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Abstract: Frequency combs (FCs)—spectra containing equidistant coherent peaks—have enabled
researchers and engineers to measure the frequencies of complex signals with high precision, thereby
revolutionising the areas of sensing, metrology and communications and also benefiting the fun-
damental science. Although mostly optical FCs have found widespread applications thus far, in
general FCs can be generated using waves other than light. Here, we review and summarise recent
achievements in the emergent field of acoustic frequency combs (AFCs), including phononic FCs
and relevant acousto-optical, Brillouin light scattering and Faraday wave-based techniques that have
enabled the development of phonon lasers, quantum computers and advanced vibration sensors. In
particular, our discussion is centred around potential applications of AFCs in precision measurements
in various physical, chemical and biological systems in conditions where using light, and hence
optical FCs, faces technical and fundamental limitations, which is, for example, the case in underwater
distance measurements and biomedical imaging applications. This review article will also be of
interest to readers seeking a discussion of specific theoretical aspects of different classes of AFCs. To
that end, we support the mainstream discussion by the results of our original analysis and numerical
simulations that can be used to design the spectra of AFCs generated using oscillations of gas bubbles
in liquids, vibrations of liquid drops and plasmonic enhancement of Brillouin light scattering in metal
nanostructures. We also discuss the application of non-toxic room-temperature liquid–metal alloys in
the field of AFC generation.

Keywords: acoustic frequency comb; phononic frequency comb; vibrations, nonlinear acoustics;
acousto-optics; gas bubbles; liquid drops; Faraday waves; Brillouin light scattering; plasmonics;
liquid metals

1. Introduction and Motivation

Precision measurement underpins modern technologies that are critical for timing
and communication as well as for fundamental science such as astrophysics. However,
electronic and optical devices used in measurement systems generate interference (noise)
that complicates or even prevents reading a pure signal. Thus, one of the main goals of
precision measurement is to reduce the noise level by improving the signal-to-noise ratio
and increasing the sensitivity of sensors and signal detectors.

Advances in optical technologies are essential for achieving these goals. Indeed,
the unique physical properties of light and recent progress in the development of novel
sources of light and synthesised optical materials enabling light manipulation at a nanoscale
open unprecedented opportunities for reducing noise levels and increasing the measure-
ment accuracy. For example, optical frequency combs (OFCs) (Section 2) have enabled
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scientists and engineers to measure and control light waves as if they were radio waves. Us-
ing OFCs, established technologies that employ radio and microwave frequencies—clocks,
computers and telecommunications systems—can be seamlessly connected to devices that
use optical waves with frequencies approximately 10,000 times higher than those of radio
and microwaves [1–3].

However, while optical technologies are an invaluable tool that researchers use to
explore new horizons, they have a number of drawbacks that originate from fundamental
physical limits. This is, for example, the case in underwater communication [4,5] and
in some medical imaging and sensing modalities used deeply inside a living human
body [6,7], where the intensity of light is dramatically attenuated due to scattering and
optical absorption in liquids and bodily fluids and tissues. This situation has motivated
pioneering studies of alternative approaches that use waves other than light to enable
sensing and precision measurement in specific but critical areas of health studies and deep
sea exploration. Given that optical waves share many fundamental physical properties with
the waves of other nature—most notably with sound waves [8]—it has been suggested that
certain optical precision measurement and sensing technologies, including OFCs, could be
implemented using acoustic waves, vibrations and spin waves (Figure 1).

Figure 1. Conceptual illustration of the physical mechanisms of FC generation, where a resonant
interaction of a single-frequency input signal with light, sound, vibrations and magnons—the quanta
of spin waves—results in the appearance of equidistant coherent peaks in the power spectrum of the
output signal. As demonstrated in this review article, an FC spectrum can be produced using either
a sole resonant physical process or a combination of them, which is, for example, the case of Brillouin
light scattering from phonons and magnons.

In this review article, we critically review results of recent studies, where novel acous-
tic frequency combs (AFCs)—non-optical counterparts of OFCs—have been introduced
and a number of their potential applications suggested. We pursue several goals in the
present review. Firstly, since the field of AFCs is relatively new, the terminology used in it
is still not uniform and can vary from one paper to another (for example, although through-
out the mainstream discussion we will use the term AFC, some authors prefer calling
them phononic frequency combs [9]). Subsequently, one of our aims is to provide a tax-
onomy of AFCs and relevant concepts of non-optical frequency combs (FCs). Secondly,
even though the seminal works on distinct non-optical FC technologies appeared almost
simultaneously, they have resulted from rather isolated research efforts. While some of
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the AFC investigators have already consolidated their activities, which is, for example,
the case in optomechanics and Brillouin light scattering communities [10,11] working on
integrated photonic circuits [12,13], in general there is still no coherent research framework
for the future development of AFCs. Therefore, the current review intends to promote
collaboration between different research groups. Given this, the mainstream discussion of
this article will specifically focus on the results that have received limited attention thus far
but that, in our opinion, hold the promise to find their own application niche and influence
further developments in the adjacent areas. Finally, to make the article accessible to non-
specialists, the discussion of each specific AFC technique is accompanied by an overview of
relevant physical phenomena with suggestions of further reading for researchers interested
in more detail.

Thus, the remainder of this article is organised as follows. In Section 2, we dis-
cuss the origin of the concept of FCs and introduce the terminology used in this field
of research [1–3]. In Section 3, we review electronically generated AFCs that have been
employed in precision underwater measurements [5]. The recent advances in theory and
application of phononic FCs [9,14,15] are discussed in detail in Section 4. In Section 5, we
review FCs obtained using the Brillouin light scattering effect [16–18], and we also demon-
strate the possibility of increasing the amplitude of spectral peaks in the comb spectra by
means of plasmonic resonant effects supported by metal nanostructures [19,20]. The dis-
cussion of the novel approaches to the generation of AFCs continues in Sections 6 and 7,
where we review the recent advances in the fields of AFC generated using oscillations of
gas bubbles in liquids [21,22] and vibrations of liquid drops [23,24], respectively. There,
the reader will find a detailed analysis of both experimental and theoretical results [22]
including those obtained using drops of room-temperature liquid metal alloys that have
recently attracted significant attention in the fields of material science, electronics and
optics [25–28]. The main discussion is concluded by an analysis of challenges faced by
developers of the AFC technology and a discussion of the potential directions for future
research. A list of abbreviations used in the main text is also given.

2. Optical Frequency Combs

An optical frequency comb (OFC) is a spectrum consisting of a series of discrete,
equally spaced elements with a well-defined phase relationship between them. The founda-
tions of this breakthrough technology were laid in the works led by the co-recipients of the
2005 Nobel Prize in Physics John Hall and Theodor Hänsch. Their contributions to the field
of precision spectroscopy enabled measuring the light frequency with an unprecedented
accuracy [29–31]. They and their collaborators demonstrated that a stable laser emitting
light with a spectrum containing very fine colour (frequency) lines can be used in combi-
nation with an FC technique to measure the frequency of light very accurately. They also
suggested that employing an FC technique enables measuring both time and distance more
accurately than using any other approach.

In practice, the light frequency f that needs to be to determined may be too high to be
measured directly. Subsequently, an indirect measurement technique was proposed, where
one compares the unknown frequency to an optical ruler—an OFC [1–3]. The comparison
between two light frequencies is made using a well-known beat technique that is based on
measuring a frequency difference between the known and investigated waves, which is
sufficiently small to be reliably measured using conventional methods.

An OFC is typically generated using a mode-locked laser system [32], where, in the
time domain (Figure 2a) [1,2], a train of ultrashort optical pulses is emitted. The period
of the pulse envelope 1/ frep = L/vg corresponds to a round-trip time inside the laser
cavity with a round-trip length L and the group speed of light vg. Due to the dispersion of
light inside the cavity, there is a phase shift ∆φ between the carrier and the pulse envelope
signals. Hence, in the frequency domain (Figure 2a), the corresponding optical spectrum
consists of a discrete set of equidistant narrow peaks with frequencies fn = n frep + f0,
where n is a large integer indicating that the number of the peaks can be very high, frep is
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the repetition frequency of the pulse envelope and f0 is the carrier-envelope offset frequency
that is related to the phase shift ∆φ as f0 = frep∆φ/2π [1,2].

(a)

(b)

(c)

frequency comb modes molecular absorption profile transmitted comb modes

Frequency comb Spectrometer

optically absorbing sample

Figure 2. (a) Schematic of the OFC generation using a mode-locked laser. The top panel shows a train
of optical pulses with a period 1/ frep. The bottom panel depicts the spectrum of narrow frequency
peaks corresponding to the train of pulses in the time domain. The phase shift ∆φ of the carrier
wave with respect to the pulse envelope induces a translation f0 = frep∆φ/2π of spectral peaks from
their harmonic frequencies n frep. Reproduced from [2] with permission from Elsevier. (b) Sketch
of an OFC-based spectroscopy technique. The OFC as a broadband light source interrogates an
absorbing sample and a spectrometer analyses the transmission spectrum. (c) Artist’s rendition of a
Kerr effect-based OFC generation in a micro-photonic disc resonator. A continuous-wave (CW) input
pump wave creates a pattern of optical whispering-gallery modes (WGMs) inside the disc resonator,
thereby inducing a periodic light intensity modulation and thus producing an output signal with
an OFC-like spectrum. The bottom panel shows the sketch of a simplified experimental setup for
the generation of a Kerr OFC and its further processing using a photodetector (PD). Reproduced
from [33] published by De Gruyter Open under a Creative Commons License.

Significantly, soon after the introduction of the concept of OFC, this technique found
numerous applications beyond its originally intended use. For example, it was established
that OFCs could provide long-term calibration of essential astronomical equipment [34],
enable flexible control of ultrashort optical pulses [35] and benefit the generation of arbitrary
radio-frequency waveforms and optical communications [36]. Of particular importance
is also the application of OFCs in the field of spectroscopy [37,38], where, in an idealised
OFC-based system (Figure 2b), an OFC both optically excites and interrogates the sample
under study. The spectral response of a sample, which may arise due to linear or nonlinear
absorption may span the entire OFC spectrum. Such a situation requires a spectrometer to
conduct measurements. Therefore, existing spectrometers have been adapted and improved
to resolve individual OFC peaks.

Alternatively, an OFC can be generated using a four-wave mixing (FWM) nonlinear-
optical process [39], where, for example, a laser light at three frequencies f1, f2 and f3
interacts in a nonlinear-optical medium, resulting in a new optical signal at a fourth
frequency f4 = f1 + f2 − f3. If the three original optical frequencies are a part of a perfectly
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spaced OFC spectrum, then the signal at the fourth frequency extends the already existing
OFC spectrum. It is also possible to generate an OFC using laser light of two equally spaced
frequencies, where FWM can generate light at different equally spaced frequencies via
a cascaded nonlinear process. For example, such an interaction can produce light at a
frequency 2 f1 − f2 that, in turn, can subsequently participate in the nonlinear generation
of additional new frequencies in the same OFC spectrum and so forth. This kind of
cascaded OFC generation has been demonstrated in nonlinear optical fibres [40] and in
some nanophotonic devices [41].

Other nonlinear optical processes such as second harmonic generation, where high-
intensity pump light enters a nonlinear optical material and a weak optical signal is
generated at a frequency twice that of the original pump light, or third harmonic generation
of sum and difference frequency components, or intensity-dependent index of refraction
(Kerr effect) [39] can be employed to create OFC [8]. In particular, the Kerr effect is used in
an important class of Kerr OFCs or micro-combs [33,42,43], where a single laser is coupled
with a photonic microresonator such as a glass disc that supports optical whispering-
gallery modes. Although such resonant modes are not exactly equally spaced due to optical
dispersion processes, they can be stabilised, for example, using the aforementioned FWM
effect. Yet, it is noteworthy that, in the time domain, while mode-locked laser OFCs are
virtually always associated with a series of short pulses, Kerr OFC exhibits complex phase
relations between their individual modes that may not correspond to well-defined single
pulses [44]. However, the modes of Kerr OFC remain highly coherent, thus enabling their
application as pure OFCs.

For some practical applications, OFCs can be generated using an electro-optical modu-
lation of a continuous wave laser light. Here, an OFC spectrum is obtained by modulating
the amplitude or phase of a continuous wave laser source using an external modulator
operating at a high radio or microwave frequency [45]. Given this, the spectrum of a
so-generated OFC can be conveniently centred around an optical frequency of interest.
Furthermore, this approach enables generating OFCs with higher repetition rates of more
than 10 GHz, which is challenging to achieve using a mode-locked laser [36]. However, the
number of peaks in the spectrum of electro-optical OFC is lower than in the spectrum of a
mode-locked laser OFC.

Finally, we mention low radio-frequency OFCs generated using purely electronic and
technically simpler devices that produce a series of pulses. Although such OFCs are used
mostly in conjunction with some functions of electronic sampling oscilloscopes, they have
been utilised in some optical domain applications, for example, in measurements involving
laser diodes and in acoustic frequency combs proposed in [5] (Section 3).

3. Electronically Generated Acoustic Frequency Combs

Marine science has always been of technical, military and commercial importance.
Since about 70% of the Earth’s surface is covered by water and the global mean sea level is
rising due to climate change, exploration of oceans has become one of the priorities for both
governmental and private sectors. In particular, in this area there is an urgent need for novel
precision measurement techniques that would enable the exploration of deep sea, also
facilitating the communication and data transfer between submarines and other equipment.
However, in general, optical technologies cannot be used for these purposes because of a
strong absorption of light in water. On the other hand, the attenuation of acoustic waves
in water is much weaker. This property of sound makes it the prime candidate for use in
underwater navigation and ranging (SONAR) and other applications.

In an idealised underwater distance measurement system, piezo-electric transducers
driven by electric signals produce a train of acoustic signals and radiate them towards a
target. If the speed of sound in water is known, the distance to a target is determined by
measuring time between emitted and reflected acoustic pulses. However, the speed of
sound in liquids depends on multiple variable environmental factors such as the ambient
temperature and water salinity [4]. Therefore, its accurate value may not always be known.
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The acoustic measurement accuracy of an unlocked acoustic device relying on an incoherent
data processing method is also intrinsically limited by destructive interference processes
and a trade-off between spatial resolution and uncertainty in speed measurements, which
prevents the current SONARs from resolving sub-centimetre distances. While such an
inaccuracy is tolerated in some cases, in other applications (for example, in monitoring
underwater glaciers) distance measurement precision of order of several millimetres is
required [46].

