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Abstract: Impervious surface as an evaluation indicator of urbanization is crucial for urban planning
and management. It is necessary to obtain impervious surface information with high accuracy and
resolution to meet dynamic monitoring under rapid urban development. At present, the methods of
impervious surface extraction are primarily based on medium-low-resolution images. Therefore, it is
of theoretical and application value to construct an impervious surface extraction method that applies
to high-resolution satellite images and can solve the shadow misclassification problem. This paper
builds an impervious surface extraction model by Bayes discriminant analysis (BDA). The Gaussian
prior model is incorporated into the Bayes discriminant analysis to establish a new impervious
surface extraction model (GBDA) applicable to high-resolution remote sensing images. Using GF-2
and Sentinel-2 remote sensing images as experimental data, we discuss and analyze the applicability
of BDA and GBDA in impervious surface extraction of high-resolution remote sensing images. The
results showed that the four methods, SVM, RF, BDA and GBDA, had OA values of 91.26%, 94.91%,
94.64% and 97.84% and Kappa values of 0.825, 0.898, 0.893 and 0.957, respectively, in the extraction
results of GF-2. In the results of effective Sentinel-2 extraction, the OA values of the four methods
were 87.94%, 91.79%, 92.19% and 93.51% and the Kappa values were 0.759, 0.836, 0.844 and 0.870,
respectively. Compared with the support vector machine (SVM), random forest (RF) and BDA
methods, GBDA has significantly improved the extraction accuracy. GBDA enhances the robustness
and generalization ability of the model and can improve the shadow misclassification phenomenon
of high-resolution images. The model constructed in this paper is highly reliable for extracting
impervious surfaces from high-resolution remote sensing images, exploring the application value of
Bayes discriminant analysis in impervious surface extraction and providing technical support for
impervious surface information of high spatial resolution and high quality.

Keywords: impervious surface; Bayes discriminant analysis; Gaussian prior model; GF-2; Sentinel-2

1. Introduction

Impervious surfaces are surfaces covered by various impervious materials, such as
roofs, roads, squares and parking lots made of tiles, asphalt, cement, concrete, etc. [1,2].
The impervious surface can express urban land use and cover and has an essential impact
on urban climate and temperature and is also a vital evaluation indicator of the degree
of urbanization and urban environmental quality [3–5]. Impervious surface information
provides the necessary data for urban planning, resource and environmental management
and the construction of ecological civilization [6]. Obtaining fast and accurate informa-
tion on urban impervious surfaces on a regional and global scale is essential for urban
management and future planning decisions [7–10].

Currently, remote sensing technology is an effective tool for obtaining impervious
surface information [11]. Remote sensing technology can provide accurate spatial and
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temporal information on the Earth’s surface by allowing simultaneous observation of large
areas in a short period [12]. With the development of satellite images in recent years,
various low-, medium- and high-resolution satellite images have been widely used for im-
pervious surface extraction studies [13]. However, in the current research, to quickly obtain
information on large impervious surfaces, medium-resolution remote sensing images are
still used as the primary research scale, especially Landsat series data [14,15]. With the
rapid development of cities, impervious surface information with high spatial resolution
and localized details are equally essential [16]. High-resolution imagery as a material for
extracting impervious surfaces can significantly reduce the mixed pixel problem and reflect
more detailed land cover characteristics [17,18]. According to the definition of impervi-
ous surface resolution level, high resolution refers to the spatial resolution of fewer than
10 m [19]. GF-2 and Sentinel-2 data are of high research value for extracting high-resolution
impervious surface information [20,21]. Sentinel-2 has 10 m resolution multispectral im-
agery [22], allowing for clearer impervious surface boundary identification than 30 m
Landsat imagery [23]. GF-2 is one of the sub-meter high-resolution remote sensing data
sources that can provide material for obtaining detailed information on local impervious
surfaces [16]. However, there are shadow problems in extracting impervious surfaces using
high-resolution images [24]. These shadows are often caused by high-rise buildings, which
affect the accuracy of impervious surface detection [25]. Therefore, various methods for
extracting impervious surfaces of remote sensing images have also been developed and
utilized, mainly including spectral mixture analysis (SMA) [26,27], remote sensing inver-
sion index-based methods [15] and classification-based methods [28–30]. SMA is a method
to solve the problem of mixed pixels. SMA is mainly applied to the impervious surface
information extraction of medium-resolution remote sensing images [31,32]. However, the
SMA method has high computational complexity [33,34]. The use of the SMA method is
limited when the remote sensing data band is less or the resolution is high [1]. Remote
sensing-based impervious surface inversion indexes are suitable for large impervious sur-
face extraction [35]. At this stage, many remote sensing inversion indices [36–39] have
been developed and used to enhance impervious surface information [40,41]. However,
the index method is often used to extract impervious surface information from medium-
resolution images and lacks the exploration of high-spatial-resolution images [42]. Among
classification-based methods, unsupervised classification algorithms are rarely applied
to urban impervious surface extraction because of their low classification accuracy [25].
Supervised classification can separate impervious surfaces from spectrally similar pervious
surfaces. Many global and regional land cover products that can be used for impervious
surface information analysis have been released in recent years through a supervised clas-
sification framework [43,44]. However, supervised classification produces products with
low spatial resolution and limited local accuracy [12]. In summary, medium-low-resolution
impervious surface mapping techniques have matured, but relatively few studies have
been conducted on high-resolution impervious surface information extraction [16]. To
meet the current demand for the rapid and accurate acquisition of high-resolution and
high-accuracy impervious surface information under urbanization, the impervious surface
extraction method, which applies to high-spatial-resolution satellite images, can solve
shadow misclassification and has a simple and effective extraction process, which is of high
research value [15].

