) = xtanh(ln(1 + ex)) (2)

The features of YOLO v4 are outlined in the following:

(1) Bag of Freebies (BoF) for backbone: CutMix [27] and Mosaic are used for data aug-
mentation, whereas DropBlock [28] and Class label smoothing [29] are used to avoid
overfitting regularizers.

(2) BoF for detector: Complete intersection over union loss (CIOU loss) is used to im-
prove convergence accuracy, while cross mini-batch normalization (CmBN) is used to
reduce the computational burden, and self-adversarial training (SAT) is used for data
enhancement [9], and DropBlock and Mosaic are used for data augmentation.

(3) Bag of Specials (BoS) for backbone: CSPNet is used to improve accuracy and reduce
memory usage and implement the Mish activation function and multi-input weighted
residual connections (MiWRC).

(4) BoS for detector: A spatial attention module (SAM-block) is used to improve training
efficiency in implementing distance intersection over union (DIoU-NMS), the SPP-
block, the PAN path-aggregation block, and the Mish activation function.

4. Experimental Results
4.1. Collecting a Dataset of Images Showing Manufacturing Flaws

Our objective was to improve detection accuracy by making the defects large, diverse,
and distinct from the background to facilitate the training of the convolutional neural

Sensors 2022, 22, 3927 9 of 17

network. Figure 14 presents a photographic image showing the practical implementation
of the proposed defect detection system.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18

Figure 14. Practical implementation of the proposed defect detection system.

Most of the rims used in this study had dirt spots and/or paint stains. From these

actual rims, we collected 245 images of defects. We compiled a total of 270 defects, includ-

ing 230 dirt spots, 25 paint stains, and 15 dander defects. Figure 15 illustrates the distribu-

tion of defect types as percentages. Figure 16 presents examples of the three types of de-

fects.

Figure 15. Distribution of defect types as percentages.

Figure 16. Photographs examples of the three types of defect addressed in this study.

4.2. Image Dataset

Automated systems designed to detect defects require a large number of samples to

achieve high recognition performance. Unfortunately, in the real world, assembling a da-

taset of sufficient size can be exceedingly difficult. We used GAN and DCGAN to generate

images showing simulated defects in the current study. Generative models are meant to

generate a diverse set of images that closely resemble actual samples to augment the train-

ing dataset.

Figure 14. Practical implementation of the proposed defect detection system.

Most of the rims used in this study had dirt spots and/or paint stains. From these
actual rims, we collected 245 images of defects. We compiled a total of 270 defects, including
230 dirt spots, 25 paint stains, and 15 dander defects. Figure 15 illustrates the distribution
of defect types as percentages. Figure 16 presents examples of the three types of defects.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18

Figure 14. Practical implementation of the proposed defect detection system.

Most of the rims used in this study had dirt spots and/or paint stains. From these

actual rims, we collected 245 images of defects. We compiled a total of 270 defects, includ-

ing 230 dirt spots, 25 paint stains, and 15 dander defects. Figure 15 illustrates the distribu-

tion of defect types as percentages. Figure 16 presents examples of the three types of de-

fects.

Figure 15. Distribution of defect types as percentages.

Figure 16. Photographs examples of the three types of defect addressed in this study.

4.2. Image Dataset

Automated systems designed to detect defects require a large number of samples to

achieve high recognition performance. Unfortunately, in the real world, assembling a da-

taset of sufficient size can be exceedingly difficult. We used GAN and DCGAN to generate

images showing simulated defects in the current study. Generative models are meant to

generate a diverse set of images that closely resemble actual samples to augment the train-

ing dataset.

Figure 15. Distribution of defect types as percentages.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18

Figure 14. Practical implementation of the proposed defect detection system.

Most of the rims used in this study had dirt spots and/or paint stains. From these

actual rims, we collected 245 images of defects. We compiled a total of 270 defects, includ-

ing 230 dirt spots, 25 paint stains, and 15 dander defects. Figure 15 illustrates the distribu-

tion of defect types as percentages. Figure 16 presents examples of the three types of de-

fects.

Figure 15. Distribution of defect types as percentages.

Figure 16. Photographs examples of the three types of defect addressed in this study.