Subsequently, a novel approach to underwater distance measurement was proposed
in [5], where (Figure 3a) a signal produced by a generator referenced to a Rb clock was
first amplified and then used to drive a series of transmitting transducers with different
nominal acoustic frequency bands. Receiving transducers were fixed at an a priori known
distance, and its output signal was analysed using an oscilloscope, spectrum analyser
and frequency counter. Since the response of piezo-electrical transducers closely follows
the waveforms of the electric signals used to drive them, a comb-like spectrum could be
generated using a driving signal that is an electronic FC itself (Section 2). A He-Ne laser
was used as the reference interferometer in air—the He-Ne laser beam was aligned with
the acoustic beam of the transducers. Significantly, since the peaks of the electrical FC
spectrum are equally spaced and fully referenced, the corresponding acoustic frequencies
emitted by the transducers and the repetition frequency are as stable as those of a Rb clock
(Figure 3b,c).

The distance between the transmitting and receiving transducers was measured using
a two-step protocol involving a coarse measurement followed by a refinement step. Dur-
ing the coarse measurement, the integer part of the pulse-to-pulse length of the AFC was
determined using its repetition frequency frep. Subsequently, at the refinement step the
fractional part of the pulse-to-pulse length was found using the slope of the unwrapped
phase that is proportional to the time delay τ (the phase slope was measured using a
Fourier transform-based approach). Finally, using these data the actual distance between
the transducers was precisely determined.

The maximum unambiguous range of the discussed underwater measurement system
is given by the longest range that a transmitted pulse can travel forward and back during
the time between two consecutive transmitted pulses. The proposed method of AFC gener-
ation can be used to produce several AFCs at the same time. It has been demonstrated that
this can be employed to expand the unambiguous measurement range. In particular, in [5],
the transmitting transducers were set to simultaneously emit a pair of AFC signals with
two different repetition frequencies, 2 and 2.3 kHz. To distinguish between the two AFCs,
they had different amplitudes. Figure 3d,e shows the detected waveform of the receiving
transducer, where the resulting dual-AFC signals can be seen as the pulse trains with a
0.5 ms period (2 kHz repetition frequency, 0.74 m pulse-to-pulse length) and a 0.435 ms
period (2.3 kHz repetition frequency, 0.640 m pulse-to-pulse length). A signal with a larger
period of 3.33 ms corresponds to the extended unambiguity range of 4.9 m. Using this
measurement approach, underwater distance measurements up to 7 m with stable environ-
mental conditions in an anechoic pool were conducted with a measurement uncertainty of
approximately 50µm compared with the optically measured reference values.
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Figure 3. (a) Schematic of the experimental setup employed to generate an AFC using a Rb-clock-
stabilised electronic FC and a set of piezo-electric transmitting transducers and subsequently exploit
the resulting AFC for measuring the distance in an underwater environment (VP—sound velocity
profiler; BS—beam splitter). (b) Acoustic pulse train in the time domain in the 350–399 kHz frequency
range and (c) the AFC spectrum corresponding to it. (d) Waveforms detected by the receiving
transducer in the time domain. The upper waveform was detected at the initial position and the
lower one obtained after moving the receiving transducer by 0.5 m. (e) Spectrum of the waveform in
panel (d) showing two different repetition frequencies. Reproduced from [5] with permission of John
Wiley and Sons.

4. Phononic Frequency Combs
4.1. Micromechanical Resonator-Based Phononic FCs

In this section, we discuss another kind of AFC, phononic FCs [9,47–52], which exploit
high-frequency nonlinear mechanical vibrations [53] to generate FC-like signals. The cited
seminal works have been the first to demonstrate that the robustness and versatility of
the Nobel Prize-winning OFC technology could be employed in the frequency ranges that
are not accessible using light. Indeed, as shown in [1], despite a large number of research
studies focused on the expansion of the spectral coverage of the existing OFC generators,
there are no FC-like technologies that would operate in, for example, ultrasound (MHz)
and hypersound (GHz) acoustic frequency ranges [54]. Although the hypersonic range
remains insufficiently explored compared with audible sound and ultrasound, partly be-
cause GHz acoustic waves undergo a stronger attenuation [54], hypersound is of significant
technological importance because in this frequency range one often observes intriguing
physical effects such as Brillouin light scattering (BLS) which originates from a non-elastic
light interaction with acoustic waves [55]. Similarly to Raman scattering [56], BLS under-
pins an emergent spectroscopy and imaging technique that has already found important
applications in biology, medicine, chemistry, physics and material science [57–60]. We will
return to this discussion in Section 5.

Although there are certain physical analogies between phonons and photons [8],
in general a dispersion relation for phonons is nonlinear since it is related to acoustic
and thermal properties of a material. As a result, the use of standard methods of OFC
generation in phononic systems is frequently impossible. Therefore, novel approaches that
are independent of the phonon dispersion relation are required. A solution to this problem
was theoretically proposed in [47] using nonlinear phononic systems such as mechanical
cantilevers [61] and chains of particles linked by springs that obey Hooke’s law but at the
same time exhibit a nonlinear behaviour [62]. In such systems, several phonon modes can
be simultaneously excited by an external driving force producing an FC-like spectrum with
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an array of discrete and equidistant spectral peaks corresponding to the frequencies of
nonlinearly excited phonon modes. FCs generated using nonlinear resonance of different
orders were theoretically investigated in [47] and a possibility of frequency stabilisation of
the higher-order modes was demonstrated.

Based on the theoretical results presented in [47], in the work [9], a phononic FC
was experimentally created using a piezo-electrically driven micromechanical resonator,
where an electromechanical coupling led to signal enhancement and, consequently, stronger
nonlinearities, thereby reproducing the behaviour of nonlinearly oscillating particle chains
considered in the model proposed in [47]. The micromechanical resonator was fabricated
on a Si chip packaged in a ceramic leadless chip carrier (Figure 4a left). The resonator
was driven by electrical signals produced by a waveform generator and its mechanical
response (Figure 4b) was optically recorded by a laser Doppler vibrometer (LDV) [8]. At a
high driving signal amplitude that exceeded a specific threshold value, the data obtained
using the LDV and a spectrum analyser revealed the existence of an autoparametrically
generated subharmonic mode (Figure 4a right). The analysis of the displacement profile
of the resonator corresponding to that subharmonic mode (Figure 4b) demonstrated that
tuning of the signal registration equipment on an antinode of the subharmonic mode would
be advantageous for FC generation. Furthermore, according to the authors of [9], the result
illustrated in Figure 4b speaks in favour of a phase coherency of equidistant FC peaks and
thus their conceptual analogy with the peaks of Kerr OFCs. Since the FC generation was
possible only when the amplitude of the driving signal exceeded a certain threshold value,
further analysis was carried out revealing that when the driving amplitude was increased,
the FC spectrum extended to higher orders. This important result shows that the spectral
bandwidth of the so-generated FC is directly related to the driving amplitude level.

Figure 4. Generation of a phononic FC using nonlinear acoustic resonances in a piezo-electrically
driven micromechanical resonator. (a) Left: Sketch of the micromechanical resonator. Right: Spectrum
amplitude plot showing a parametric excitation of an out-of-plane subharmonic mode of the resonator
that is tuned on its in-plane extensional mode using a driving signal S(ωd) = 3 dBm. Panels (b1,b2)
show a pulse train corresponding to the FCs generated at S(ωd) = 5 dBm and its spectrum, respectively.
One can see the peaks with an interpeak spacing of 2.6 kHz. Panel (b3) shows the displacement
profile of the subharmonic mode. Panels (b4,b5) demonstrate that the FC generation is possible only
using the displacement at an antinode of the subharmonic mode of the resonator. Reproduced with
permission from [9]. Copyright 2017 by the American Physical Society.
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In the follow-up work [14], the influence of the phonon mode structure on the FC
generation was investigated using a model of two nonlinearly coupled phonon modes
(Figure 5a,b). The model predicted the existence of a region within the amplitude-frequency
space where the FC generation is possible (Figure 5c,d). The frequency range R correspond-

ing to this region is given by the expression R =
∣∣∣ω2 −

ω1

2

∣∣∣− √2ω1√
Q1Q2

, where ω1 is the

resonance frequency of the fundamental length-extensional mode of the resonator, ω2 is
the frequency of its subharmonic flexular mode and Q1 and Q2 are the respective quality
factors (Figure 5a,b). One can see that R →

∣∣ω2 − ω1
2

∣∣ for large values of Q2. There also

exists a critical value for
∣∣∣ω2 −

ω1

2

∣∣∣ given by parameter g = 2ω1

√
2

Q1Q2
, which implies that

for
∣∣∣ω2 −

ω1

2

∣∣∣ > g the frequency range of the FC existence R scales linearly with
∣∣∣ω2 −

ω1

2

∣∣∣
(Figure 5d).

Figure 5. Model of phononic FC generation using nonlinear resonances of a micromechanical
resonator. (a) Sketch of the model of the micromechanical resonator used in the experiment in [9].
(b) Schematic representation of the experimental spectrum in Figure 4a (right) showing a fundamental
length-extensional mode of the resonator (the resonance frequency ω1) and its subharmonic flexular
mode (the resonance frequency ω2 ≈ ω1/2.) (c,d). Graphical representation of the regions, where
the generation of FC is possible using the experimental parameters from [9]. Panel (c) shows a plot
of the quality factor of the mode with ω2 as a function of the driving frequency ωD. The ω2-vs-ωD

plot is presented in Panel (d). The parameters are ω1/2π = 3.86 MHz and Q1 = 4000 in (c) and
ω1/2π = 3.86 MHz, Q1 = 4000 and Q2 = 50 in (d). Reproduced from [14] with the permission of
AIP Publishing.

It was found that the region of FC existence originates from a subset of the Arnold
tongues [63], a phenomenon known in the context of the interaction between oscillators,
where one oscillator drives another. In particular, Arnold tongues have been observed
in a two-oscillator system, where one oscillator influences the other but not vice versa,
which is typical of oscillators driven by a periodic force. Moreover, it was established
that the spectral location and composition of the region of FC existence can be analytically
defined in terms of resonance frequencies, quality factors and mode coupling strength of
the mechanical resonator as well as by a detuning of the driving frequency from those of
the mechanical resonances.

It is also noteworthy that the FCs discussed in this section have not been precisely
stabilised to a frequency reference. Therefore, similarly to Kerr OFCs, they cannot be
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considered as counterparts of mode-locked laser OFCs (Section 2). This fact was perceived
as a fundamental limitation for applications such as underwater distance measurements [5]
because the modes of mechanically generated FCs could be incoherent. Nevertheless,
the results discussed in this section have opened novel opportunities in the fields of
ultrasensitive vibration detectors [64], phonon lasers [65,66], quantum computers [67] and
imaging [8,9,47], where some incoherence of FCs can be inconsequential.

4.2. Phononic Frequency Combs in Bulk Acoustic Wave Systems

The discussion of mechanically generated FCs in Section 4.1 demonstrates that to
achieve an FC-like signal in such systems one needs to design a certain mode structure and
to apply a high threshold driving force. While these requirements can be fulfilled in many
practical situations, their realisation may be impossible in some applications. For example,
this is the case for a large group of technologies that include stabilised low-noise classical
and atomic oscillators and measurement systems, high-sensitivity displacement sensors,
high-precision electron spin and ferromagnetic resonance spectroscopy, high-precision mea-
surement of material properties and high-quality-factor hybrid quantum systems [15,68,69].
The aforementioned technologies enable the realisation of precision measurement tools
and techniques to test some of the core concepts of fundamental physics, such as modern
searches for Lorentz invariance violations in the photonic [70], phononic [71,72] and gravity
domains [73], variations in fundamental constants [74] and research on dark matter [75].
In these applications, bulk acoustic wave (BAW) devices have found very extensive appli-
cations. Moreover, both bulk and surface acoustic wave (SAW) devices have been used for
spectroscopy, detection and sensing [76]. Nonlinear dynamics of BAW and SAW mechanical
systems, including FC generation, has also become a subject of theoretical research [77].

Recently, the generation of phononic FCs in a BAW system at a temperature of 20 mK
using a single-frequency low-power signal source was demonstrated [15]. To enable such
a generation, in general one needs a system with low losses and strong nonlinear effects.
To achieve this, a phonon-trapping stress compensated quartz BAW cavity operating at
20 mK was employed (Figure 6a). Quartz BAW cavities are known to have extremely high
values of quality factors at cryogenic temperatures reaching Q = 8× 109 [78]. At the
same time, quartz BAW cavities possess significant acousto-mechanical nonlinearities
that originate from the lattice non-harmonicity [79] that can be described using a Duffing
oscillator—a nonlinear second-order differential equation used to model certain damped
and driven oscillations [63]. There are also other sources of nonlinearity originating from
thermoelectroelastic effects and physical processes, which are observed mostly at milli-
Kelvin temperatures, such as coupling with ensembles of two level systems (TLSs) [80]. In
particular, the presence of TLSs has been demonstrated in BAW cavities through a number
of effects including nonlinear losses and magnetic hysteresis. However, these processes
hinder the generation of FCs and should be avoided.

This approach was adopted in the experiment reported in [15], where the BAW cavity
was placed inside a copper holder attached to a base plate of a refrigerator cooled to 20 mK.
To ensure that no coupling exists between the holder and BAW the fundamental microwave
resonance frequency of the former was chosen to be much higher than any resonance fre-
quency of BAW. The acoustic modes were excited and detected piezo-electrically using two
specially designed coaxial probes coupled to the electric field of the structure (Figure 6b).
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Figure 6. Generation of a BAW-based phononic FC. (a) Sketch of the experimental setup showing the
BAW resonator, copper holder and excitation probes placed in a vacuum chamber. (b) Illustration of
two types of excitation probes used in the experiment: L- (left) and disc-shaped (right) antennae. (c) A
false-colour map composed of the individual output signal PSDs S( f − fc) plotted as a function of the
pump frequency detuning fp − fc at a constant incident power P = −66 dB m. (d) Three PSD curves
for different constant incident frequencies fp and the same power P corresponding to slices (1)–(3)
along the vertical axis of the plot in panel (d). Reproduced from [15] published by the American
Physical Society under the terms of the Creative Commons Attribution 4.0 International license.

In one of the experiments reported in [15], the system response was analysed in terms
of the signal power spectral density (PSD) S( f ) measured as a function of the pump signal
frequency fp in the vicinity of the acoustic resonance fs at a constant signal power P, see
Figure 6c, where a false-colour map is composed of individual PSD curves of the output sig-
nal for each incident signal frequency fp used in the experiment. Note that each PSD curve
was obtained independently with a time delay between two consecutive measurements
sufficient to suppress any residual signals coming from a preceding measurement. It is also
noteworthy that the experimental setup was stable on the time scale of the measurements
since it was locked to an atomic frequency standard, and that the characteristics of the
BAW resonator were found to be insensitive to possible temperature fluctuations during
the measurement.