Discriminant analysis is a multivariate statistical method that objectively uses multiple
factors to classify predictive objects [44]. Bayes discriminant constructs a multivariate
discriminant model based on the Bayes criterion to discriminate against the predicted
object [45], which is a method to find the best division under the condition of optimizing
the minimum false loss [46,47]. Bayes discriminant analysis has been applied to many fields
and produces more accurate predictions, especially risk prediction [48–50], disease pre-
diction [51,52] and chemometric statistical analysis [47,53,54]. However, studies applying
Bayes discriminant analysis to urban impervious surface extraction are rare.
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At present, how to effectively and quickly obtain high-accuracy impervious surface
information from high-resolution remote sensing images and reduce the misclassification
phenomenon generated by shadows are urgent problems to be solved. Introducing prior
knowledge can improve extraction accuracy and reduce shadow misclassification. To
this end, this paper constructs an impervious surface extraction model based on Bayes
discriminant analysis and explores the application of Bayes discriminant analysis in im-
pervious surface information extraction. We improve the prior of the BDA model to the
Gaussian prior and propose an impervious surface extraction model (GBDA) applicable to
high-spatial- resolution remote sensing images. Impervious surface information extraction
experiments on GF-2 and Sentinel-2 remote sensing images were conducted to verify the
performance and applicability of the GBDA model on multi-scale high-resolution images.
The main contributions to this paper are as follows:

(1) This paper proposes a Gaussian prior-based Bayes discriminant analysis impervi-
ous surface extraction model that can extract highly accurate impervious surface
information and clear boundaries;

(2) The impervious surface model constructed based on Bayes discriminant analysis
has the advantages of simple process, high computational efficiency and good com-
prehensive performance and can be used to extract impervious surface information
from multi-scale high-resolution remote sensing images. It avoids the waste of com-
putational resources, reduces the influence of subjective factors brought by sample
selection in the extraction process and improves extraction accuracy;

(3) The multivariate Gaussian distribution model is used to construct the prior model
because of its wide adaptability and advantage in analyzing complex statistics. The
GBDA model incorporating Gaussian prior enhances the generalization ability and
improves the robustness, effectively improving the extraction accuracy of impervi-
ous surfaces of high-resolution remote sensing images and reducing the shadow
misclassification phenomenon.