4.2. Image Dataset

Automated systems designed to detect defects require a large number of samples to

achieve high recognition performance. Unfortunately, in the real world, assembling a da-

taset of sufficient size can be exceedingly difficult. We used GAN and DCGAN to generate

images showing simulated defects in the current study. Generative models are meant to

generate a diverse set of images that closely resemble actual samples to augment the train-

ing dataset.

Figure 16. Photographs examples of the three types of defect addressed in this study.

4.2. Image Dataset

Automated systems designed to detect defects require a large number of samples
to achieve high recognition performance. Unfortunately, in the real world, assembling
a dataset of sufficient size can be exceedingly difficult. We used GAN and DCGAN to
generate images showing simulated defects in the current study. Generative models are
meant to generate a diverse set of images that closely resemble actual samples to augment
the training dataset.

Sensors 2022, 22, 3927 10 of 17

4.3. Image Augmentation and Scaling

Images measuring 2448 × 2048 were reduced to dimensions suitable for the generative
network (i.e., 270 images measuring 64 × 64). We employed the open-source library Keras to
create generative adversarial network models (GAN and DCGAN) for use in generating images
by which to train YOLO. Figure 17 presents a flowchart of the generative adversarial network.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18

4.3. Image Augmentation and Scaling

Images measuring 2448 × 2048 were reduced to dimensions suitable for the genera-

tive network (i.e., 270 images measuring 64 × 64). We employed the open-source library

Keras to create generative adversarial network models (GAN and DCGAN) for use in

generating images by which to train YOLO. Figure 17 presents a flowchart of the genera-

tive adversarial network.

Figure 17. Flowchart showing the implementation of the proposed generative adversarial networks.

When the 2448 × 2048 image is directly input to the neural network, the output will

not highlight the characteristics of the flaw. First, we use the image processing software

to crop the flawed images to a size of 64 × 64, as shown in Figure 18 below. Then, the 270

pieces of 64 × 64 flaw images are stored in the dataset.

Figure 18. Examples of cropped flawed images.

After importing the required packages, libraries, and image input dimensions into

GAN and DCGAN, we set the number of iterations and batch size for model training.

Note that there is no set standard for the number of iterations or batch size; however, the

batch size must not exceed the memory capacity. Note also that the size of these parame-

ters is proportional to the time required for training.

4.4. Training Results

As shown in Figure 19a, after running the GAN model through 10,000 iterations, the

flaws in the images began to take shape. Running 20,000 iterations (Figure 19b) or 30,000

iterations (Figure 19c) did not significantly affect the output images, which indicates that

the GAN model was unable to reach convergence when applied to this training dataset.

Figure 17. Flowchart showing the implementation of the proposed generative adversarial networks.

When the 2448 × 2048 image is directly input to the neural network, the output will
not highlight the characteristics of the flaw. First, we use the image processing software
to crop the flawed images to a size of 64 × 64, as shown in Figure 18 below. Then, the
270 pieces of 64 × 64 flaw images are stored in the dataset.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18

4.3. Image Augmentation and Scaling

Images measuring 2448 × 2048 were reduced to dimensions suitable for the genera-

tive network (i.e., 270 images measuring 64 × 64). We employed the open-source library

Keras to create generative adversarial network models (GAN and DCGAN) for use in

generating images by which to train YOLO. Figure 17 presents a flowchart of the genera-

tive adversarial network.

Figure 17. Flowchart showing the implementation of the proposed generative adversarial networks.

When the 2448 × 2048 image is directly input to the neural network, the output will

not highlight the characteristics of the flaw. First, we use the image processing software

to crop the flawed images to a size of 64 × 64, as shown in Figure 18 below. Then, the 270

pieces of 64 × 64 flaw images are stored in the dataset.

Figure 18. Examples of cropped flawed images.

After importing the required packages, libraries, and image input dimensions into

GAN and DCGAN, we set the number of iterations and batch size for model training.

Note that there is no set standard for the number of iterations or batch size; however, the

batch size must not exceed the memory capacity. Note also that the size of these parame-

ters is proportional to the time required for training.

4.4. Training Results

As shown in Figure 19a, after running the GAN model through 10,000 iterations, the

flaws in the images began to take shape. Running 20,000 iterations (Figure 19b) or 30,000

iterations (Figure 19c) did not significantly affect the output images, which indicates that

the GAN model was unable to reach convergence when applied to this training dataset.