Figure 6d shows three PSD curves obtained for different values of the incident signal
frequency fp at a constant power P corresponding to slices (1)–(3) along the vertical axis in
Figure 6c. An FC is generated when the pump signal frequency approaches the resonance
frequency. Furthermore, the FC exhibits two thresholds on each side of the resonance and
the FC repetition rate is about 0.8 Hz when fp = fc. In the subsequent experiments reported
in [15] the same threshold of the FC generation was observed when the incident power was
varied but the excitation frequency was fp ≈ fc. The analysis of the experimental results
also revealed that the FC spectrum significantly depends on geometry of excitation and
detection electrodes, Figure 6b. Yet, the fact that a strong Duffing nonlinearity was observed
below the generation threshold indicates that the system is a phononic analogue to Kerr
OFCs excited in monolithic optical microresonators (Section 2). Thus, it was concluded



Sensors 2022, 22, 3921 12 of 45

that the ultralow power regime explored in [15] opens a way for integrating a BAW-based
phononic system with a quantum hybrid counterpart such as superconducting qubits.

5. Brillouin Light Scattering-Based Frequency Combs

In this section, we discuss the recent achievements in the developing field of FC gener-
ation using Brillouin light scattering (BLS), a physical effect named after Léon Brillouin,
where light interacts with material waves in a medium [54]. Such an interaction is enabled
by a dependence of the optical refractive index on the material properties of the medium.
For example, it is well established that the refraction index of a transparent material changes
when it is mechanically deformed. As a result of a deformation, a small fraction of light
that is transmitted through the material or reflected from it changes its momentum (i.e., its
frequency and energy are changed). This process is similar to an effect where diffraction of
light is caused by diffraction grating, the components of which vibrate with a frequency
that is much smaller than the frequency of the light wave. In solid media, macromolecular
aggregates, biological media and liquids and gases, BLS can be observed as a result of light
interaction with acoustic (phononic) modes [35,54,56,58,59], exciton-polariton (a hybrid
light and matter quasiparticle arising from a strong coupling of the electromagnetic dipolar
oscillations and photon) [81] and spin waves and their quanta—magnons [82]—existing in
magnetic materials [83–88].

Although Rayleigh scattering can also be considered to be due to fluctuations in the
density of an optical medium, thus leading to variations in its refraction index, such fluctua-
tions are of random and incoherent nature. In contrast, BLS is caused by correlated periodic
fluctuations such as phonons and magnons. Therefore, Rayleigh scattering involves no
energy loss or gain. On the other hand, although Raman scattering also involves inelastic
interaction processes caused by vibrational properties of matter, the range of frequency
shifts associated with this effect are very different compared with those in BLS. Thus, BLS
and Raman scattering provide very different information about the sample under study:
Raman spectroscopy enables one to determine the chemical composition and molecular
structure of the medium while BLS senses the elastic properties of the material [58,89].

Before we discuss FCs generated using BLS, we also note a conceptual difference
between this effect and stimulated Brillouin scattering (SBS) [17,55,90]. SBS arises when an
intense beam of laser light propagates through an optical medium, such as an optical fibre,
and when variations in the optical electric field of the beam itself induce acoustic vibrations
in the medium via electrostriction and radiation pressure effects. Under these conditions,
the beam may display BLS as a result of the interaction with the vibrations, leading to the
generation of optical signals with a spectrum consisting of a large number of equally spaced
peaks that are coherently phased—a Brillouin OFC (BFC) (Figure 7) [10,17,91–94]. However,
the so-generated FCs belong to the group of OFCs since SBS is mostly a nonlinear-optical
effect that was discovered only after the invention of a laser [17,39,55]. Therefore, we refer
an interested reader to the cited studies and references therein while in the following we
focus on FCs based on the original BLS effect.

Figure 7. Illustration of the generation of an SBS-based FC. (a) The spectrum of an SBS FC showing
the Stokes and anti-Stokes frequency peaks generated due to the SBS effect. (b) Illustration of a
cascaded SBS effect combined with FWM arising from the optical Kerr-nonlinearity. Reproduced
from [17] with permission of Elsevier.
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5.1. Magnonic BLS-Based Frequency Combs

While BLS offers significant advantages in several research fields, in general this
technique requires sophisticated experimental instrumentation to reliably detect light
scattering frequency shifts. A typical frequency shift observed in BLS measurements ranges
from several MHz to several GHz, which is very small compared to the frequency of the
incident light (several hundreds of THz). As a result, in an optical spectrum, the BLS peaks
are located on the shoulders of the central Rayleigh scattering peak and their amplitudes
are so small that to resolve them a Sandercock multi-pass Fabry–Pérot interferometer [95]
or a virtual-image phase array (VIPA) spectrometer has to be used [96]. However, despite
these technical challenges, BLS spectroscopy has been an essential tool for research on
spin wave excitation in ferromagnetic micro- and nano-structures [83–88] and on phonon
excitations in solid and biological media [35,54,56,58,59,89].

Recently, the BLS spectroscopy has been employed to produce FC-like signals originat-
ing from spin wave modes excited in a ferromagnetic thin film structure [18,97]. In those
works, a thin Permalloy (Ni80Fe20 alloy) film—a standard building block of many magnonic
and spintronic devices [82]—was deposited onto a sapphire substrate using a DC mag-
netron sputtering technique. A sapphire substrate was chosen due to its negligibly small
optical absorption at the frequency of the laser light used in the BLS setup and also due to
its high thermal conductivity. The fabricated films were characterised using a pump-probe
experimental setup schematically shown in Figure 8a,b, where the pump beam was emitted
by a mode-locked laser with a 1 GHz repetition rate at a wavelength of 816 nm with a 30 fs
pulse duration and pulse energies of up to 1 nJ. Since the emitted laser pulse stretches dur-
ing the propagation in the optical system, its actual duration at the moment of time when it
reached the sample was 120 fs. A microscope objective was used to focus the laser beam
into a spot with the size approaching the optical diffraction limit (approximately 400 nm).
The magnetisation dynamics in a Permalloy film was probed using a single-frequency
532 nm laser light that was also focused to the diffraction limit using the same microscope
objective. The probe light scattered backwards from the sample was first collected and fil-
tered using a polariser and then analysed using a six-pass tandem Sandercock Fabry–Pérot
interferometer and then detected using a single channel avalanche photodiode. The pump
laser beam was scanned over the sample using a pair of galvanometer mirrors and lenses
that enabled changing the lateral distance between the pump and the probe beams.

Figure 8c.i shows the typical field dependence of the thermal spin wave spectrum
obtained for a thin Permalloy film sample when the pump laser was turned off. In this
figure, a sharp cutoff of the spin wave band is seen that is in good agreement with the
frequency-vs-applied magnetic field dependence theoretically predicted by the Kittel equa-
tion [88]. The corresponding spin wave spectrum at the same location of the Permalloy
film but with the pump laser turned on is shown in Figure 8c.ii. In this case, the spectrum
dramatically changes its character by gaining a number of distinct equally spaced peaks
that appear with the 1 GHz repetition rate. More detailed information about the generated
FC-line spectrum is given in Figure 8d, which shows the BLS counts as a function of the
frequency at an applied magnetic field of 600 mT for four different laser powers, also
showing the thermal spin wave background. From this result, one can deduce that 5 mW is
the threshold power level for the FC generation.
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Figure 8. Illustration of the generation of a magnonic BLS-based FC. (a) A ferromagnetic thin film
sample is pumped with a red (816 nm wavelength) 120 fs-long pulsed laser light and probed using a
continuous green laser (532 nm) light. The direction of the external magnetic field Hext applied to
the sample is indicated. (b) Schematic of the optical setup of the pump-probe experiment, where BS
denotes a 50/50 beam splitter and PBS is a polarising beam splitter. The sample is placed right below
a microscope objective to achieve diffraction-limited focusing. The backscattered light is analysed
using a six-pass tandem Fabry–Pérot interferometer (TFPI) and detected using a single-channel
avalanche photodiode (APD). False-colour maps of thermally excited spin wave spectra as a function
of the applied magnetic field without (c.i) and with (c.ii) irradiation with an fs-laser pulse train
at a 1.8 mJ/cm2 fluence. (d) BLS counts as a function of frequency at an applied magnetic field
magnitude of 600 mT for four different laser powers. The thermal spin wave background is also
shown. Reproduced from [18] published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license.

Note that studies reported in [18,97] did not aim to generate FC signals for use in appli-
cations where other kinds FCs have been typically used. Instead, a method of FC-enhanced
BLS microscopy was introduced to coherently excite vibrational and spin wave modes in
the sample. This new approach is more advanced than a conventional impulse-driven
stimulated BLS, where the spatial resolution is limited by the size of a virtual grating in-
duced in the medium by the pump laser beam. Nevertheless, those results are of immediate
relevance to the mainstream discussion in the current review article since they facilitate the
development of BLS-based FC techniques and promote a deeper understanding of funda-
mental physical processes that underpin their operation. These include the enhancement of
weak BLS signals using surface plasmon resonances supported by metal thin films, gratings
and nanostructures [7,68,88] that we discuss in subsequent sections.

5.2. Plasmon-Enhanced Brillouin Light Scattering Effect

Surface plasmons are optical waves that propagate along a metal–dielectric inter-
face [98,99]. A localised surface plasmon mode is a special case of a surface plasmon
wave that is confined to a metal grating or a nanoparticle. Typically, to create conditions
favourable for the excitation of localised plasmons, at least one dimension of the structure
supporting them must be comparable with or smaller than the wavelength of the incident
light. For example, localised plasmons have been observed in spherical nanoparticles with
a diameter of 10–50 nm and in nanorods that are 50–200 nm long and typically have a
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diameter of about 20 nm. The optical properties of localised plasmons have been used
to enable many essential operations of light control and manipulations at the nanoscale.
For example, localised plasmons have been exploited to dramatically enhance the local
optical electric field and then use it to enhance the light–matter interaction processes that
are essential for achieving strong nonlinear effects [100,101] and high sensitivity [102] in
many practical situations.

Usually, nanoparticles and nanostructures supporting plasmon modes are made of
gold or silver because these two metals exhibit relatively low absorption losses at the optical
frequencies. Nevertheless, in many practical situations, gold and silver are combined
with or substituted by ferromagnetic metals such as nickel, cobalt, iron and their alloys
(e.g., Permaloy [103]). Although the absorption losses in plasmon structures made of these
materials can be even higher than in devices made of pure gold or silver, the ferromagnetic
metals and their alloys exhibit significant magneto-optical activity [104], which opens
up avenues for ultra-fast control of light and high-sensitivity biosensing, thus laying a
foundation of the field of magneto-plasmonics [7,88,105–110].

Advances in magneto-plasmonics are also relevant to the current discussion of BLS-
generated FCs. Indeed, in a typical magnonic BLS experiment, the dispersion relationship of
spin waves is determined by using p-polarised incident monochromatic light illuminating
the sample at an angle θ that is linked to the wave vector kSW of the probed spin wave via the
relationship kSW = (4π/λ) sin θ, where λ is the wavelength of the incident light. Note that
the same polarisation of the incident light is required for the excitation of surface plasmons
in thin films and grating [98], including those made of Permalloy [88,103] (such grating
is called magnonic crystals in magnonics). Subsequently, by analogy with the plasmon-
enhanced magneto-optical response, the conditions for a resonant enhancement of the BLS
signal due to surface plasmons can be satisfied in BLS measurements of ferromagnetic
metal structures.

While this approach has not yet been validated experimentally, experimental evidence
speaks for its plausibility. In fact, in magnonic BLS experiments, the interaction of light
with magnetic modes in the sample is mediated by the magneto-optical effects such as
the magneto-optical Kerr effect (MOKE) and the Faraday effect [83,104,107,109,110]. Here,
MOKE represents a change in the polarisation and intensity of light that is reflected from
the surface of a magnetised material. Similar to the Faraday effect, MOKE originates from
the off-diagonal dielectric permittivity tensor components of the investigated magnetised
material [104]. However, while the Faraday effect is observed in transmission and, conse-
quently, occurs only in optically transparent materials, the observation of MOKE is possible
mostly in highly optically reflecting samples. Given this, MOKE has been found to be
especially suitable for studying magnetism of highly reflective metals. Since plasmon
modes can be enhanced in the same metal structures, where MOKE is observed, it has
been shown that the amplitude of the MOKE signal can be increased using both surface
and localised plasmon waves [88,103,105,107–110]. Thus, since MOKE is also the main
physical mechanism contributing to BLS and since its strength can be increased using a
magneto-plasmonic technique, it is plausible that the BLS signal would also be amplified
by a plasmonic interaction.

Another significant argument in favour of this assumption is an experimental demon-
stration of a plasmon-enhanced phononic BLS [16]. While phononic BLS is conceptually
similar to the magnonic one, physical processes that underpin it are simpler compared with
the complex magneto-optical effects, which facilitates magnonic BLS. From the experimen-
tal point of view, realisation of a BLS experiment involving a measurement of plasmonic
enhancement is technically simpler in phononic BLS than in the magnonic one since a
magnetic field needed to magnetise a sample in the latter case is not required (such a field
is often created by bulky and expensive electromagnets that can also obstruct the sample
from the source of light and photodetectors receiving it [103]).

A novel approach resolving the issue of a low strength BLS signal and enabling
one to overcome such drawbacks of BLS spectroscopy as a long acquisition time and
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poor spectral resolution was proposed in [16]. There, the enhancement of BLS at the
light wavelength of 532 nm was investigated using various acoustic modes of an alkaline-
earth boroaluminosilicate glass plate coated with periodic arrays of gold nanodiscs that
support localised surface plasmon modes. A similar enhancement was also observed from
the bulk phonons, when the gold nanodiscs were covered by liquids such as methanol
and water. The observed enhancement (Figure 9a) was attributed to the excitation of a
fundamental plasmon mode of the array of the nanodisc, which was confirmed by the fact
that no enhancement was observed without the nanostructure and that the enhancement
of BLS was a function of the nanodisc aspect ratio and diameter. It was suggested that
the demonstrated plasmonic enhancement could be combined with the virtually imaged
phased array (VIPA)-based background-free BLS spectroscopy to optimise the acquisition
time, and that an array of nanodiscs could serve as a platform for a practical implementation
of the surface-enhanced BLS technique analogous to the well-established surface-enhanced
Raman spectroscopy (SERS) [56,111,112].

Figure 9. (a) Typical experimental BLS spectra with and without a gold disc nanostructure obtained
after 5 s integration time using the excitation laser power of 40 mW. Note a significant signal enhance-
ment due to the plasmon modes supported by the disc nanostructure. Reproduced from [16] with
permission of SPIE and the corresponding author of this publication. (b) BLS spectra calculated using
a 3D finite-difference time-domain model of the plasmon BLS effect for different disc diameters. Due
to high computational demands, the integration time in the model was limited to 0.5 ms and window
filtering was used, which increased the linewidth of the peaks. Note that the model reproduces the
fact that in the experiment the amplitude of the anti-Stokes peak is higher than that of the Stokes
peak. The BLS signal without the nanodiscs was not calculated.