2. Methodology

The method of extracting impervious surfaces based on GBDA and BDA consists of
three parts: (1) Constructing a priori models: The a priori models of GBDA and BDA are
constructed based on the discriminant values x(g)

n of the training samples, the total number
of samples Z and the sample size M of the group A(g), respectively. (2) Calculate the
discriminant coefficient and construct the impervious surface extraction model: According
to Equations (8)–(12), the discriminant layer C(g) is obtained from the discriminant index
value x(g)

n of the training samples. Then the GBDA and BDA models can be constructed by
combining the obtained a priori models. (3) Impervious surface extraction: Various image
features are extracted as discriminant indicator layer X(g). X(g) is used as input data for the
model. Output Y(g) value follows the discriminative principle that the larger the obtained
Y(g) value is, the more likely the pixel belongs to the group A(g) and the final impervious
surface extraction result is obtained. The overall structure of the algorithm in this paper is
shown in Figure 1.
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2.1. A Novel Bayes Method for Impervious Surface Extraction from Remote Sensing Images

The impervious surface extraction model for Bayes discriminant analysis is constructed
based on the Bayes criterion. The Bayes criterion is to find an optimal division under the
principle of minimizing the average loss of misclassification in the division [55]. Specifically,
let there be a total of G(G = 2) categories and the samples are divided into g categories
(g = 1, 2), which are noted as group A(1) impervious surface, group A(2) pervious surface
and have N discriminative indicators. The Bayes criterion can be expressed as the maximum
of the product of the prior and the probability density function. Specifically, p(g) denotes
the prior, f (g)(x) is the probability density corresponding to the gth category and the Bayes
criterion can be expressed as the maximum value of p(g) f (g)(x). Then, Bayes discriminant
analysis for impervious surface extraction is equivalent to deriving a quantity similar to
the maximum posterior probability of each group, i.e.,

Y(g) = p(g) f (g)(x) (1)

From the perspective of the sample multivariate distribution, Equation (1) is shown as:

Y(g) = p(g) f (g)(x) = C(g)
0 + C(g)

1 x(g)
1 + C(g)

2 x(g)
2 + . . . + C(g)

n x(g)
n + ln P(g) (2)

The value of Y(g) reflects the likelihood of the pixel appearing in category g. The larger
the Y(g), the more likely the pixel to be judged is to appear in category g.

2.1.1. The Prior Model

Before constructing the impervious surface extraction model, the prior model p(g)

must be built. We built two prior models. One was built simply by using the proportion of
each group as the prior models, i.e.,

p(g) = M/Z (3)

where Z is the total number of pixels in the sample and M is the number of pixels in A(g).
The other is model is the Gaussian prior. The multivariate Gaussian distribution

model is essential in multivariate analysis because of its wide adaptability and advantage
in analyzing complex statistics [56]. Therefore, we describe the prior through the Gaussian
distribution so that the prior distribution of the group A(g) follows a Gaussian distribution
with mean x(g)

n :

p(g) =
1√
2πσ

e−
(x(g)

n −x(g)
n )

2

2σ2 (4)
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where x(g)
n is the value of the nth discriminant in the group A(g), x(g)

n is the sample mean of
the nth feature of category g:

x(g)
n =

1
M

M

∑
m=1

x(g)
mn(g = 1, 2; n = 1, 2, . . . , N) (5)

x(g) = (x(g)
1 , x(g)

2 , . . . , x(g)
N ) (6)

2.1.2. Gaussian Prior-Based Bayes Discriminant Analysis Impervious Surface
Extraction Model

The Gaussian prior-based Bayes discriminant analysis impervious surface extraction
model is obtained from Equations (2) and (4). It consists of the discriminant indicator layer
X(g), discriminant coefficient layer C(g) and the prior layer P(g):

Y(g) = M(X(g), C(g), ln P(g)) (7)

Discriminant indicator layer X(g) =
{

x(g)
1 , x(g)

2 , . . . , x(g)
n

}
: x(g)

n is the value of the

nth discriminant indicator in group A(g). This paper chooses the spectral bands of re-
mote sensing images as the discriminant indicators. x(g)

n is the grayscale value of each
band image.

Discriminant coefficient layer C(g) =
{

C(g)
0 , C(g)

1 , . . . , C(g)
n

}
: C(g) is the coefficient of

the discriminant indicators in the discriminant model, where C(g)
0 is a constant term:

(C(g)
1 , C(g)

2 , . . . , C(g)
N ) = (Z− G)S−1x(g)′ (8)

C(g)
0 = −1

2∑N
n=1 C(g)

n x(g)
n (9)

where Z is the total number of samples, M is the number of samples in the category g, x(g)
n

is the sample mean of the nth (n = 1, 2, . . . , N) feature of the gth category and x(g)′ is the
transpose of the vector consisting of the characteristic mean.