Figure 18. Examples of cropped flawed images.

After importing the required packages, libraries, and image input dimensions into
GAN and DCGAN, we set the number of iterations and batch size for model training. Note
that there is no set standard for the number of iterations or batch size; however, the batch
size must not exceed the memory capacity. Note also that the size of these parameters is
proportional to the time required for training.

4.4. Training Results

As shown in Figure 19a, after running the GAN model through 10,000 iterations,
the flaws in the images began to take shape. Running 20,000 iterations (Figure 19b) or
30,000 iterations (Figure 19c) did not significantly affect the output images, which indicates
that the GAN model was unable to reach convergence when applied to this training dataset.

Figure 20a, 20b, and 20c respectively present the results of DCGAN after 10,000, 20,000,
and 30,000 iterations. After 10,000 iterations, the image has gradually become a prototype.
After 20,000 iterations, the noise began to interfere with the features of the defects; however,
the outline of the defects remained discernable. After 30,000 iterations, the flaws are easily
discerned, and the images with less noise are indistinguishable from the original samples,
which indicates that DCGAN achieved convergence.

Sensors 2022, 22, 3927 11 of 17

Sensors 2022, 22, x FOR PEER REVIEW 12 of 18

(a) (b)

(c)

Figure 19. GAN training results: (a) 10,000 iterations, (b) 20,000 iterations, and (c) 30,000 iterations.

Figure 20a, 20b, and 20c respectively present the results of DCGAN after 10,000,

20,000, and 30,000 iterations. After 10,000 iterations, the image has gradually become a

prototype. After 20,000 iterations, the noise began to interfere with the features of the de-

fects; however, the outline of the defects remained discernable. After 30,000 iterations, the

flaws are easily discerned, and the images with less noise are indistinguishable from the

original samples, which indicates that DCGAN achieved convergence.

(a) (b)

(c)

Figure 20. DCGAN training results: (a) 10,000 iterations; (b) 20,000 iterations; (c) 30,000 iterations.

A comparison of the images generated using DCGAN (30,000 iterations) and actual

images (Figure 21) revealed that the proposed dataset augmentation scheme was highly

effective in generating a diversity of realistic defects. Generated images (640 × 480) were

then stored for use in training YOLO.

Figure 19. GAN training results: (a) 10,000 iterations, (b) 20,000 iterations, and (c) 30,000 iterations.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 18

(a) (b)

(c)

Figure 19. GAN training results: (a) 10,000 iterations, (b) 20,000 iterations, and (c) 30,000 iterations.

Figure 20a, 20b, and 20c respectively present the results of DCGAN after 10,000,

20,000, and 30,000 iterations. After 10,000 iterations, the image has gradually become a

prototype. After 20,000 iterations, the noise began to interfere with the features of the de-

fects; however, the outline of the defects remained discernable. After 30,000 iterations, the

flaws are easily discerned, and the images with less noise are indistinguishable from the

original samples, which indicates that DCGAN achieved convergence.

(a) (b)

(c)

Figure 20. DCGAN training results: (a) 10,000 iterations; (b) 20,000 iterations; (c) 30,000 iterations.

A comparison of the images generated using DCGAN (30,000 iterations) and actual

images (Figure 21) revealed that the proposed dataset augmentation scheme was highly

effective in generating a diversity of realistic defects. Generated images (640 × 480) were

then stored for use in training YOLO.

Figure 20. DCGAN training results: (a) 10,000 iterations; (b) 20,000 iterations; (c) 30,000 iterations.

A comparison of the images generated using DCGAN (30,000 iterations) and actual
images (Figure 21) revealed that the proposed dataset augmentation scheme was highly
effective in generating a diversity of realistic defects. Generated images (640 × 480) were
then stored for use in training YOLO.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18

Figure 21. Comparison of actual photographic images and generated images.

4.5. Training the Convolutional Neural Network

We respectively trained YOLO v3 and YOLO v4 using the original and DCGAN-

generated images. We then evaluated the four sets of training results in order to identify

the best image dataset (original images or generated images). We also sought to identify

the best network architecture for defect detection (YOLO v3 or YOLO v4). The training

process is illustrated in Figure 22.