To further investigate the origin of the plasmon-enhanced BLS process, we numerically
modelled the BLS interaction in nanodiscs covered by water using a finite-difference
time-domain method [19]. Figure 9b shows the calculated BLS spectra for three different
disc diameters that were used in experiments reported in [16]. The model reproduces a
plasmonic enhancement of the BLS signal and demonstrates that the amplitude of Stokes
and anti-Stokes peaks depends on the nanodisc geometry. Note that the BLS signal was
not modelled without a nanodisc structure and that in the model the integration time
(0.5 ms) was much smaller than in the experiment (5 s) due to computational constraints.
Nevertheless, the model was able to reproduce the experimental fact that the amplitude
of the anti-Stokes peak is higher than that of the Stokes peak. This speaks in favour of its
physical veracity. Note also that the linewidth of the peaks in the spectra in Figure 9b is
artificially broadened due to the use of a window filter while postprocessing the simulated
BLS signals. However, even though this artefact has complicated the analysis of the impact
of the plasmon enhancement on the peak linewidth, a close inspection of the peaks reveals
the signs of a dependence of both linewidth and Brillouin shift on the nanodisc geometry,
which was also observed experimentally [16].

To gain a further insight into the origin of the plasmon-enhanced BLS, we simulated
the scenario of a 532 nm wavelength light that is normally incident on a 5×5 nanodisc
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array covered by water and that is polarised along the z-axis of the coordinate system
adopted in Figure 10a–c. In this model, the symmetry of the disc array was used to reduce
computational effort. The spacing between the disc centres was fixed at 100 nm while their
diameter D was varied. Figure 10a–c show that the enlargement of the disk diameters
slightly enhances the amplitude of the local optical electric field |E| in the gaps between
them. However, this effect plays an adverse role in achieving a stronger BLS response
since the light localised in the gaps also penetrates the metal surface of the discs, which
results in higher absorption losses. To demonstrate this, in Figure 10d we use bars to
represent the BLS enhancement obtained from the anti-Stokes peak of the simulated spectra.
The blue line connecting triangles shows the dependence of the field enhancement on
the disc diameter calculated immediately above the discs, i.e., in the areas where light
senses the refractive index modulation induced by phonons in the water layer. The green
line connecting squares depicts the field enhancement in the gaps between the discs. We
conclude that plasmonic enhancement of the BLS signal is possible when light is localised
above the discs and not in the gaps between them. Conversely, the BLS signal is reduced
when light is localised between the discs. This effect is especially pronounced in the case of
large disc diameters D = 90 nm and very small 10-nm-wide gaps between the discs, where
our simulations predict a sharp decrease in the amplitude of the BLS signal compared with
the predictions made for the arrays of nanodiscs with smaller diameters.

Figure 10. ( a–c) Top and side views of the simulated optical electric field amplitude |E| of the
plasmonic modes in the nanodisc array with different disc radii D. The direction of propagation of the
532 nm-wavelength incident light is indicated. (d) Simulated BLS enhancement as a function of the
disc diameter D. The triangles and squares and the straight lines (guides to the eye) corresponding to
them show the dependence of the field enhancement above and between the discs, respectively.

5.3. Application of Plasmon-Enhanced BLS in Frequency Comb Generation

As follows from the discussion in the previous section, the nanodisc geometry is not
optimal for enhancing the BLS signal. Therefore, further analysis was performed in [19],
where it was shown that a stronger plasmonic enhancement of the BLS effect could be
achieved using elongated metal nanostructures such as plasmonic nanorods made of gold
or silver. Similar to the well-known Fabry–Pérot resonators, long nanorods can support
higher-order plasmonic modes (those modes do not exist in short nanorods that support
only a dipole-like fundamental mode similar to the fundamental mode of nanodiscs).
The operation based on a higher-order mode is expected to be advantageous for enhancing
BLS signals since such modes reflect from a nanorod end multiple times. This effectively
increases the interaction time of light with an acoustic wave that propagates in the bulk of
surrounding water. Furthermore, the tight confinement of the optical electric field to the
metal surface of the nanorod gives rise to an increased sensitivity of the plasmon resonance
to changes in the dielectric permittivity caused by the propagation of acoustic waves
occurring in close proximity of the nanorod [19]. At the same time, the light localisation
associated with the excitation of the higher-order modes results in smaller absorption losses
compared with the light confinement in small gaps between the nanodiscs (Figure 10) since
the field of higher-order modes does not penetrate deeply into the metal nanorod.
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There are several approaches to the optical excitation of the higher-order plasmonic
modes in a long nanorod. Firstly, one can tune the frequency of the incident light on the
resonance frequency of a particular higher-order mode. This approach is relatively straight-
forward since tuneable laser sources are readily available. Alternatively, the geometry of a
nanorod can be engineered to match a higher-order mode with a resonance frequency that
coincides with the frequency of the available laser. However, the drawback of this approach
is related to a tight confinement of the optical fields of the higher-order modes to the
surface of a nanorod, which implies that the energy of such modes is not efficiently emitted
into the electromagnetic far-field region. In turn, this means that the excitation of these
modes by the incident light waves from the far-field is also insignificant. To overcome this
inefficiency, the higher-order modes can be excited using a point-like quantum emitter of
light (e.g., a quantum dot) located in the vicinity of a nanorod. However, such an excitation
scheme would significantly increase the complexity of an experiment. An alternative viable
approach could exploit nonlinear-optical properties [39] of the nanorod material [100].
In particular, using an intense laser beam to excite the fundamental mode of nanorod
conditions can be created for the nonlinear generation of the second and third harmonics of
the incident light [113–115]. In this case, the nanorod length should be so chosen so that the
frequency of one or several of its higher-order modes coincides with the frequency of the
nonlinearity-generated harmonics. The plausibility of this approach has been confirmed
by numerical simulations, where a silver 340 nm×30 nm×30 nm nanorod with a square
cross-section was investigated (Figure 11a,b) [20,116].

The main goal of studies reported in [20,116] was not only to numerically validate
an earlier theoretical suggestion [117] of a plasmon-enhanced BLS effect in nanorods
immersed in water or a biological fluid, but also to demonstrate that this approach could
be used to generate an AFC. To achieve such a goal, a finite-difference time-domain model
was developed [116], where Maxwell’s equations were solved simultaneously with the
equations of nonlinear acoustics. While Maxwell’s equations describe the interaction of
light with a metal nanorod and acoustically induced fluctuations of the refractive index
of the surrounding liquid, the equations of nonlinear acoustics describe the interaction of
acoustic waves with the nanorod.

The left column of Figure 11c shows the simulated fields of the sound velocity vector
|v| in close proximity of a nanorod for the frequencies of the longitudinal acoustic pressure
waves with frequencies fa = 1, 5 and 10 GHz. The contours of a 340 nm×30 nm nanorod are
shown by a white rectangle that also serves as the scalebar. Using these data, the displace-
ment field ~ζ of a particle from its equilibrium position due to the action of acoustic pressure
waves was calculated. Subsequently, the divergence of the displacement field ∇ · ~ζ was
computed and shown in the right column of Figure 11c. The amplitude of fluctuations of
the dielectric permittivity of water δε caused by the propagating acoustic pressure wave
is directly proportional to ∇ ·~ζ because a plane longitudinal acoustic wave propagating
in the liquid results in alternating compression and rarefaction and corresponding den-
sity changes. The knowledge of the changes in the dielectric permittivity is required to
numerically simulate the BLS from acoustic waves.

The simulated spectrum of the incident acoustic wave is shown in Figure 12a and
its inset, where the same spectrum is plotted in the decibel scale. Only one peak at the
normalised frequency f / fa,0 = 1 can be seen confirming the monochromatic nature of this
wave (since qualitatively the same result was obtained for kHz, MHz and GHz frequency
range waves, the frequency was normalised to the frequency fa,0 of the incident wave).
However, when acoustic nonlinearity develops as a result of acoustic wave propagation
in water, additional normalised frequency peaks appear in the spectrum at f / fa,0 =
2 (quadratic nonlinearity effect), f / fa,0 = 3 (cubic nonlinearity effect) and so on, see
Figure 12b. In addition to the appearance of the wave harmonics, the nonlinear interaction
leads to the creation of a mean drift (i.e., zero frequency) component that can be seen on a
logarithmic scale.
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Figure 11. (a) Illustration of a numerical simulation configuration for investigation of the optical third
harmonic generation in a 30 nm×30 nm square cross-section silver nanorod immersed into water.
A plane light wave polarised along the y-axis of the coordinate system is normally incident from
the left. (b) Normalised simulated electric field intensity at the centre of the nanorod cross-section.
The rectangle in the main panel schematically shows the length of the nanorod. The solid, dashed
and dotted lines depict profiles of the fundamental mode, and the second and third higher-order
modes, respectively. (c) Simulated spatial profiles of the acoustic velocity |v| (left column) and the
divergence of the displacement field |∇ ·~ζ| for the acoustic frequency 1, 5 and 10 GHz. The white
rectangle shows the contour of the nanorod. The black (yellow) colour denotes zero (maximum) for
the profile intensity. The direction of the incident monochromatic acoustic pressure wave is indicated
by the arrow. Note that the value of |v| in front of (behind) the nanorod increases (decreases) due to
the well-known pressure doubling effect [118].

Figure 12. Normalised acoustic energy spectrum of the incident quasi-monochromatic acoustic
pressure wave detected (a) before and (b) after it propagates through the bulk of water surrounding a
nanorod showing the nonlinear generation of acoustic waves at harmonic frequencies of the incident
acoustic pressure wave. The frequency is normalised to frequency fa,0 of the incident wave. The peak
amplitude of the incident wave is 5 MPa. The insets show the same spectra plotted in a decibel
scale. (c,d) Simulated plasmon-enhanced intensity BLS signal produced from acoustic signals with
the spectra shown in Panels (a,b). Note an approximately 35-fold enhancement due to plasmonic
properties of a nanorod.
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The time-domain dependencies of the dielectric permittivity fluctuations δε(t) were
also extracted from the numerical data and used in simulations of the plasmon-enhanced
BLS effect, the results of which are presented in Figure 12c,d. Using the simulation data
reported in Figure 12a, a typical BLS spectrum with the central Rayleigh peak and two weak
side peaks shifted by the normalised frequency of the incident acoustic wave ∆ f / fa,0 = ±1
from it was found, see Figure 12c. Note that the amplitude of the shifted Brillouin peaks
is significantly increased when a nanorod is present due to the plasmonic enhancement.
The presence of a nanorod also leads to the appearance of the second order Brillouin peaks
shifted by ∆ f / fa,0 = ±2 from the central peak. Most importantly, due to a strong acoustic
nonlinearity present in Figure 12d the generation of an AFC is observed with the spectrum
consisting of Brillouin peaks shifted by ∆ f / fa,0 = ±1,±2,±3 and so on with respect to the
central peak. In the presence of a nanorod, the amplitude of all these peaks is increased due
to its plasmonic behaviour. It was also demonstrated in the follow-up paper [20], where
a more advanced model of the plasmon-enhanced BLS interaction was proposed, that all
plasmon-enhanced Brillouin peaks are phase coherent and thus can be considered as an FC
similar to a mode-locked laser OFC [1]. Finally, we note that qualitatively similar results
were obtained for the values of fa,0 in a wide range from several kHz to several GHz, which
implies that the inter-peak distance of the AFCs discussed in this section can also lie in this
wide frequency range.

6. Frequency Comb Generation Using Oscillations of Gas Bubbles in Liquids
6.1. Physical Origin of the Acoustic Nonlinearity of Gas Bubbles

From the discussion preceding this section, it becomes clear that strong acoustic
nonlinearities can result in the generation of AFCs containing a large number of high-
amplitude peaks. Similar conclusions can be drawn regarding the Kerr OFCs and other FC
generation techniques relying on nonlinear optical phenomena. However, in the field of
Kerr OFCs, there exist fundamental physical limitations that do not allow one to increase
the intensity of the laser beam indefinitely to amplify nonlinear effects and thus to increase
the number of peaks in the spectrum of the comb [8]. While special techniques and novel
materials have been proposed to relax such limitations [119–122] either by optimising the
conversion of the energy of the incident light into new frequency signals or minimising
optical absorption losses, in general they cannot be removed completely.

However, recently it has been theoretically demonstrated that nonlinear optical effects
could be effectively replaced by acoustic nonlinearities. For example, a change in the
refractive index due to a propagating acoustic pressure wave can modulate an optical
signal and, if the acoustic wave exhibits nonlinearities, these also become imprinted onto
the modulated optical signal, effectively enabling the conversion of the acoustic nonlinearity
into new optical signals [8]. Such a nonlinear acousto-optical interaction may generate
additional optical frequencies.

This concept of a hybrid nonlinear acousto-optical interaction exploits the fact that
acoustic nonlinearities are much stronger than their optical counterparts and that they can
be induced using sound waves with a relatively low peak pressure amplitude (recall that
the field of nonlinear optics was established only after the invention of powerful lasers
since this is required to induce nonlinear optical effects). In this context, it is worth noting
the so-called giant acoustic nonlinearities associated with the oscillations of gas bubbles in
liquids [53,123–135]. When an acoustic pressure wave propagates through water, its initially
sinusoidal waveform changes so that its initial monochromatic spectrum acquires higher
harmonic frequencies, see Figure 12a,b. The more nonlinear the medium in which sound
propagates, the stronger such a spectral enrichment. The degree of acoustic nonlinearity is
often characterised by the acoustic parameter β = B/A, which is the ratio of coefficients B
and A of quadratic and linear terms in the Taylor series expansion of the equation of state

p = p(ρ) ≈ p0 + A
ρ− ρ0

ρ0
+ B

(ρ− ρ0)
2

2ρ2
0

+ · · ·
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of a medium relating the thermodynamic pressure p in the medium with its density ρ,
where subscript 0 denotes the values in the absence of sound [8,53]. The larger the value
of β, the more nonlinear the medium, the stronger a distortion of the acoustic spectrum
from the initial monochromatic state. For example, water with β = 3.5 is more acoustically
nonlinear than air with β ≈ 0.7 [8], but the degree of nonlinearity is moderate in both
media. However, when air bubbles are injected into water, the value of β increases to
around 5000 [8,53]. The following qualitative discussion explains this fact.