S−1 is the inverse matrix of the inter-factor correlation number matrix S. The inter-
factor correlation number matrix S:

S =


S11, S12, . . . , S1N
S21, S21, . . . , S2N
. . .
SN1, SN2, . . . , SNN

 (10)

Skl =
G

∑
g=1

S(g)
kl = S(1)

kl +S(2)
kl + . . . + S(G)

kl (k = 1, 2, . . . , N; l = 1, 2, . . . , N) (11)

S(g)
kl = S(g)

lk =
M

∑
i=1

(x(g)
ki − x(g)

k )(x(g)
li − x(g)

l ) (12)

where x(g)
ki is the value of the kth feature of the ith sample in the gth category and the value

of x(g)
li is the same.
The prior layer P(g): The prior model (4) constructed by Gaussian distribution is

incorporated into the impervious surface extraction model. The prior model P(g) in GBDA
exists in the form of ln P(g), which can be transformed into the following format:

ln p(g) = λ(g)‖x(g) − x(g)‖
2
2 (13)
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where λ(g) is the regularization parameter.
Since p(g) in (3) is a constant value, the impervious surface extraction model based

on Bayes discriminant analysis can be obtained from (2) and (3), which consist of the
discriminant indicator layer X(g) and discriminant coefficient layer C(g):

Y(g) = M(X(g), C(g)) (14)

2.2. Extracting Features and Collecting Training Samples

We chose three bands in the wavelength range of 0.45–0.51 µm, 0.53–0.59 µm and
0.64–0.67 µm as discriminative indicators. The training sample dataset of GF-2 is marked in
Figure 2a, with 204,020 impervious surface samples and 204,020 pervious surface samples
in the sample dataset. The training sample dataset of Sentinel-2 is shown in Figure 2b, with
408,040 impervious surface and pervious surface samples each. To verify the effectiveness
of the method in this paper, we randomly select different numbers of samples from the
existing sample set to train the model in this paper.
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image samples.

2.3. Accuracy

To comprehensively evaluate the impervious surface extraction model, we used pre-
cision, recall, F1 value, Overall Accuracy (OA) and Kappa coefficient for accuracy eval-
uation [57,58]. Precision is the ratio of samples that are actually impervious among all
samples predicted to be impervious and recall is the ratio of samples that are predicted to
be impervious among those that are actually impervious. F1 value is a statistical measure of
the accuracy of a binary classification model, which considers both the precision and recall
and is a reconciled average of the model’s precision and recall. The characteristics of differ-
ent models in impervious surface extraction can be better analyzed based on precision and
recall. However, the calculation results of precision, recall and F1 value excessively depend
on the number of samples and categories and there will be uncertainties. Combining the
OA value and Kappa coefficient can evaluate the accuracy of the results more objectively
and fairly. We calculated OA, Kappa, precision and recall based on confusion matrix and
calculated F1 value based on precision and recall.

3. Experiments and Results
3.1. Experimental Areas and Data
3.1.1. Experimental Areas

Changchun is located in the geographical center of Northeast China. Changchun is
at a medium level of development, but the city has experienced rapid economic growth
and significant urbanization in recent years. Chaoyang District is located in the south-
central part of Changchun’s central city, which is a representative area of Changchun’s
urbanization process. There are certain research implications of using the Chaoyang District
as a research object for urban development. This paper selects some areas within Chaoyang
District as the study area (Figure 3a).
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Shenzhen is located in the south of Guangdong Province, with nine administrative
districts and one new district under its jurisdiction. With the rapid development of ur-
banization and the rapid expansion of impervious surfaces, the land cover composition of
Shenzhen presents a high degree of heterogeneity, which has great potential in the field of
urban remote sensing research (Figure 3b).
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3.1.2. Remote Sensing Data