Figure 22. Flowchart showing experiments involving the application of original and generated im-

ages to YOLO v3 and YOLO v4.

We organized the training samples and annotation files to create a dataset for train-

ing. The distribution of flaws was as follows: dirt spots (85%), paint stains (9%), and dan-

der defects (6%). Note, however, that despite the nature of the defects, they appeared quite

similar to dirt smears. This allowed us to merge the three types of the defect into a single

classification category, hereafter referred to as a defect. Table 2 lists the details of datasets

used in the four evaluations.

Table 2. Dataset details used to evaluate image sets and CNNs.

Experiment\Total Sample
Total Number of

Samples (Photos)

Number of Train-

ing Samples (Pho-

tos)

Number of Test-

ing Samples (Pho-

tos)

YOLO v3 Original images 245 196 49

YOLO v4 Original images 245 196 49

YOLO v3 Original images

+DCGAN
545 436 109

YOLO v4 Original images

+DCGAN
545 436 109

4.6. CNN Detection Results

The detection results were evaluated using the mean average precision (mAP) in

model recognition and a confusion matrix. The concept of mAP is similar to that of

Figure 21. Comparison of actual photographic images and generated images.

Sensors 2022, 22, 3927 12 of 17

4.5. Training the Convolutional Neural Network

We respectively trained YOLO v3 and YOLO v4 using the original and DCGAN-
generated images. We then evaluated the four sets of training results in order to identify
the best image dataset (original images or generated images). We also sought to identify
the best network architecture for defect detection (YOLO v3 or YOLO v4). The training
process is illustrated in Figure 22.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18

Figure 21. Comparison of actual photographic images and generated images.

4.5. Training the Convolutional Neural Network

We respectively trained YOLO v3 and YOLO v4 using the original and DCGAN-

generated images. We then evaluated the four sets of training results in order to identify

the best image dataset (original images or generated images). We also sought to identify

the best network architecture for defect detection (YOLO v3 or YOLO v4). The training

process is illustrated in Figure 22.

Figure 22. Flowchart showing experiments involving the application of original and generated im-

ages to YOLO v3 and YOLO v4.

We organized the training samples and annotation files to create a dataset for train-

ing. The distribution of flaws was as follows: dirt spots (85%), paint stains (9%), and dan-

der defects (6%). Note, however, that despite the nature of the defects, they appeared quite

similar to dirt smears. This allowed us to merge the three types of the defect into a single

classification category, hereafter referred to as a defect. Table 2 lists the details of datasets

used in the four evaluations.

Table 2. Dataset details used to evaluate image sets and CNNs.

Experiment\Total Sample
Total Number of

Samples (Photos)

Number of Train-

ing Samples (Pho-

tos)

Number of Test-

ing Samples (Pho-

tos)

YOLO v3 Original images 245 196 49

YOLO v4 Original images 245 196 49

YOLO v3 Original images

+DCGAN
545 436 109

YOLO v4 Original images

+DCGAN
545 436 109

4.6. CNN Detection Results

The detection results were evaluated using the mean average precision (mAP) in

model recognition and a confusion matrix. The concept of mAP is similar to that of

Figure 22. Flowchart showing experiments involving the application of original and generated
images to YOLO v3 and YOLO v4.

We organized the training samples and annotation files to create a dataset for training.
The distribution of flaws was as follows: dirt spots (85%), paint stains (9%), and dander
defects (6%). Note, however, that despite the nature of the defects, they appeared quite
similar to dirt smears. This allowed us to merge the three types of the defect into a single
classification category, hereafter referred to as a defect. Table 2 lists the details of datasets
used in the four evaluations.

Table 2. Dataset details used to evaluate image sets and CNNs.

Experiment\Total Sample Total Number of
Samples (Photos)

Number of Training
Samples (Photos)

Number of Testing
Samples (Photos)

YOLO v3 Original images 245 196 49
YOLO v4 Original images 245 196 49

YOLO v3 Original images + DCGAN 545 436 109
YOLO v4 Original images + DCGAN 545 436 109

4.6. CNN Detection Results

The detection results were evaluated using the mean average precision (mAP) in model
recognition and a confusion matrix. The concept of mAP is similar to that of Intersection
over Union (IoU). Based on the schematic diagram in Figure 23, the IoU of sets A and B can
be calculated as follows:

IoU(A, B) =
A ∩ B
A ∪ B

, (3)

where set A denotes the predicted bounding box and set B indicates the ground-truth
bounding box.