Liquids are dense and have little free space between molecules, which leads to their
low compressibility. In contrast, gases are easily compressible. When an acoustic wave
propagating in water reaches a bubble, due to the high compressibility of air trapped in it
its volume changes dramatically (see, e.g., [132]). This in turn results in large local acoustic
wavefront deformations that result in strong variation of the initial acoustic spectrum.
Consequently, whereas in bubble-free water one can observe the generation of five or so
higher frequency harmonics of the incident sound, as seen from Figure 12b, in bubbly water
up to 20 high-order acoustic harmonics can be generated for the acoustic wave with the
same peak pressure amplitude, effectively forming AFC.

6.2. Acoustic Frequency Comb Generation Using Oscillations of Multiple Gas Bubbles in Water

The ideas discussed above have been validated experimentally in [21], where a
single-frequency ( f0 = 24.6 kHz) ultrasound wave irradiated several gas bubbles created
in a water tank using a gas bubble generator, see Figure 13. A small (not exceeding
11.5 kPa) peak pressure amplitude of the driving ultrasound wave was deliberately chosen
since, as discussed above, low-amplitude signals suffice to induce strong nonlinearities in
liquid–gas mixtures. The generated bubbles had the equilibrium radii R0 ≈ 1.0± 0.5 mm.
However, since they interacted with each other during the oscillation driven by the ultra-
sound wave, a collective acoustic response typical of a small bubble cluster with an effective
natural frequency [124,132] fnat ≈ 1.7 kHz was observed. Using high-speed imaging and
following [136], it was estimated that the resulting cluster behaved similarly to a large
single gas bubble with an equilibrium radius of 1.95 mm. Thus, since fnat is an order of
magnitude lower than the frequency of the ultrasound wave, the oscillations of the cluster
of bubbles resulted in a nonlinear generation of multiple ultraharmonic frequency peaks in
the spectrum of the cluster’s acoustic response. The interaction of the so-generated acoustic
waves with the noise-induced bubble oscillations at the natural frequency resulted in the
amplitude modulation of the collective bubble response (Figure 14a), and the appearance
of sidebands around the harmonic and ultraharmonic peaks (Figure 14b). These sideband
structures can be used as AFCs.

Several comments should be made to better explain this result. Firstly, in the tem-
poral profile in Figure 14a, the amplitude modulation depth (the ratio of the modulation
excursions to the amplitude of the unmodulated carrier wave) is smaller than 1. In some
OFC technologies, where direct photodetection of the optical pulses is used to produce an
electronic signal that follows the amplitude modulation of the pulse train, low modulation
depth could pose technical challenges. However, this does not present a problem in the case
of AFC using oscillating gas bubbles since the frequencies of the electronic signal of the AFC
coincide with the frequencies of the driving pressure wave, which dramatically simplifies
the characterisation of the comb. Secondly, in [21] the analysis of the experimental result
was supported by a rigorous theoretical and computational modelling of gas bubble oscilla-
tions, and it was shown that both experimental time-domain signals and AFC spectra are
in good qualitative agreement with the calculated ones. However, because the numerical
model in [21] considered only a single oscillating gas bubble with an effective equilibrium
radius of 1.95 mm, it was unable to reproduce some experimentally observed features,
namely, the generation of another AFC spectrum centred at the second harmonic of the
driving ultrasound wave. In fact, Figure 14b shows a sideband peak structure at 49.2 kHz
(i.e., f / f0 = 2) and peak ultrasound wave amplitude α = 4.3 kPa. As shown in Figure 15,
at this frequency, the amplitude modulation also gives rise to a train of pulses with the
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modulation period close to that of the natural bubble cluster oscillations, confirming that
this signal can also be used as an AFC. Thirdly, a slight irregularity of the AFC peaks in
Figure 14b was attributed to the Doppler effect associated with a translational motion of
oscillating bubbles in the incident ultrasound field [133]. The size variation of the generated
bubbles could also contribute to the comb peak imperfection. However, these deficiencies
were not considered as prohibitive, which is demonstrated in the following section.

Figure 13. (a) Schematic diagram of the AFC generation using oscillations of gas bubbles in water.
The oscillations are driven by a single-frequency ultrasound pressure wave. Acoustic waves scattered
by the bubbles are recorded and post-processed to obtain a spectrum consisting of equidistant peaks.
(b) Schematic of an experimental setup, where bubbles are created in a stainless steel tank using
a bubble generator, the driving pressure wave is emitted by an ultrasonic transducer, and waves
scattered by the bubbles are detected by a hydrophone. (c) Photograph of typical gas bubbles emitted
by a bubble generator. Reproduced from [21] published by Springer Nature under the terms of the
Creative Commons CC BY license.

Figure 14. (a) Measured time-domain acoustic response of gas bubbles. The time between the vertical
dashed lines is ∆T = 1/ fnat ≈ 0.6 ms, where fnat is the natural frequency of the bubble oscillations
(see [21] for details). The insets show a closeup of the waveforms and demonstrate the amplitude
modulation. (b) Experimental AFC spectra obtained using gas bubbles in water insonated with an
f0 = 24.6 kHz sinusoidal signal of increasing pressure amplitude α = 1.15, 3.75, 4, 4.2, 4.3, 7.5 and
11.5 kPa. The scattered pressure values (in dB) are shown along the vertical axis with a vertical offset
of 30 dB between the spectra. Reproduced from [21] published by Springer Nature under the terms
of the Creative Commons CC BY license.
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Figure 15. Measured acoustic bubble response corresponding to a sinusoidal driving pressure wave
with the frequency f0 = 49.2 kHz (twice the frequency in Figure 14a) and amplitude α = 4.3 kPa.
Reproduced from [21] published by Springer Nature under the terms of the Creative Commons CC
BY license.

6.3. Spectrally Wide Acoustic Frequency Combs Generated Using Oscillations of Polydisperse Gas
Bubble Clusters in Liquids

As with the other AFC generation techniques [9,55] discussed in this review article,
in the experiments of [21] the number of the sideband peaks usable as an AFC is limited.
Currently, this presents numerous technological challenges that shape research efforts in
the field of AFCs (similar problems also exist in the field of OFCs [1,3]). For example,
for many applications, the spectrum of an AFC has to span over an octave of bandwidth
(i.e., the highest frequency in the FC spectrum has to be at least twice the lowest frequency).
To achieve this, the spectrum of an AFC can be extended using one of the techniques
developed, for example, for broadening the spectra of opto-electronic FCs [137] such
as supercontinuum generation using nonlinear optical effects (as demonstrated above,
the adoption of optical techniques in acoustics is possible because of the analogy between
nonlinear optical processes in photonic devices and nonlinear acoustic processes in liquids
containing gas bubbles). Furthermore, the theoretical analysis in [21] demonstrated that
the number of peaks in a nonlinearly generated AFC and their magnitude can be increased
by simultaneously decreasing the frequency and increasing the pressure of the ultrasound
wave driving bubble oscillations.

As seen from Figure 14b, the shape of spectral peaks is slightly irregular and it could
be argued that this artefact is associated with a translational motion of oscillating bubbles in
the incident ultrasound field. Therefore, the question of long-term stability of AFC signals
arises, which was comprehensively addressed in [22].

The interplay between radial bubble oscillations and their translational motion has
been a subject of intensive research [131,135,138–147]. Most of these studies are based
on the accepted models of spherical gas bubble oscillations [123,125,129] and consider
Bjerknes forces [148] acting on oscillating bubbles. The primary Bjerknes force FpB is caused
by the acoustic pressure field forcing a bubble [148,149], while the secondary Bjerknes force
FsB arises between two or more interacting bubbles [133]. The secondary Bjerknes force
between two gas bubbles is repulsive when the driving frequency lies between bubbles’
natural frequencies; otherwise, it is attractive [133,150,151].

In [22], an alternative strategy for broadening spectra of AFCs generated using gas
bubble oscillations was suggested using polydisperse clusters consisting of mm-sized bub-



Sensors 2022, 22, 3921 24 of 45

bles with equilibrium radii Rn0 = R10/n, where R10 is the equilibrium radius of the largest
bubble in the cluster and n = 1, 2, 3, . . . is the total number of bubbles. Although clusters
with other bubble size distributions could also be used in the proposed approach, it was
shown that this specific ratio of equilibrium radii enables generating AFCs with a quasi-
continuum of equally spaced peaks. Similarly to the experiment [21], in the analysis in [22]
low-pressure ultrasound waves (up to 10 kPa) were considered and a numerical model
of dynamics of multibubble clusters with translational motion developed in [133,144,152]
was employed.

Figure 16a shows the calculated spectra of the bubble clusters, where the number of
rows in each column corresponds to the total number of bubbles in the cluster. Each column
shows the spectrum of the pressure scattered by an individual bubble within the cluster.
The inspection of panels within the same row from left to right reveals changes in the
AFC peak structure caused by the addition of smaller bubbles to the cluster. For example,
the four panels in the top row show that the number of equidistant peaks in the AFC
spectrum produced by the largest bubble increases when smaller bubbles are added. This
is because bubbles within a cluster are affected by the pressure waves scattered by their
neighbours and thus their spectra include additional frequency peaks compared to the
spectra of isolated non-interacting stationary bubbles of the same equilibrium radii (the
dashed lines in Figure 16). Similarly, panels in the second row show the evolution of the
AFC spectrum of the second largest bubble in the cluster, and so on. In all cases, the spectra
exhibit a key feature of a pure AFC signal—the spectrum of the acoustic response of each
bubble consists of a series of well-defined equally spaced peaks.

Figure 16. Columns (from left to right) show the AFC spectra produced by individual bubbles within
clusters consisting of two, three and four bubbles with the equilibrium radii Rn0 = 1.95/n mm, where
n is the bubble index in the cluster. The number of panels in each column corresponds to the total
number of bubbles. The red dashed lines in each panel show the spectra of individual non-interacting
stationary bubbles with identical equilibrium radii. Computational parameters are given in [22].
Reproduced from [22]. Copyright 2021 by the American Physical Society.

6.4. Temporal Stability of Bubble-Based Acoustic Frequency Combs

Numerical modelling reported in [22] demonstrated that the frequency of ultrasound
wave driving bubble oscillations can be chosen in a wide spectral range above the natural
oscillation frequency of bubbles in a cluster. This can greatly facilitate the generation and
recording of stable AFC signals since at low pressure bubble clusters exhibit a regular
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behaviour for a longer time before their dynamics becomes affected by bubble aggregation.
To examine the basic trends in the temporal stability of a bubble cluster, here we consider a
system of just two interacting bubbles in liquid. This simplification allows reducing the
complexity of the model while still accounting for essential physics of bubble interaction.

The accepted model of nonlinear oscillations of a single spherical gas bubble that
does not undergo translational motion is the Keller–Miksis equation [129]. It takes into
account the decay of bubble oscillations due to viscous dissipation and fluid compress-
ibility. However, for mm-sized gas bubbles oscillating at 20–100 kHz frequencies in water
being driven by low-pressure ultrasound waves with the amplitude of up to 10 kPa, the
terms in the Keller–Miksis equation accounting for acoustic losses become negligible [22].
Thus, the Keller–Miksis equation effectively reduces to the classical Rayleigh–Plesset
equation [123,125], which is written for a cluster consisting of N mm-sized gas bubbles
not undergoing translational motion and being driven by low-pressure ultrasound waves
as [131,135]
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The term accounting for the pressure acting on the nth bubble due to scattering of the
incoming pressure wave by the neighbouring bubbles in a cluster is given by
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where dnl is the inter-bubble distance [131]. The pressure in a liquid far from the bubble
is represented by P∞(t) = P0 − Pv + α sin(ω∗t) with the angular frequency ω∗ = 2π f ,
where P0 and Pv are the air and vapor pressures, respectively. Parameters Rn0, Rn(t), µ,
ρ, κ, σ, α and f denote the equilibrium and instantaneous radii of the nth bubble in the
cluster, the dynamic viscosity and the density of the liquid, the polytropic exponent of a
gas entrapped in the bubble, the surface tension of a gas–liquid interface and the amplitude
and the frequency of a driving ultrasound wave. Diffusion of the gas through the bubble
surface is neglected.

To identify the main characteristics of nonlinear oscillations of interacting gas bubbles
relevant to the generation of AFCs, an asymptotic analysis of Equation (1) is conducted
after it is rewritten in the non-dimensional form using the equilibrium radius of the largest
bubble in the cluster, R10, and 1/ω∗ as the length and time scales, respectively, to introduce
the non-dimensional quantities rn = Rn(t)/R10, rl = Rl(t)/R10 and τ∗ = ω∗t [135]. This
results in
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. Parameters R and W can be treated as inverse Reynolds and Weber

numbers representing the viscous dissipation and surface tension effects, respectively. Pa-
rameterM characterises the ratio of the bubble’s natural and forced oscillation frequencies
and Me is the measure of the ultrasound forcing [134]. Parameters ζnl and Qn are the
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inverse of the distance between the bubble centres and the bubble radius relative to that of
the largest bubble in the cluster, respectively [135], and primes denote differentiation with
respect to t. As discussed in [21,22,134],K = 4 for air and for bubbles of sizes relevant to the
AFC context but the maximum values of other parameters do not exceedM = 9.7× 10−4,
W = 7.4× 10−7, R = 6.5× 10−6 andMe = 9.9× 10−5. Therefore, the effects of water
viscosity and surface tension on bubble oscillations are negligible and we setR =W = 0
in what follows. Thus, ultrasonically forced bubble oscillations can be assumed as perfectly
periodic when the driving frequency is much higher than any of the natural frequencies of
the individual bubbles in the cluster (i.e., no resonances arise). This warrants using analysis
similar to that of [21].

Consider a cluster consisting of two gas bubbles with the non-dimensional equilibrium
radii rn0 = Qn, n = 1, 2 (Q1 ≡ 1). Following [21,153] we look for the asymptotic solutions
of Equation (4) in the form

rn = Qn + εrn1(τ) + ε2rn2(τ) + . . . , n = 1, 2 , (5)

where 0 < ε� 1 is a parameter characterising the amplitude of bubble oscillations used
to distinguish between various terms in the asymptotic series, τ = ωτ∗ = ωω∗t and
ω =

√
KM is the Minnaert frequency [21,124] of the largest bubble in the cluster. At the

first order of ε we obtain
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where overdots denote differentiation with respect to τ, (Me/ω2) sin τ∗ ≡ −εp sin(Ωτ)
and Ω ≡ 1/ω � 1. At O(ε2), the equations become:
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Following [21], we write the random initial conditions as r1(0) = 1 + εa, r2(0) = Q2 + εb,
ṙ1(0) = εc and ṙ2(0) = εd which results in

r11(0) = a , r21(0) = b , ṙ11(0) = c , ṙ21(0) = d . (10)

Subsequently, we obtain the leading order solutions

r11(τ) = B1 sin Ωτ + C11 cos(ω′1τ) + C12 sin(ω′1τ)

+C21 cos(ω′2τ) + C22 sin(ω′2τ) , (11)
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These frequencies depend on the inverse inter-bubble distance ζ12 [133,138,154]. Consid-
ering a particular case of Q2 = 1

2 , as expected, for non-interacting distant bubbles with
ζ12 → 0, we obtain ω′1 → ω′10 = 1 and ω′2 → ω′20 = 2. In general, the leading order bubble
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response will always contain three distinct frequencies: two bubbles’ natural frequencies
ω′1,2 and the driving ultrasound frequency Ω.