Gaofen-2 (GF-2), one of China’s new generation satellites, was officially put into use
in 2015, featuring high spatial resolution and high positioning accuracy, providing data
for the production of high-quality remote sensing products [13]. GF-2 has two types of
images: one is a multispectral image covering four spectral bands in the near-infrared
range with a spatial resolution of 4 m; the other is a panchromatic image with a spatial
resolution of 1 m in the visible spectrum [59]. This paper selected the GF-2 image of
the study area in Chaoyang District for the experiment. We decided on images with no
cloud coverage. Since a single scene covered the study region, image mosaicking was
not considered. The multispectral image was fused with the panchromatic image by the
NNDiffuse Pan Sharpening method into a 1 m resolution image with an image size of
3000 × 3000 pixels (Figure 4a).
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The Sentinel-2A satellite carries the Multi-Spectral Imager (MSI), covering 13 spectral
bands. The spatial resolution of the near-infrared, red, green and blue bands is 10 m and
the resolution of the red-edge band and the two short-wave infrared bands of the 11th
and 12th is 20 m. The resolution of the coastal/aerosol band, the water vapor band and
the short-wave infrared band in the 10th band is 60 m. Sentinel-2 [22] images can provide
clearer impervious surface boundary identification and are commonly used to extract
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impervious surface information [23]. We selected the Sentinel-2 image of the Shenzhen
study area for the experiment. There are five scenes of Sentinel-2 remote sensing images
covering the study area and the images are cloud-free and of good quality. The cropped
images were mosaicked into one image containing the study area and the Sentinel-2 image
of the study area is shown in Figure 4b.

3.2. Impervious Surface Extraction Experiments Based on GF-2 Images

The data used are GF-2 remote sensing images of an area in Chaoyang District
(Figure 4a) with 1 m resolution, containing three wavelength bands in the range of
0.45–0.51 µm, 0.53–0.59 µm and 0.64–0.67 µm and an image size of 3000 × 3000 pixels.
Four different numbers of samples were selected from the existing samples (Figure 2a) to
train the model in this paper to verify the effectiveness of our model. The four groups of
samples had the same number of impervious and pervious surfaces: 40,000, 60,000, 80,000
and 100,000, respectively. We used MATLAB software to write programs to implement the
methods in this paper. The SVM selected the radial basis function to train the classifier and
the number of RF trees was 100. The OA, Kappa coefficient and F1 value of the extraction
results of the four methods were calculated. A total of 27,000 test samples were randomly
created (13,500 each for impervious and pervious surfaces) and the accuracy results are
shown in Table 1.

The results of the four methods using different numbers of training samples to extract
impervious surfaces are shown in Figures 5–8. Comparison with the actual image (Figure 4a)
reveals that the results obtained by SVM and RF produce more misclassification of the
pervious surface into the impervious surface, with the misclassification of SVM being more
serious. The results of the BDA method are exactly the opposite of the two, producing more
impervious surfaces with omission classification. Compared with the three, the extraction
accuracy of the GBDA method after optimizing the prior was significantly improved,
effectively balancing the occurrence of the above two types of misclassification problems
so that impervious and pervious surfaces can be correctly identified.
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Among the four methods, SVM obtained the lowest accuracy and the two methods,
BDA and RF, had similar extraction accuracy with higher accuracy values than SVM.
Compared to SVM, the maximum increase in OA of BDA was 3.77%, the maximum increase
in Kappa value was 0.0752 and the maximum increase in F1 value was 0.0276. The OA and
Kappa of GBDA with a prior optimization were substantially improved compared with the
other three methods. Compared to BDA, GBDA had a maximum increase of 3.23% in OA,
0.0647 in Kappa and 0.0352 in F1 value.

Table 1. Accuracy assessment of impervious surfaces of GF-2 remote sensing images.

SVM RF BDA GBDA

OA
(%) Kappa F1

OA
(%) Kappa F1

OA
(%) Kappa F1

OA
(%) Kappa F1

40,000 90.87 0.8175 0.9161 94.81 0.8961 0.9505 94.64 0.8927 0.9437 97.84 0.9568 0.9785

60,000 91.06 0.8211 0.9177 94.75 0.8950 0.9500 94.51 0.8901 0.9422 97.74 0.9548 0.9774

80,000 91.26 0.8253 0.9194 94.91 0.8983 0.9514 94.61 0.8921 0.9433 97.78 0.9556 0.9777

100,000 91.07 0.8214 0.9178 94.84 0.8970 0.9563 94.62 0.8924 0.9434 97.82 0.9564 0.9781