Sensors 2022, 22, 3927 13 of 17

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18

Intersection over Union (IoU). Based on the schematic diagram in Figure 23, the IoU of

sets 𝐴 and 𝐵 can be calculated as follows:

𝐼𝑜𝑈(𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
, (3)

where set 𝐴 denotes the predicted bounding box and set 𝐵 indicates the ground-truth

bounding box.

Predicted bounding box

Ground-truth bounding box

Figure 23. Schematic diagram illustrating the predicted and actual bounding boxes.

The confusion matrix comprised the following four elements:

⚫ True Positive (TP): Correctly identified positive samples.

⚫ True Negative (TN): Correctly identified negative samples.

⚫ False Positive (FP): Incorrectly identified as positive samples (type-I error).

⚫ False Negative (FN): Incorrectly identified as negative samples (type-II error).

After defining the four elements, we assessed the quality of the model by deriving

the corresponding Accuracy, Recall, and Precision as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)
 (4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (6)

In Figures 24 and 25, the blue line is the loss curve, and the red line is the mAP. In

our comparison of models after 2500 iterations, the mAP of YOLO v3 using only the orig-

inal images was 53.0%. Adding DCGAN images increased the mAP to 67.1%. The mAP

of YOLO v4 using only the original images was 65.5%. Adding DCGAN images increased

the mAP to 84.0%. Overall, YOLO v4 outperformed YOLO v3, and the inclusion of syn-

thetic images further improved performance.

Figure 23. Schematic diagram illustrating the predicted and actual bounding boxes.

The confusion matrix comprised the following four elements:

• True Positive (TP): Correctly identified positive samples.
• True Negative (TN): Correctly identified negative samples.
• False Positive (FP): Incorrectly identified as positive samples (type-I error).
• False Negative (FN): Incorrectly identified as negative samples (type-II error).

After defining the four elements, we assessed the quality of the model by deriving the
corresponding Accuracy, Recall, and Precision as follows:

Accuracy =
TP + TN

(TN + TP + FN + FP)
(4)

Recall =
TP

(TP + FN)
(5)

Precision =
TP

(TP + FP)
(6)

In Figures 24 and 25, the blue line is the loss curve, and the red line is the mAP. In our
comparison of models after 2500 iterations, the mAP of YOLO v3 using only the original
images was 53.0%. Adding DCGAN images increased the mAP to 67.1%. The mAP of
YOLO v4 using only the original images was 65.5%. Adding DCGAN images increased the
mAP to 84.0%. Overall, YOLO v4 outperformed YOLO v3, and the inclusion of synthetic
images further improved performance.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 18

(a) (b)

Figure 24. Training results for YOLO v3: (a) original images only (b) original images plus DCGAN

synthetic images.

(a) (b)

Figure 25. Training results for YOLO v4: (a) original images only (b) original images plus DCGAN

synthetic images.

The second stage of testing was performed using eight rims, comprising 25 defects.

Model prediction data are listed in Table 3, and the calculation results are listed in Table

4. In the test results in Figure 26, defects are indicated by boxes.

Figure 24. Training results for YOLO v3: (a) original images only (b) original images plus DCGAN
synthetic images.

Sensors 2022, 22, 3927 14 of 17

Sensors 2022, 22, x FOR PEER REVIEW 15 of 18

(a) (b)

Figure 24. Training results for YOLO v3: (a) original images only (b) original images plus DCGAN

synthetic images.

(a) (b)

Figure 25. Training results for YOLO v4: (a) original images only (b) original images plus DCGAN

synthetic images.

The second stage of testing was performed using eight rims, comprising 25 defects.

Model prediction data are listed in Table 3, and the calculation results are listed in Table

4. In the test results in Figure 26, defects are indicated by boxes.

Figure 25. Training results for YOLO v4: (a) original images only (b) original images plus DCGAN
synthetic images.

The second stage of testing was performed using eight rims, comprising 25 defects.
Model prediction data are listed in Table 3, and the calculation results are listed in Table 4.
In the test results in Figure 26, defects are indicated by boxes.