Coefficients Bi and Cij, i, j = 1, 2 in Equations (11) and (12) depend on ζ12, Ω and p
and can be obtained for arbitrary initial conditions (10). However, their expressions are too
long to be given here explicitly. We only state that they demonstrate that the magnitude of
the ω′1 peak is greater than that of ω′2 in the spectrum of bubble 1 and vice versa and the
amplitude of the peak corresponding to the frequency of a neighbouring bubble decreases
with the distance between them.

Analysis of Equations (8) and (9) can be performed following the procedure outlined
in [21]. However, it suffices here just to note that the right-hand sides of these equations
contain quadratic terms involving r11 and r12 and their derivatives. Therefore, in addition
to the harmonic components with frequencies ω′1,2, solutions of Equations (8) and (9) will
include steady and periodic terms with frequencies equal to all possible pair-wise sums
and differences of ω′1,2 and Ω: ω′1,2 ± ω′2,1, Ω± ω′1,2, 2ω′1,2 and 2Ω. In the AFC context,
the frequency spectrum centred at Ω is important, that is spectral lines Ω− ω′1(1 + ∆),
Ω−ω′1, Ω, Ω + ω′1, Ω + ω′1(1 + ∆), where

∆ =
ω′2 −ω′1

ω′1
≈ 1

Q2
− 1 +

1
2

1 + Q2
2
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2

ζ2
12 = 1 +

5
6

ζ2
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For an ideal AFC, ∆ = 1, which is the case in the limit ζ12 → 0 of distant bubbles. It also
follows from the above expression that to keep the spectral non-uniformity of a bubble-
based AFC within 5% it is sufficient to ensure that no bubbles in a cluster approach each
other closer than about two diameters of the largest bubble.

To assess the robustness of a bubble-based AFC, we show that the attractive secondary
Bjerknes force acting between two distant bubbles is negligible in the AFC conditions.
The expression for such a force arising is given, for example, by Equation (2.5) in [133].
Scaled with ρω∗2R4

10 and with formal parameter ε set to 1, it reads

F′sB = −4πζ2
12Q3

2ω2〈r11r̈21〉 , (14)

where the angle brackets denote time averaging. Substituting expressions (11) and (12) into
Equation (14) and keeping only the largest terms in each group in the limits of Ω→ ∞ and
ζ12 → 0 leads to
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are the Bjerknes force components due to natural bubble oscillations, ultrasound forcing
and the interaction between the two, respectively. By definition, Q2 < 1 and in the
reference experiment [21],Me/ω2 ∼ 2.6× 10−2, Ω ∼ 16 and ζ2

12 . 0.04. Therefore, we
conclude that the secondary Bjerknes force is small at the typical driving frequencies used
in the generation of bubble-based AFCs away from bubble resonances. This provides an
opportunity for measuring the acoustic bubble response and recording the resulting signals
for AFC applications before bubble oscillations become affected by their aggregation.



Sensors 2022, 22, 3921 28 of 45

7. Acoustic Frequency Comb Generation Using Vibrations of Liquid Drops

In this section, we discuss similarities between nonlinear acoustic properties of liq-
uid drops and gas bubbles in the context of AFC generation. The natural tendency to
minimisation of a surface tension energy explains the spherical shape of undisturbed
bubbles. The surface tension also defines the shape of liquid drops that, despite being
easily deformable, tend to assume a spherical shape also. Subsequently, similar to gas
bubbles, liquid drops can oscillate in response to an acoustic forcing and develop nonlinear
behaviour analogous to that of oscillating gas bubbles [8,68,155].

More specifically, natural oscillations of a liquid drop are driven by capillary forces
competing with inertia of the liquid [156]. This leads to rich physical behaviours that
warrant considering liquid drop studies as an independent and presently burgeoning field
of research [23,157–171]. An important setup in this field is parametrically excited waves
on the surface of vertically vibrated liquid drops, the phenomenon originally observed on
the surface of a liquid layer in 1831 by Faraday. Such waves have become a paradigmatic ex-
ample of a nonlinear wave system that exhibits complex dynamics including periodic [172],
quasi-periodic [173–175] and chaotic behaviour [176–179]. Recent studies have opened new
frontiers for potential applications of Faraday waves extending beyond fluid dynamics.
For example, in photonics, they have been used to generate a special kind of OFC [180].

Physical processes behind the excitation of Faraday waves in liquids are conceptually
similar to mechanical vibrations used to generated phononic FCs (Section 4). Therefore, it is
plausible to assume that Faraday waves in liquids can also be employed to generate AFCs.
However, before we discuss the relevant results, we assess several key characteristics of
potential Faraday wave-based FCs.

In liquids, the restoring force arises from surface tension [156]. The speed of capillary
waves in a liquid is three orders of magnitude smaller than that of acoustic pressure
waves [8]. As a result, the frequency of capillary oscillations is about three orders of
magnitude smaller than that of an acoustic wave mode. These observations imply that
the FC generation using Faraday waves in liquids would result in FC spectra with a small
inter-peak distance of the order of several tens of Hz that can find applications, for example,
in underwater acoustics [5]. Moreover, capillary oscillations of liquid drops can be excited
using non-mechanical techniques such as electrowetting, where a sessile drop oscillates
when an alternating voltage is applied to it via a contact electrode. The oscillations result
from a time-varying electrical force acting on the three-phase contact line. They lead to
resonances that occur at certain frequencies of the applied alternating electric signal [181].
While for mm-sized liquid drops, such resonance frequencies can be in the range of from 30
to 300 Hz, using room-temperature liquid metal alloy nanodrops one can increase them to
several GHz [182], which is beneficial for AFC applications. We will return to the discussion
of the relevant physical properties of liquid metal drops in Section 7.5.

However, relatively low viscosity of common liquids such as water implies that
Faraday surface waves can be excited using low-amplitude vertical vibrations produced
by inexpensive and readily available components such as loudspeakers and piezo-electric
transducers (Figure 17) that are much simpler than any equipment used in electrowetting
experiments [181]. As discussed in [183–185], enhancements of the basic setup used to
investigate Faraday waves in oscillating drops also include common elements such as
diode lasers, measurement-grade photodetectors and accelerometers, which nevertheless
revealed a number of intriguing physical processes that can also help understand the
behaviour of smaller drops oscillating at much higher frequencies [186].
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Figure 17. (Left) Schematic of a technically simple experimental setup consisting of a low-frequency
loudspeaker connected via a power amplifier to the headphone output of a laptop computer. A Petri
dish is glued to the loudspeaker. An audio signal is produced by a tone generator. The fluid surface is
illuminated by a light source and Faraday waves are detected using a photoresistor that is connected
either to an oscilloscope or to the microphone input of the laptop computer with a pre-installed audio
signal processing software. (Right) Photograph of Faraday waves on the surface of water contained
in a Petri dish glued to a vibrating loudspeaker.

7.1. Experimental Demonstration of AFC Generation Using Faraday Waves

To demonstrate the plausibility of AFC generation using Faraday waves in liquids,
in the experiment of [24] a red laser diode (650 nm wavelength, 0.5 mW power) with a
highly divergent beam profile was used as the source of light. A loudspeaker (3 W, 20 Hz–
15 kHz) was driven via an audio amplifier by a pure sinusoidal signal f = 100 Hz. One end
of a cardboard cylinder (height 20 cm, radius 4.2 cm) was fixed above the loudspeaker and
the other end was covered with a 0.5 mm thick black Teflon membrane. A pancake-like drop
of pure alcohol (95% v/v ethanol) was placed on top of the membrane. The thickness of
the liquid layer was 2 mm. A photodetector with a frequency response covering the entire
frequency range of a loudspeaker was used to receive light reflected from the liquid surface.

The classical nonlinear standing Faraday waves appear on the surface of a horizontally
extended fluid in a vertically vibrating container. When the normalised vibration amplitude
Aω2/g (ω = 2π f , f is the vibration frequency and g is the gravity acceleration) exceeds
the critical value, a flat fluid surface becomes unstable and subharmonic surface waves
oscillating at the frequency f /2 are formed. Figure 18a shows the stability diagram for
h = 2 mm and h = 1 mm deep ethanol layers, where the so-called subharmonic Faraday
tongues that correspond to the neutral stability of perturbation with wavelength λ and half
of the driving frequency f /2 can be seen [63]. The flat fluid surface is linearly unstable
above the boundary of the tongues. For f = 100 Hz (200 Hz) and h = 2 mm, Faraday
wave wavelength is λ = 4.34 mm (2.66 mm) at Aω2/g = 0.53 (1.7). For f = 100 Hz and
h = 2 mm, a high-speed camera was used to estimate wavelength λ ≈ 4.5 mm, which is in
good agreement with the theoretical prediction.
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Figure 18. (a) Stability diagram for the h = 2 mm and h = 1 mm deep ethanol layers showing two
subharmonic Faraday tongues. The oscillation wave frequency is fF = 50 Hz, half of the vertical
vibration frequency f = 100 Hz. (b) Experimental optical spectra for seven gradually increasing
(from bottom to top) amplitudes of the vibration signal with f = 100 Hz. The depth of the ethanol
layer is h = 2 mm. All spectra are vertically offset by 100 dB. The three lowest spectra are dominated
by the vibration frequency f = 100 Hz and its higher-order harmonics n f (n = 2, 3, . . . ) that appear
due to nonlinear acoustic effects in ethanol. The fourth and so on spectra are dominated by the
Faraday wave at fF = 50 Hz and its higher-order harmonics. Note that all peaks have a characteristic
triangular shape (see the main text). The equal spacing between them allows using the spectra as
AFCs. Reproduced from [24] with permission of SPIE and the authors of the publication.

However, in the experiment of [24], the fluid forms a pancake-shaped liquid drop on
the surface of a solid membrane. The formation of Faraday waves in this case is qualitatively
different. When such a drop is vertically vibrated with a small amplitude, the capillary
surface waves are excited at the edge of a drop, i.e., at the contact line between the fluid
and the membrane. Similarly to a classical damped harmonic oscillator, the frequency
of the excited waves is identical to the vibration frequency f . This result is confirmed in
Figure 18b (see the three lowest spectra). As the amplitude increases remaining below the
critical value, new peaks appear at the harmonic frequencies n f (n = 2, 3, . . . ). In agreement
with the theory, these peaks are due to nonlinear-acoustic effects in ethanol triggered by
the incident acoustic wave f = 100 Hz. The onset of Faraday waves in finite-volume liquid
drops is associated with the period-doubling bifurcation [170]. When the amplitude of the
100 Hz wave reaches the Faraday instability threshold, surface Faraday waves are excited
at fF = f /2 = 50 Hz. The nonlinearity of these waves is so strong that one can observe
many higher-order harmonics n fF. The height of the peaks associated with Faraday waves
is much larger than that of driving 100 Hz frequency of the acoustic wave and it has a
characteristic triangular shape. This shape is a signature of extreme nonlinearities observed
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in fluid-mechanical systems [177] leading to the formation of capillary rogue waves [187],
oscillons [176] and solitons [188].

To understand the physics behind the changing peak shape, a more detailed exper-
iment was conducted in [23] using smaller pancake-like drops of ethanol and canola oil
(Figure 19). The observations revealed a number of peculiarities relevant to the generation
of AFC. Their theoretical explanation is given in the following section.

Figure 19. (a) Experimental average response of an ethanol drop subjected to vertical vibration at
70 Hz plotted as a function of the vibration amplitude. The inset shows the power spectra obtained
by Fourier-transforming the measured signals. The parenthetical labels relate the spectra to the
experimental points in the main panel. (b) Experimental average response of a canola oil drop sub-
jected to vertical vibration at 70 Hz plotted as a function of the vibration amplitude. The modulation
sidebands (the spectrum label 7) are present in the ethanol drop spectra and absent in the spectra
of a canola oil drop. The shaded regions in the main panels correspond to the chaotic oscillations,
resulting in strong diffuse scattering leading to a decrease in the optical intensity of the detected
signal. Reproduced from [23]. Copyright 2019 by the American Physical Society.

7.2. Existence Conditions for Faraday-Wave-Based Acoustic Frequency Combs

Here, we summarise the results of the analysis reported in [23] with a special focus on
the physical conditions that are favourable for the generation of Faraday wave-based AFCs.
To start with, we note that modelling the dynamics of a liquid drop that rests on a solid
plate requires a correct description of the contact line motion. To avoid the well-known
hydrodynamic singularities at the true contact line [189], a standard regularisation method
is used that is based on the assumption that a molecularly thin precursor film exists beneath
the drop and covers the entire area of the solid plate [156]. In this case, the equilibrium
contact angle can be determined by balancing the pressure in the precursor film and in
the drop. For small contact angles, the total pressure can be written in terms of the drop
thickness h(x, y) [156]

P = −σ(∂xx + ∂yy)h + ρgh−Π(h) , (16)

where σ and ρ are the surface tension and the fluid density and Π(h) is the disjoining
pressure that describes the long-range van der Waals forces giving rise to the formation of
the precursor film. In general, the function Π(h) that allows the existence of a steady drop
with a non-zero contact angle is given by [190]

Π(h) =
B

hn
∞

(
hn

∞
hn −

hm
∞

hm

)
, (17)

where B is a constant, h∞ is the thickness of the precursor film and m, n are some integer
numbers. Following [158,170] and choosing n = 6 and m = 3, the disjoining pressure
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Equation (17) can be written in terms of the Hamaker constant AH , a constant that accounts
for van der Waals interaction between two materials, as

Π(h) =
AH

h3

(
h3

∞
h3 − 1

)
. (18)

The equilibrium contact angle θ � 1 is related to AH and h∞ via [190]

AH ≈
5h2

∞
3

σθ2 . (19)

Subsequently, we adopt a simplified version of the model proposed in [170], where we only
take into account long-wave deformations of the liquid–gas interface assuming a quadratic
dependence of the horizontal fluid velocity u(x, y, z) on the vertical coordinate z

u = Φ

(
z2

2
− hz

)
. (20)

This expression satisfies the boundary conditions at the solid plate u(z = 0) = 0 and at
the liquid–gas interface ∂zu(z = h) = 0 for some arbitrary function Φ(x, y). The flow field
across the layer q =

∫ h
0 u dz can be expressed in terms of Φ

q = −Φ
h3

3
. (21)

The Navier–Stokes equation in the long-wave approximation is

ρ
(

∂tu +∇(u2) + ∂z(uw)
)
= µ∂zzu−∇P , (22)

where µ is the dynamic viscosity, w is the vertical component of the velocity and P is the
pressure. Integrating Equation (22) over z and using the kinematic boundary condition
∂th + (u ·∇h) = w, we obtain

ρ

[
∂tq +

6
5
∇ ·

(
q⊗ q

h

)]
= −3µq

h2 − h∇P,

∂th + (∇ · q) = 0 , (23)

where q⊗ q denotes the matrix product.
When a drop is supported by a solid plate that vibrates vertically with amplitude

A0 and frequency Ω, Equations (23) are valid in the frame co-moving with the plate.
The pressure P is taken from Equation (16) with g replaced by g(1 + a cos Ωt), where
a = A0Ω2/g is the dimensionless vibration amplitude. The validity of system Equation (23)
is restricted to small contact angles and small variations of the drop height h. In addition,
the characteristic horizontal deformation wavelength λ must be larger than the length of
the viscous boundary layer l =

√
2µ/(ρΩ) associated with the vibration frequency Ω [191].