3.3. Impervious Surface Extraction Experiments Based on Sentinel-2 Images

The data were selected from Sentinel-2 remote sensing images of Shenzhen, Guang-
dong Province (Figure 4b), with a resolution of 10 m, containing three wavelength bands
in the range of 0.45–0.51 µm, 0.53–0.59 µm and 0.64–0.67 µm. Four different numbers of
randomly selected samples from the existing impervious surface and pervious surface sam-
ples were trained for the four classifiers, respectively, to verify the method’s effectiveness
in Sentinel-2 images in this paper and to record the accuracy of the impervious surface
extraction results. The four groups of samples had the same number of impervious and
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pervious surfaces: 80,000, 120,000, 160,000 and 200,000, respectively. We still used MATLAB
software to write programs to implement the methods in this paper. The RBF radial basis
function was still chosen to train the SVM classifier with the random forest trees of 100.

Referring to the Shenzhen Sentinel-2 remote sensing image, it was found by visual
inspection that SVM (Figure 9) and RF (Figure 10) were prone to classifying water and bare
ground as impervious surfaces. Compared with SVM, RF had relatively minor misclassifi-
cations for these two categories. The BDA (Figure 11) method produced better classification
results for bare soils and meandering rivers with similar spectral characteristics to impervi-
ous surfaces. However, BDA was prone to shadow misclassification due to the similarity
between house shadows and certain spectral features of pervious surfaces. The comparison
of the results revealed that the GBDA (Figure 12) method, which optimizes a prior, can
effectively reduce the shadow misclassification phenomenon.

A total of 200,000 test samples were randomly created (100,000 each for impervious
and pervious surfaces) and the accuracy results are shown in Table 2. The accuracy of
this experiment achieved the same pattern as Experiment 1: SVM had the lowest accuracy
among the four methods; RF and BDA were next, both had similar accuracy values and
GBDA had the highest accuracy. GBDA showed a maximum increase of 7.96% in OA,
0.1592 in Kappa and 0.0638 in F1 value compared to SVM. GBDA showed a maximum
increase of 1.39% in OA, 0.0278 in Kappa and 0.0168 in F1 value compared to BDA.
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Table 2. Accuracy assessment of impervious surface of Sentinel-2 remote sensing images.

SVM RF BDA GBDA

OA
(%) Kappa F1

OA
(%) Kappa F1

OA
(%) Kappa F1

OA
(%) Kappa F1

80,000 86.89 0.7378 0.8833 91.70 0.8340 0.9223 92.19 0.8438 0.9207 93.51 0.8703 0.9368

120,000 87.94 0.7588 0.8914 91.60 0.8320 0.9215 92.08 0.8415 0.9195 93.46 0.8693 0.9363

160,000 85.50 0.7100 0.8725 91.79 0.8359 0.9231 92.07 0.8415 0.9195 93.46 0.8692 0.9363

200,000 86.92 0.7383 0.8834 91.60 0.8320 0.9214 92.10 0.8420 0.9198 93.44 0.8688 0.9359

3.4. The Analysis of Precision and Recall

The precision and recall of the GF-2 and Sentinel-2 image impervious surface extraction
results were obtained based on the test samples (Tables 3 and 4). Precision is the number
of samples that are actually impervious among all samples predicted to be impervious
and recall is the number of samples that are predicted to be impervious among those that
are actually impervious. The characteristics of different models in impervious surface
extraction can be better analyzed based on precision and recall. Additionally, some partial
parts are selected to show the details (Figure 13) to better demonstrate the extraction results.

In the precision and recall results of GF-2 (Table 3), the recall of SVM and RF was higher
than the precision. The recall of both reached 99%. However, RF had higher precision,
with a maximum improvement of 6.13% than SVM. From Figure 13c,d, it can be seen
that SVM and RF can easily misclassify the pervious surface as an impervious surface.
The BDA results were the opposite of both, with a precision of 99% and a recall of about
89%. Figure 13a,b shows an omission classification of building shadows by BDA. GBDA
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reconciled the precision and recall of the first three methods. GBDA improved the precision
compared to RF with a maximum improvement of 6.98% and the recall compared to BDA
with a maximum improvement of 8.50%.

The precision and recall results of Sentinel-2 (Table 4) show the same for SVM and
RF with high recall and low precision and BDA with high precision and low recall. From
Figure 13f–h, SVM and RF were more likely to classify bare soil and water as impervious
surfaces and Figure 13e shows that BDA still produced an omission classification for
building shadows. The maximum improvement in GBDA precision was 4.96% compared
to RF and the maximum improvement in GBDA recall was 5.68% compared to BDA.