Table 3. Model prediction data.

Analysis\Methods YOLO v3 YOLO v4 YOLO v3 + DCGAN YOLO v4 + DCGAN

TP 217 98 176 213
FP 268 67 153 56
FN 89 209 130 93
TN 562 770 677 774

Table 4. Calculated results.

Analysis\Methods YOLO v3 YOLO v4 YOLO v3 + DCGAN YOLO v4 + DCGAN

Total number of defects 306 307 306 306
detected 217 98 176 213
Accuracy 68.5% 75.8% 75% 86.8%

Recall 70.9% 31.9% 57.5% 69.6%
Precision 44.7% 59.3% 53.4% 79.1%

Sensors 2022, 22, x FOR PEER REVIEW 16 of 18

Table 3. Model prediction data.

Analysis\Methods YOLO v3 YOLO v4 YOLO
v3+DCGAN

YOLO
v4+DCGAN

TP 217 98 176 213
FP 268 67 153 56
FN 89 209 130 93
TN 562 770 677 774

Table 4. Calculated results.

Analysis\Methods YOLO v3 YOLO v4 YOLO
v3+DCGAN

YOLO
v4+DCGAN

Total number of
defects

306 307 306 306

detected 217 98 176 213
Accuracy 68.5% 75.8% 75% 86.8%

Recall 70.9% 31.9% 57.5% 69.6%
Precision 44.7% 59.3% 53.4% 79.1%

Figure 26. Photographs showing the locations of defects.

We conducted further analysis of the best training model (YOLO v4+DCGAN) to
determine whether increasing the number of iterations would increase detection accuracy.
The results are listed in Table 5. The times required for the system to complete the
inspections are listed in Table 6.

Table 5. Detection accuracy as a function of the number of iterations.

Methods\Analysis Accuracy Precision Recall
YOLO v4+DCGAN (5000) 80.6% 66.4% 56.2%
YOLO v4+DCGAN (4000) 63.7% 41.1% 80.0%
YOLO v4+DCGAN (3000) 76.1% 54.4% 70.2%
YOLO v4+DCGAN (2000) 86.8% 79.1% 69.6%

Table 6. Computational efficiency of the proposed automated detection system.

Methods\Time Robot detect Total
YOLO v3 2 min 39 s 56.3 s 3 min 35.3 s

YOLO v3+DCGAN 2 min 39 s 56.2 s 3 min 35.2 s
YOLO v4 2 min 39 s 56.3 s 3 min 35.3 s

YOLO v4+DCGAN(5000) 2 min 39 s 56.1 s 3 min 35.1 s

We compared two image recognition algorithms and two image generation
algorithms in this experiment. Overall, we determined that DCGAN was superior to the
conventional GAN. The proposed system using YOLO v4 plus DCGAN achieved an
accuracy of 86.8%. Furthermore, running the system through 20,000 iterations provided

Figure 26. Photographs showing the locations of defects.

We conducted further analysis of the best training model (YOLO v4+DCGAN) to deter-
mine whether increasing the number of iterations would increase detection accuracy. The

Sensors 2022, 22, 3927 15 of 17

results are listed in Table 5. The times required for the system to complete the inspections
are listed in Table 6.

Table 5. Detection accuracy as a function of the number of iterations.

Methods\Analysis Accuracy Precision Recall

YOLO v4 + DCGAN (5000) 80.6% 66.4% 56.2%
YOLO v4 + DCGAN (4000) 63.7% 41.1% 80.0%
YOLO v4 + DCGAN (3000) 76.1% 54.4% 70.2%
YOLO v4 + DCGAN (2000) 86.8% 79.1% 69.6%

Table 6. Computational efficiency of the proposed automated detection system.

Methods\Time Robot detect Total

YOLO v3 2 min 39 s 56.3 s 3 min 35.3 s
YOLO v3 + DCGAN 2 min 39 s 56.2 s 3 min 35.2 s

YOLO v4 2 min 39 s 56.3 s 3 min 35.3 s
YOLO v4 + DCGAN(5000) 2 min 39 s 56.1 s 3 min 35.1 s

We compared two image recognition algorithms and two image generation algorithms
in this experiment. Overall, we determined that DCGAN was superior to the conventional
GAN. The proposed system using YOLO v4 plus DCGAN achieved an accuracy of 86.8%.
Furthermore, running the system through 20,000 iterations provided optimal results in
terms of detection accuracy with no significant increase in computation time.