In what follows, we consider the simplest possible case of a one-dimensional liquid drop,
whose dynamics is described by Equations (23) with h(x, t) and one-dimensional fluid flux
q(x, t).

7.3. Linear Response and Higher Harmonics

In the absence of external driving, i.e., when a = 0, Equations (23) admit a steady-state
solution hs(x), characterised by zero fluid flux q(x, t) = 0. In an unbounded domain,
this solution satisfies limx→±∞ hs(x) = h∞ and corresponds to an equilibrium liquid drop
resting on the precursor film of thickness h∞. Drops with a sufficiently large volume
(excluding the volume of the precursor film) are flattened by the gravity, resembling a
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cross-section of a pancake. The height h0 of the drop is much larger than the precursor film
thickness h∞ and the volume of the drop determines its width W.

In response to a weak vibration a � 1, the drop develops the so-called harmonic
small-amplitude capillary waves on its surface, whose oscillation frequency is identical to
the vibration frequency Ω. The exact form of the temporal response of the drop to a weak
external vibration can be determined by linearising Equation (23) about a flat upper cap of
the drop h = h0 + h̃(x, t), where h̃� h0 is a small deformation amplitude. As was shown
in [23], the resulting linearised equation is given by the damped-driven Mathieu equation

∂tt h̃ +
3µ

ρh2
0

∂t h̃ + h0

(
σ

ρ
∂4

x + g(1 + a cos Ωt)∂2
x

)
h̃ = pe(x, t) , (24)

where pe(x, t) denotes the excess pressure, generated by the left and the right oscillating
drop edges.

Next we observe that pe(x, t) oscillates with the driving frequency Ω and expand
h̃ = ah̃(0) + a2h̃(1) + a3h̃(2) + . . . . The analysis conducted in [23] based on Equation (24)
reveals that the leading order response h̃(0) is harmonic, i.e., h̃(0) oscillates with the driving
frequency Ω. However, the higher-order terms h̃(1,2,... ) contain higher-order harmonics of
the driving signal. It is therefore evident that, already in the linear regime, the temporal
spectrum of the drop response can be used as a frequency comb with delta-like peaks at
frequencies nΩ, (n = 1, 2, 3, . . . ).

7.4. Nonlinear Response and the Amplitude Modulation

To investigate the nonlinear response of the drop and to further identify a regime that
would be favourable for the AFC generation, we employ the continuation method, where
Equations (23) are solved numerically for gradually varying (increasing or decreasing)
values of the vibration amplitude a: an = n∆, n = 0, 1, 2, 3, . . . with a fixed step ∆ = 0.0015.
For each value of n, Equations (23) are integrated over the time interval that is equivalent to
1000 oscillation cycles. The solution from the (n− 1)th run is taken as the initial condition
for the nth run. To artificially recreate the experimental conditions reported in [23], a small-
amplitude white noise ξ(x, t) is added to the second of Equations (23).

The deformation δh(t) of the drop surface at x = 0 and its power spectrum S f are
used to characterise the temporal response of a fixed-volume ethanol drop vibrated with
different frequencies f . In Figure 20, the amplitude of δh(t) in the units of the drop height
h0 is shown as a function of a for a fixed-volume ethanol drop vibrated at 21 Hz (Figure 20a)
and 28 Hz (Figure 20b).

The characteristics of the drop response are highly sensitive to the relationship between
the Faraday wavelength λF and the horizontal size of the drop W. Since in the relevant
experiment the volume of the drop was fixed, in the model the vibration frequency f was
varied, resulting in a change of the dimensional wavelength of Faraday waves. Thus, at the
vibration frequency 21 Hz, we observe the onset of the sub-harmonic Faraday waves via
a super-critical period-doubling bifurcation that occurs at amplitude a = 0.08, as shown
in Figure 20a. The newly established mixed state has a high degree of temporal order
characterised by the sharp subharmonic and harmonic peaks in the frequency spectrum.
At around a = 0.15, the mixed state undergoes a secondary bifurcation that corresponds to
the modulation instability of wave amplitude. While from the dynamical theory point of
view, this instability corresponds to a torus bifurcation (tr), the resulting spectrum develops
a number of equidistant frequency peaks that can be used as an AFC.

A qualitatively different scenario was obtained for f = 28 Hz, see Figure 20b, where the
primary instability of harmonic waves is most likely a torus bifurcation. When a is increased
with step ∆, harmonic waves follow the branch shown by asterisks. They lose stability
at around a = 0.092 (labels (sn) and (tr)). The response amplitude jumps sharply and no
subharmonic peak is visible in the temporal spectrum, thereby speaking in favour of a torus
or saddle-node bifurcation. A new state corresponds to the modulated Faraday waves,
which is confirmed by the presence of frequency sidebands in the temporal spectrum. These
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are required for the AFC generation. Moreover, as the vibration amplitude a is decreased
from a = 0.12, the response amplitude follows the branch shown by circles that stretches
to a = 0.07. At a = 0.087 (label (tr)), the modulated Faraday waves are replaced with
non-modulated standing waves via a reversed torus bifurcation. Yet, for a < 0.07 (label (sn))
the branch of standing non-modulated Faraday waves does not exist and the drop response
is harmonic. The subcriticality of bifurcations results in a hysteresis loop shown by the
thick blue arrows in Figure 20b.
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Figure 20. Average response amplitude of an ethanol drop vibrated at the frequencies (a) f = 21 and
(b) 28 Hz as a function of the gradually increasing amplitude a. Harmonic waves lose their stability
(a) via a supercritical period-doubling bifurcation (pd) at a = 0.08 and (b) via a torus bifurcation at
a = 0.09. The modulational instability sets in via a torus bifurcation (tr) on the subharmonic branch.
At f = 28 Hz, one observes the formation of a hysteresis loop consisting of gradually increasing
(asterisk) and gradually decreasing (circle) branches, where sn and tr correspond to the saddle-node
and torus bifurcations, respectively. (c) Close-up of spectrum S f (3) in panel (b) in the regime of the
developed modulational instability. The dashed vertical lines highlight the location of equally distant
delta peaks with the scaled inter-peak distance of f / f0 = ∆ = 0.04.

The physical mechanism behind the formation of the AFC in the regime of the modu-
lational instability is the nonlinear mixing of the three frequencies: the driving frequency f ,
the sub-harmonic frequency of the Faraday waves f /2 and the much smaller frequency
fm � f , which corresponds to the amplitude modulation. A close-up of the temporal
spectrum (3) from Figure 20b in the regime of the developed modulational instability is
shown in Figure 20c. The dashed vertical lines highlight the location of the delta peaks in
the power spectrum of the response of the drop. The peaks appear as equidistant, with a
scaled inter-peak interval of f / f0 = ∆ = 0.04, where f0 = 28 Hz is the driving frequency.

As follows from the discussion (Figure 20), the AFC generation is possible only when
the drop size and the frequency of its vertical vibrations fall within specific ranges. This
observation was confirmed experimentally as shown in Figure 19, although slightly higher



Sensors 2022, 22, 3921 35 of 45

vibration frequencies were used. To visualise the existence range of AFCs, in Figure 21
we plot the boundary between harmonic and subharmonic responses in the frequency–
amplitude plane for a fixed volume ethanol drop. The boundary is obtained by gradually
increasing the vibration amplitude a at a fixed frequency f . The response is subharmonic
in the shaded area, where the AFC generation has been observed. A high sensitivity of the
Faraday instability threshold to frequency variation is explained by a simple geometric
commensurability condition: if the horizontal drop size is an integer multiple of a half of
the Faraday wavelength λF/2 = π, then subharmonic Faraday waves are easier to excite
on the drop surface.

Figure 21. Frequency-amplitude phase diagram of the harmonic (h) and subharmonic (sh) responses
for a fixed volume ethanol drop vertically vibrated with the frequency f . The response is subhar-
monic in the shaded area, where the generation of AFCs has been observed. Reproduced from [23].
Copyright 2019 by the American Physical Society.

Finally, note that both theory and experiment in [23] demonstrate that in highly viscous
fluids the modulation instability of subharmonic Faraday waves is pushed towards larger
values of vibration amplitude, thereby affecting the AFC existence conditions outlined
above since in this case the primary instability of harmonic waves is dominated by a period-
doubling bifurcation and modulation sidebands are not found in the frequency spectrum.
Hence, we conclude that highly viscous liquids would be less suitable for the generation of
Faraday wave-based AFCs.

7.5. Faraday Wave Liquid–Metal Drops at Room Temperature

In this section, we discuss the perspectives of the AFC generation using nonlinear
acoustic properties of novel non-toxic, room-temperature liquid–metal materials notable
for their unusual electronic, fluid mechanical and optical properties [25–27,192,193]. For
example, in [27], eutectic gallium-indium alloy (EGaIn, 75% Ga 25% In by weight, melting
point approximately −15.5 ◦C) spherical nanoparticles suspended in ethanol were investi-
gated and their strong plasmonic resonances in the UV spectral range were demonstrated.
Previously, nanoparticle-like liquid droplets were investigated as ultra-small mechanical
resonators that can be used to generate FC-like signals [166,167]. However, liquids used in
those studies did not support any plasmon mode because they did not possess the conduc-
tivity of metals. On the contrary, liquid metals combine the properties of both liquids and
metals. Therefore, their drops can oscillate like pure liquid and exhibit plasmonic properties
at the same time. This was demonstrated in [182]. Liquid metals also change their shape
easily. For example, it was suggested in [193] that an acoustically driven oscillating gas
bubble located above a liquid–metal layer can modify the liquid–metal surface, creating a
parabolic-like micro-mirror that can focus UV light into a beam.
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Here, we discuss another opportunity that liquid metals offer in the field of AFC
generation using surface Faraday waves. EGaIn and similar Ga-based alloys have the
following relevant material parameters: surface tension σ = 624 mN/m, dynamic viscosity
µ = 1.99 × 10−3 Pa s and density ρ = 6280 kg/m3, which we use in calculations supporting
this discussion. However, the surface of EGaIn is covered by a nanometer-thin oxide
layer [25,27] that does not dissolve into the bulk metal and is also technologically important
for the formation of stable drops. Furthermore, the surface tension of EGaIn is reversibly
changeable from 0.624 N/m to 0.07 N/m (approximately the surface tension of water) when
an external voltage is applied to liquid metal layers [25,26]. The use of these properties
creates new opportunities for studies of Faraday waves and relevant nonlinear phenomena
in liquid metals.

For example, the onset of Faraday waves on the surface of a large liquid pancake-like
drop made of pure Ga was observed in an experiment, where the frequency of vertical
vibration was varied from 40 to 300 Hz. It was found that the conditions for the generation
of FC-like signals could be satisfied at much lower vibration amplitudes than those in
the experiments involving ethanol and canola oil drops of similar dimensions [23]. These
observations are in good agreement with the result of the analysis that we discuss below.

Note that the thickness h of the pancake-like drop of the liquid metal created on the
surface of a vertically vibrated plate is not a free parameter but is related to the contact
angle α as

(1/2)ρgh2 = σ[1− cos(α)] . (25)

For example, using a typical value α = 160◦ [194], one obtains h = 5.8 mm. Figure 22 shows
the stability diagram for a liquid metal that demonstrates that the Faraday threshold for
this material is much lower than that of ethanol in Figure 18a. Furthermore, this diagram
indicates that at higher amplitudes a the excitation of harmonic perturbations could be
observed, which further increases the magnitude of multiple spectrum peaks thus making
them usable for AFC applications. An intuitive physical reason for a low Faraday threshold
for a liquid metal is that the threshold is controlled by the kinematic viscosity η = µ/ρ,
which is estimated as 1.5× 10−6 for ethanol and 3.7× 10−7 for liquid metal.
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Figure 22. Stability diagram for h = 5.6 mm and h = 2 mm deep liquid metal layers showing two
subharmonic Faraday tongues. The oscillation frequency of Faraday waves is half of the vertical
vibration frequency f = 50 Hz (left) and 100 Hz (right).

Of course, the use of Faraday waves on the surface of a liquid metal drop for AFC
purposes has physical limitations. For example, it is technically challenging to excite sub-
micrometer patterns that, for example, would be required to enable a strong interaction
of light with the surface Faraday waves—such a wave pattern would be perceived by the
light as an oscillating diffraction grating, which in turn could lead to intriguing optical
effects in the frequency range, where liquid metal supports plasmon resonances [27].
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In fact, the Faraday instability originates from a parametric excitation of gravity-capillary
waves on the surface of a fluid. When the effect of viscosity is neglected, which is a valid
approximation for liquid metals, the dispersion relation for gravity-capillary waves in
shallow layers can be written as

ω2 = (gk + σk3/ρ) tanh(kh) , (26)

where ω is the driving angular frequency, h is the thickness of the layer and k = 2π/λ is
the Faraday wavenumber. When ω � 1, the wavenumber is also large so that the gravity
in the dispersion relation can be neglected. This leads to the wavelength

λ = 2π(σ/(ω2ρ))1/3 . (27)

If ω = 1 MHz then λ = 14µm. To excite a sub-micrometer wavelength, which would
give rise to optical diffraction grating-like oscillations on the liquid metal surface, the
frequency should be of order of several GHz. This presents a significant technical challenge
because it is difficult to produce a mechanical vibration with the frequency in the GHz
range. However, as discussed above, in liquid metal drops, Faraday waves could also
be excited using an electrowetting technique [181,186]. As theoretically shown in [182],
using electrowetting, one can excite oscillations of the liquid metal surface with GHz-range
frequencies. Although the application of such results in the context of AFC generation
was not the focus of the work [182], a dramatic change in the frequency of the plasmon
resonance due to capillary oscillations found there unambiguously speaks in favour of the
plausibility of optical wave modulation and the appearance of sideband peaks in the optical
spectrum of the incident light, thus resulting in a signal that could be used as an AFC.