Table 3. Precision and recall of impervious surfaces of GF-2 remote sensing images.

SVM RF BDA GBDA

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

40,000 84.76 99.67 90.89 99.60 99.30 89.91 97.82 97.87

60,000 85.00 99.70 90.79 99.61 99.38 89.57 97.42 98.07

80,000 85.31 99.69 91.06 99.61 99.39 89.76 97.96 97.59

100,000 85.04 99.68 90.96 99.60 99.35 89.82 97.94 97.69

Table 4. Precision and recall of impervious surfaces of Sentinel-2 remote sensing images.

SVM RF BDA GBDA

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

80,000 79.61 99.19 86.64 98.60 93.46 90.72 91.28 96.22

120,000 81.06 99.01 86.53 98.54 93.42 90.53 91.28 96.11

160,000 77.84 99.26 86.81 98.56 93.43 90.52 91.20 96.20

200,000 79.65 99.17 86.52 98.55 93.42 90.58 91.48 95.80
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4. Discussion
4.1. The Role of the Prior Model Optimization

The BDA model only consists of the discriminant indicator and discriminant coefficient
layers and lacks the prior layer compared with GBDA. According to the precision and
recall of the BDA model for extracting impervious surfaces (Tables 3 and 4), it is known
that BDA has a low recall and high precision. It is also easy to see from the extracted local
view (Figure 13) that the BDA extraction results produce the phenomenon of leaving out
the shadows of the buildings. We believe that this is inextricably linked to the lack of an a
priori layer in the BDA model. The BDA model is constructed under the Bayes criterion.
The Bayes criterion is to find an optimal division under the principle of minimizing the loss
of impervious surface misclassification in the division. The smaller the loss value can make
the discriminative accuracy higher, conducive to the extraction of impervious information.
However, this criterion also omits target categories due to the avoidance of misclassification
losses. Therefore, we can judge that the Bayes criterion plays a decisive role in the BDA
model and the advantage of the prior model is not shown.

The multivariate Gaussian distribution model is vital in multivariate analysis because
of its wide adaptability and the advantage of analyzing complex statistics. Therefore,
we first constructed the prior model using Gaussian distribution and then integrated the
Gaussian prior model into Bayes discriminant analysis to build the GBDA model. From
the extraction results and accuracy of GBDA, compared with BDA, GBDA effectively
suppresses the phenomenon of building shadow omission while improving the extraction
accuracy. It is experimentally demonstrated that the optimization of the Gaussian prior
model enhances the robustness and generalization ability of the impervious surface model.

4.2. Feasibility and Superiority of GBDA Model in Extracting Impervious Surface

In this paper, the construction of a high-resolution image impervious surface extraction
model of GBDA based on Bayes discriminant analysis depends on three main points. First,
Bayes discriminant analysis considers the prior knowledge of impervious surfaces. Second,
the discriminant process obeys the minimum misjudgment loss. Third, the high-resolution
image mitigates the mixed-image phenomenon and it fits better with the GBDA model.

A basic assumption of Bayes discriminant analysis is that there is some knowledge
of the object under study before discriminating and this knowledge is usually described
prior. Such a prior can improve the possibility of accurate discrimination, but commonly
used impervious surface extraction methods typically do not incorporate prior knowledge.
Through experiments, we confirmed the reliability of using a prior.

Misclassification loss refers to the loss that would result from misclassifying samples
belonging to one class as other classes. Generally, misclassification losses are compared
rather than quantified, but such losses can be quantified using Bayes discriminant analysis.
According to Bayes criterion, the maximum value of p(g) f (g)(x) is equivalent to the max-
imum posterior probability and the maximum posterior probability is equivalent to the
minimum misclassification loss. Therefore, the maximum amount of Y(g) we found by the
model is equivalent to the minimum average misclassification loss. The smaller the loss
value is, the higher the discriminative accuracy. However, this method of quantifying mis-
classification losses is also lacking in other discriminant analysis methods and impervious
surface extraction methods.