5. Conclusions

This paper presents an automated system for the detection of defects on irregular
curved surfaces of aluminum, which are generally poorly suited to optical analysis. We
overcame these limitations using a multi-angle image capture scheme with multiple ad-
justable light sources. We also assessed the performance of the system using the YOLO v3
and YOLO v4 deep learning models.

Wheel rims can have as many as 90 types of flaws; however, it is difficult to obtain
a sufficient volume of training data for every type of flaw. We, therefore, used GAN and
DCGAN to enable the generation of additional images to augment the sparse datasets. This
approach proved highly effective in enhancing the accuracy, recall, and precision ratios of
YOLO v3 (+6.5%) and YOLO v4 (+37.7%).

Author Contributions: Conceptualization, W.-L.M.; methodology, Y.-Y.C. and B.-H.L.; software,
C.-C.W., Y.-T.W. and C.-Y.Y.; validation, C.-C.W., Y.-T.W. and C.-Y.Y.; investigation, Y.-R.C.; re-
sources, W.-L.M.; data curation, Y.-R.C.; writing—original draft preparation, W.-L.M. and Y.-R.C.;
writing—review and editing W.-L.M.; visualization, Y.-R.C.; funding acquisition, W.-L.M.; project
administration, W.-L.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Ministry of Science and Technology of Taiwan.
Under Grants MOST 110-2221-E-224-049, and MOST 110-2622-E224-013.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Ministry of Science and Technology of
Taiwan, for the financial support of this research (Contract No: MOST 110-2221-E-224-049, and MOST
110-2622-E224-013).

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 3927 16 of 17

References
1. Mery, D.; Jaeger, T.; Filbert, D. A review of methods for automated recognition of casting defects. Insight-Wigston Northamp. 2002,

44, 428–436.
2. Zhang, J.; Guo, Z.; Jiao, T.; Wang, M. Defect detection of aluminum alloy wheels in radiography images using adaptive threshold

and morphological reconstruction. Appl. Sci. 2018, 12, 2365. [CrossRef]
3. Zhang, J.; Hao, L.; Jiao, T.; Que, L.; Wang, M. Mathematical morphology approach to internal defect analysis of a356 aluminum

alloy wheel hubs. Aims Math. 2020, 5, 3256–3273. [CrossRef]
4. Lee, K.-H.; Kim, H.-S.; Lee, S.-J.; Choo, S.-W. High precision hand-eye self-calibration for industrial robots. In Proceedings of the

2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 24–27 January 2018;
pp. 1–2.

5. Bae, S.-H.; Kim, E.-J.; Yang, S.-J.; Park, J.-K.; Kuc, T.-Y. A dynamic visual servoing of robot manipulator with eye-in-hand camera.
In Proceedings of the 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI,
USA, 24–27 January 2018; pp. 24–27.

6. Han, K.; Sun, M.; Zhou, X.; Zhang, G.; Dang, H.; Liu, Z. A new method in wheel hub surface defect detection: Object detection
algorithm based on deep learning. In Proceedings of the 2017 International Conference on Advanced Mechatronic Systems
(ICAMechS), Xiamen, China, 6–9 December 2017; pp. 335–338.

7. Sun, X.; Gu, J.; Huang, R.; Zou, R.; Palomares, B.G. Surface defects recognition of wheel hub based on improved faster R-CNN.
Electronics 2019, 8, 481. [CrossRef]

8. Degadwala, S.; Vyas, D.; Chakraborty, U.; Dider, A.R.; Biswas, H. Yolo-v4 deep learning model for medical face mask detection.
In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India,
25–27 March 2021; pp. 209–213.

9. Chen, X.; An, Z.; Huang, L.; He, S.; Zhang, X.; Lin, S. Surface defect detection of electric power equipment in substation based on
improved YOLO v4 algorithm. In Proceedings of the 2020 10th International Conference on Power and Energy Systems (ICPES),
Chengdu, China, 25–27 December 2020; pp. 256–261.

10. Jiang, S.; Zhu, M.; He, Y.; Zheng, Z.; Zhou, F.; Zhou, G. Ship detection with sar based on YOLO. In Proceedings of the IGARSS
2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp.
1647–1650.

11. Dewi, C.; Chen, R.-C.; Liu, Y.-T.; Jiang, X.; Hartomo, K.D. Yolo v4 for advanced traffic sign recognition with synthetic training
data generated by various GAN. IEEE Access 2021, 9, 97228–97242. [CrossRef]

12. Sabir, S.; Rosato, D.; Hartmann, S.; Gühmann, C. Signal generation using 1d deep convolutional generative adversarial networks
for fault diagnosis of electrical machines. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR),
Milan, Italy, 10–15 January 2021; pp. 3907–3914.

13. Lorencin, L.; Šegota, S.B.; And̄elić, N.; Mrzljak, V.; Ćabov, T.; Španjol, J.; Car, Z. On urinary bladder cancer diagnosis: Utilization
of deep convolutional generative adversarial networks for data augmentation. Biology 2021, 10, 175. [CrossRef]

14. Venu, S.K.; Ravula, S. Evaluation of deep convolutional generative adversarial networks for data augmentation of chest X-ray
images. Future Internet 2021, 13, 8. [CrossRef]

15. Goodfellow, L.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
network. Machine Learning. arXiv 2014, arXiv:1406.2661.

16. Bau, D.; Zhu, J.-Y.; Strobelt, H.; Zhou, B.; Tenenbaum, J.B.; Freeman, W.T.; Torralba, A. GAN dissection: Visuzlizing and
understanding generative adversarial networks. Computer Vision and Pattern Recognition. arXiv 2018, arXiv:1811.10597.

17. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
Machine Learning. arXiv 2016, arXiv:1511.06434.

18. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Computer Vision and Pattern Recognition. arXiv
2015, arXiv:1512.03385.

19. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
20. Zhao, L.; Li, S. Object detection algorithm based on improved YOLOv3. Electronics 2020, 9, 537. [CrossRef]
21. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. Computer

Vision and Pattern Recognition. arXiv 2016, arXiv:1612.03144.
22. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal speed and accuracy of object detection. Computer Vision and

Pattern Recognition. arXiv 2020, arXiv:2004.10934.
23. Wang, C.-Y.; Mark Liao, H.-Y.; Yeh, I.-H.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W. CSPNet: A new backbone that can enhance learning

capability of CNN. Computer Vision and Pattern Recognition. arXiv 2019, arXiv:1911.11929.
24. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. Machine

Learning. arXiv 2015, arXiv:1511.06434.
25. Lin, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. Computer Vision and Pattern Recognition.

arXiv 2018, arXiv:1803.01534.
26. Misra, D. Mish: A self regularized non-monotonic activation function. Machine Learning. arXiv 2019, arXiv:1908.08681.
27. Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. CutMix: Regularization strategy to train strong classifiers with localizable

features. Computer Vision and Pattern Recognition. arXiv 2019, arXiv:1905.04899.

http://doi.org/10.3390/app8122365
http://doi.org/10.3934/math.2020209
http://doi.org/10.3390/electronics8050481
http://doi.org/10.1109/ACCESS.2021.3094201
http://doi.org/10.3390/biology10030175
http://doi.org/10.3390/fi13010008
http://doi.org/10.3390/electronics9030537

Sensors 2022, 22, 3927 17 of 17

28. Ghiasi, G.; Lin, T.-Y.; Le, Q.Y. DropBlock: A regularization method for convolutional networks. Computer Vision and Pattern
Recognition. arXiv 2018, arXiv:1810.12890.

29. Müller, R.; Kornblith, S.; Hinton, G. When does label smoothing help. Machine Learning. arXiv 2019, arXiv:1906.02629.

	Introduction
	System Design
	Related Works
	GAN and DCGAN
	YOLO v3 and v4
	Input
	Backbone
	Neck
	Head

	Experimental Results
	Collecting a Dataset of Images Showing Manufacturing Flaws
	Image Dataset
	Image Augmentation and Scaling
	Training Results
	Training the Convolutional Neural Network
	CNN Detection Results

	Conclusions
	References