Bayes discriminant analysis performs impervious surface extraction by discriminating
each pixel. The impervious surface in the actual ground consists of a combination of
different materials, each of which has its own characteristics. The problem of mixed pixels
in medium- and low-resolution images is serious, weakening the model robustness when
constructing the model and raising the difficulty of discriminating unknown pixels. Using
high-resolution images to extract impervious surfaces can significantly reduce the mixed
pixel problem, matching the extraction process of GBDA for impervious surfaces. Therefore,
due to the uniqueness and superiority of Bayes discriminant analysis in the above three
aspects, this paper selected Bayes discriminant analysis to construct a high-resolution
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remote sensing image impervious surface extraction model and verified the superiority of
the model through experiments.

4.3. Uncertainties and Limitations

Although the accuracy evaluation shows the excellent performance of the method
in this paper, there are uncertainties and limitations in our approach. The uncertainty
in GBDA is expressed in the regularization parameter λ(g) of the prior model. However,
the search for the optimal λ(g)-value is uncertain. On the one hand, we set a series of
λ(g)-values for the GBDA method to find the most suitable one. On the other hand, the
optimal parameter values vary for different satellite images and different numbers of
training sample sets of the same image. Although GBDA produces better extraction results,
how to find the best parameter quickly is an urgent problem we need to solve.

High-resolution imagery can provide more delicate impervious surface information.
Still, it should also ensure that higher extraction quality and spatial and temporal continuity
of impervious information are obtained, which is equally essential for urban planning
and development. It is currently more difficult to distinguish different objects with very
similar spectral features. In general, the more predictors in the model, the higher the
model’s accuracy, but the more complex the calculation. More and more researchers extract
various urban elements in remote sensing images by obtaining feature information such as
spatio-temporal, texture, color, edge, etc., to obtain more accurate extraction accuracy. The
expansion of impervious surfaces is often spontaneous and intentional, especially in rapidly
developing areas. In this regard, accurate and efficient monitoring of impervious surfaces’
spatial and temporal dynamics is necessary. Monitoring impervious surface spreading has
been difficult because it follows a nonlinear trend of high spatial and temporal heterogeneity.
Satellite remote sensing images have unique advantages in such dynamic studies.

Therefore, although the impervious surface extraction model constructed in this
paper has the advantages of a simple extraction process and high extraction accuracy, some
shortcomings still need to be improved. (1) In this paper, only three bands in the wavelength
range of 0.45–0.51 µm, 0.53–0.59 µm and 0.64–0.67 µm are selected as the discriminative
indicators of the impervious surface model. The acquisition of other features and data of
the image should be further increased, the discriminative indicators should be added and
comparative analysis should be performed to find a more suitable combination of features
for high-resolution impervious surface information extraction. (2) Data should be available
for different periods within the study area and long-term dynamic monitoring of the same
area should be conducted to meet better the need for impervious surface information for
the urbanization process.

5. Conclusions

Impervious surface is an evaluation indicator of urbanization and accurate extraction
of impervious surface information is important for urban management and development.
The research scales of remote sensing image impervious surfaces mainly focus on low
and medium resolutions. There are relatively few studies on the extraction of impervious
surface information from high-resolution images. An impervious surface extraction method
is of high research value if it applies to high-spatial-resolution satellite images, can solve
shadow misclassification and has a simple and effective extraction process to meet the
current demand for the rapid and accurate acquisition of high-resolution and high-accuracy
impervious surface information under urbanization. This paper proposed a Gaussian
prior-based Bayes discriminant analysis impervious surface extraction model and based on
the experimental results, this paper draws the following conclusions:

(1) Based on the analysis of the impervious surface extraction results of GF-2 and Sentinel-
2 images, both BDA and GBDA methods have achieved better results. It has been
proved that using the Bayes discriminant analysis idea to construct an impervious
surface extraction model is a suitable method for multi-scale high-resolution remote
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sensing images with a simple process and high accuracy. Compared with SVM and
RF methods, GBDA has better extraction performance;

(2) The BDA uses the percentage of each group value as the prior and the model has
fitting problems. In this paper, the prior of BDA is improved to Gaussian prior
distribution, which can effectively improve the shadow misclassification phenomenon
generated by high-resolution images and improve the extraction accuracy, proving
that the improvement of the prior enhances the robustness and generalization ability
of the model.
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