Thus, the application of non-toxic, room-temperature liquid–metal alloys holds the
promise to become a useful method of AFC generation. While in many applications the
use of solid-state AFCs could be preferred, in some situations liquid-state technologies can
be advantageous. For example, liquid metals discussed in this section have the potential
to be used inside a living body to realise such important functions as sensing and drug
delivery [27,28,195]. Therefore, it is plausible that a combination of these new approaches
with an FC-based medical technology [196] could become a subject of future research.

8. Conclusions and Outlook

There has been significant progress in understanding the fundamental physical pro-
cesses that underpin the operation of AFCs—non-optical counterparts of OFCs. As with
OFCs that are essential in applications that require the highest accuracy and resolution
when measuring the frequency, time, distance or molecular composition of a material using
light, AFCs have enabled similar functionalities using sound and vibrations in practical
situations where light cannot be used. Similar to OFCs that have evolved into an indepen-
dent technology soon after their introduction, the recently proposed AFCs have already
enabled several novel spectroscopy and microscopy techniques, sensors and medical imag-
ing modalities. Hence, it is plausible that the field of AFCs will rapidly grow and that this
emergent technology will find further applications in science and engineering.

However, extra research and development work is required for the AFC technology to
fulfil its full potential. Here, we outlined some of the important milestones that will need
to be reached to achieve this goal.

Firstly, whereas AFCs are expected to operate similarly to OFCs, there are several
differences between these two techniques, stemming from the disparate frequencies of
acoustic waves (as well as the vibrations and spin waves) and light and also with physical
mechanisms by which these waves interact with media. This aspect presents numerous
technological challenges that shape research efforts in the field of AFCs.

Secondly, the type of AFC suitable for a particular practical application, and thus
the physical mechanism of its generation, depends on specific experimental conditions
and technical requirements. While this observation also applies to OFCs since they can



Sensors 2022, 22, 3921 38 of 45

be generated using a number of different techniques, in the case of AFCs, one has a much
wider choice of approaches to the comb generation. For example, whereas generating AFC
spectra with peaks of the same magnitude would be advantageous for certain applications,
having peaks of different heights—which is the case with several AFCs discussed in this
article—can be, in general, inconsequential as long as the peaks are detectable and their
frequencies are stable.

Furthermore, some AFCs have a smaller number of spectral peaks than OFCs, which is
a feature that has been identified as being important for a number of practical applications
including phonon lasers [65,66] and computing [67]. Such AFCs should be compared with
opto-electronic OFCs that are known to also have a small number of peaks and require
special techniques for broadening their spectral ranges [137]. The same applies, although
to a lesser degree, to Kerr OFCs generated using a cascade of optical FWM processes [33].
Indeed, a Kerr OFC may have just ten or so peaks due to the intrinsically low strength of
nonlinear optical effects [8,41], which is in stark contrast to conventional OFCs based on
mode-locked lasers and containing hundreds of frequency peaks [1].

Thirdly, although considerable attention has been paid to the long-term temporal
stability of certain kinds of AFCs and conclusions have been drawn regarding their applica-
bility to resolve specific problems such as precision underwater measurement, the stability
of AFCs of the other kinds has not been investigated in great detail. While filling this
knowledge gap is likely to be one of the future directions in AFC research, the lack of
long-term stability may be inconsequential in some applications such as, for example,
sensing and imaging in in vivo biological environments [7,183] that evolve in time.

To conclude, due to the aforementioned differences between acoustic and optical fre-
quency combs, so far they have been mostly targeted at different technological applications.
For this reason, a direct quantitative comparison of their performance at present may be
difficult or even impossible. However, the field of AFCs is developing rapidly and catching
up with its more mature OFC counterpart. For example, OFCs have been used to control
quantum bits (qubits) for more than a decade [197], but very recently the possibility of
using AFCs for a qubit manipulation has also been demonstrated [198]. Another exam-
ple of applications where AFCs start competing with OFCs is precision measurements in
Bose–Einstein condensate systems [51]. Moreover, both OFCs and AFCs can potentially
find applications in enhancing the sensitivity of resonant-mode sensors or for improving
the phase noise of oscillators or phase locked systems [51]. Thus, whereas the development
pathway of AFCs is different from that of OFCs, the former have already reached the patent
stage (see, e.g., [199,200]). This means that they are very close to entering scientific and
commercial service as capable and versatile competitors to more traditional OFC systems.
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Abbreviations
The following abbreviations are used in this manuscript:

AFC Acoustic frequency comb
APD Avalanche photodiode
BAW Bulk acoustic wave
BLS Brillouin light scattering
BS Beam splitter
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CW Continuous wave
EGaIn Eutectic gallium-indium alloy
FC Frequency comb
FWM Four wave mixing
LDV Laser Doppler vibrometer
MOKE Magneto-optical Kerr effect
OFC Optical frequency comb
PBS Polarising beam splitter
PSD Power spectral density
SAW Surface acoustic wave
SBS Stimulated Brillouin scattering
SERS Surface-enhanced Raman scattering
SONAR Sound navigation and ranging
SW Spin wave
TFPI Tandem Fabry–Pérot interferometer
TLS Two level system
UV Ultraviolet
VIPA Virtual image phase array
VP Velocity profiler
WGM Whispering gallery mode
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frequency comb generation in a lithium niobate microring resonator. Nature 2019, 568, 373–377.
138. Zabolotskaya, A.E. Interaction of gas bubbles in a sound field. Sov. Phys. Acoust. 1984, 30, 365–368.
139. Watanabe, T.; Kukita, Y. Translational and radial motions of a bubble in an acoustic standing wave field. Phys. Fluids A 1993,

5, 2682–2688.
140. Pelekasis, N.A.; Tsamopuolos, J.A. Bjerknes forces between two bubbles. Part 2. Response to an oscillatory pressure field. J. Fluid

Mech. 1993, 254, 501–527.
141. Doinikov, A.A.; Zavtrak, S.T. On the mutual interaction of two gas bubbles in a sound field. Phys. Fluids 1995, 7, 1923–1930.
142. Barbat, T.; Ashgriz, N.; Liu, C.S. Dynamics of two interacting bubbles in an acoustic field. J. Fluid Mech. 1999, 389, 137–168.
143. Harkin, A.; Kaper, T.J.; Nadim, A. Coupled pulsation and translation of two gas bubbles in a liquid. J. Fluid. Mech. 2001,

445, 377–411.
144. Doinikov, A.A. Translational motion of two interacting bubbles in a strong acoustic field. Phys. Rev. E 2001, 64, 026301.
145. Macdonald, C.A.; Gomatam, J. Chaotic dynamics of microbubbles in ultrasonic fields. Proc. Inst. Mech. Eng. Part C J. Mech. Eng.

Sci. 2006, 220, 333–343.
146. Mettin, R.; Doinikov, A.A. Translational instability of a spherical bubble in a standing ultrasound wave. Appl. Acoust. 2009,

70, 1330–1339.
147. Lanoy, M.; Derec, C.; Tourin, A.; Leroy, V. Manipulating bubbles with secondary Bjerknes forces. Appl. Phys. Lett. 2015,

107, 214101.
148. Bjerknes, V. Fields of Force; The Columbia University Press: New York, NY, USA, 1906.
149. Leighton, T.G.; Walton, A.J.; Pickworth, M.J.W. Primary Bjerknes forces. Eur. J. Phys. 1990, 11, 47–50.
150. Kazantsev, G.N. The motion of gaseous bubbles in a liquid under the influence of Bjerknes forces arising in an acoustic field. Sov.

Phys. Dokl. 1960, 4, 1250.
151. Crum, L.A. Bjerknes forces on bubbles in a stationary sound field. J. Acoust. Soc. Am. 1975, 57, 1363–1370.
152. Doinikov, A.A. Mathematical model for collective bubble dynamics in strong ultrasound fields. J. Acoust. Soc. Am. 2004,

116, 821–827.
153. Chen, S.H.; Huang, J.L.; Sze, K.Y. Multidimensional Lindstedt–Poincaré method for nonlinear vibration of axially moving beams.

J. Sound Vib. 2007, 306, 1–11.
154. Manasseh, R.; Ooi, A. Frequencies of acoustically interacting bubbles. Bubble Sci. Eng. Technol. 2016, 1, 58–74.
155. Tsamopoulos, J.A.; Brown, R.A. Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 1983, 127, 519–537.
156. de Gennes, P.G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: Berlin,

Germany, 2004.



Sensors 2022, 22, 3921 44 of 45

157. Yoshiyasu, N.; Matsuda, K.; Takaki, R. Self-induced vibration of a water drop placed on an oscillating plate. J. Phys. Soc. Jpn.
1996, 65, 2068–2071.

158. John, K.; Thiele, U. Self-ratcheting Stokes drops driven by oblique vibrations. Phys. Rev. Lett. 2010, 104, 107801.
159. Pucci, G.; Fort, E.; Ben Amar, M.; Couder, Y. Mutual adaptation of a Faraday instability pattern with its flexible boundaries in

floating fluid drops. Phys. Rev. Lett. 2011, 106, 024503.
160. Pucci, G.; Ben Amar, M.; Couder, Y. Faraday instability in floating liquid lenses: The spontaneous mutual adaptation due to

radiation pressure. J. Fluid Mech. 2013, 725, 402––427.
161. Blamey, J.; Yeo, L.Y.; Friend, J.R. Microscale capillary wave turbulence excited by high frequency vibration. Langmuir 2013,

29, 3835–3845.
162. Bostwick, J.B.; Steen, P.H. Dynamics of sessile drops. Part 1. Inviscid theory. J. Fluid Mech. 2014, 760, 5–38.
163. Chang, C.T.; Bostwick, J.B.; Daniel, S.; Steen, P.H. Dynamics of sessile drops. Part 2. Experiment. J. Fluid Mech. 2015, 768, 442–467.
164. Ebata, H.; Sano, M. Swimming droplets driven by a surface wave. Sci. Rep. 2015, 5, 8546.
165. Hemmerle, A.; Froehlicher, G.; Bergeron, V.; Charitat, T.; Farago, J. Worm-like instability of a vibrated sessile drop. EPL 2015,

111, 24003.
166. Dahan, R.; Martin, L.L.; Carmon, T. Droplet optomechanics. Optica 2016, 3, 175–178.
167. Maayani, S.; Martin, L.L.; Kaminski, S.; Carmon, T. Cavity optocapillaries. Optica 2016, 3, 552–555.
168. Kaminski, S.; Martin, L.L.; Maayani, S.; Carmon, T. Ripplon laser through stimulated emission mediated by water waves. Nat.

Photonics 2016, 10, 758–761.
169. Childress, L.; Schmidt, M.P.; Kashkanova, A.D.; Brown, C.D.; Harris, G.I.; Aiello, A.; Marquardt, F.; Harris, J.G.E. Cavity

optomechanics in a levitated helium drop. Phys. Rev. A 2017, 96, 063842.
170. Pototsky, A.; Bestehorn, M. Shaping liquid drops by vibration. EPL (Europhys. Lett.) 2018, 121, 46001.
171. Valani, R.N.; Slim, A.C.; Simula, T. Superwalking droplets. Phys. Rev. Lett. 2019, 123, 024503.
172. Benjamin, T.B.; Ursell, F.J.; Taylor, G.I. The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc.

Lond. A 1954, 225, 505–515.
173. Henderson, D.M.; Miles, J.W. Single-mode Faraday waves in small cylinders. J. Fluid Mech. 1990, 213, 95–109.
174. Miles, J.W. Nonlinear Faraday resonance. J. Fluid Mech. 1984, 146, 285–302.
175. Jiang, L.; Ting, C.L.; Perlin, M.; Schultz, W.W. Moderate and steep Faraday waves: Instabilities, modulation and temporal

asymmetries. J. Fluid Mech. 1996, 329, 275–307.
176. Shats, M.; Xia, H.; Punzmann, H. Parametrically excited water surface ripples as ensembles of oscillons. Phys. Rev. Lett. 2012,

108, 034502.
177. Punzmann, H.; Shats, M.G.; Xia, H. Phase randomization of three-wave interactions in capillary waves. Phys. Rev. Lett. 2009,

103, 064502.
178. Xia, H.; Maimbourg, T.; Punzmann, H.; Shats, M. Oscillon dynamics and rogue wave generation in Faraday surface ripples. Phys.

Rev. Lett. 2012, 109, 114502.
179. Turton, S.E.; Couchman, M.M.P.; Bush, J.W.M. A review of the theoretical modeling of walking droplets: Toward a generalized

pilotwave framework. Chaos 2008, 28, 096111.
180. Tarasov, N.; Perego, A.M.; Churkin, D.V.; Staliunas, K.; Turitsyn, S.K. Mode-locking via dissipative Faraday instability. Nat.

Commun. 2016, 7, 12441.
181. Oh, J.M.; Ko, S.H.; Kang, K.H. Shape oscillation of a drop in ac electrowetting. Langmuir 2008, 24, 8379–8386.
182. Maksymov, I.S.; Greentree, A.D. Dynamically reconfigurable plasmon resonances enabled by capillary oscillations of liquid–metal

nanodroplets. Phys. Rev. A 2017, 96, 043829.
183. Maksymov, I.S.; Pototsky, A. Excitation of Faraday-like body waves in vibrated living earthworms. Sci. Rep. 2020, 10, 8564.
184. Pototsky, A.; Maksymov, I.S.; Suslov, S.A.; Leontini, J. Intermittent dynamic bursting in vertically vibrated liquid drops. Phys.

Fluids 2020, 106, 124114.
185. Pototsky, A.; Oron, A.; Bestehorn, M. Equilibrium shapes and floatability of static and vertically vibrated heavy liquid drops on

the surface of a lighter fluid. J. Fluid Mech. 2021, 922, A31.
186. Tsai, C.S.; Mao, R.W.; Tsai, S.C.; Shahverdi, K.; Zhu, Y.; Lin, S.K.; Hsu, Y.H.; Boss, G.; Brenner, M.; Mahon, S.; et al. Faraday

waves-based integrated ultrasonic micro-droplet generator and applications. Micromachines 2017, 8, 56.
187. Shats, M.; Punzmann, H.; Xia, H. Capillary rogue waves. Phys. Rev. Lett. 2010, 104, 104503.
188. Rajchenbach, J.; Leroux, A.; Clamond, D. New standing solitary waves in water. Phys. Rev. Lett. 2011, 107, 024502.
189. Huh, C.; Scriven, L.E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 1971,

35, 85–101.
190. Schwartz, L.W.; Eley, R.R. Simulation of droplet motion on low-energy and heterogeneous surfaces. J. Colloid Interface Sci. 1998,

202, 173–188.
191. Bestehorn, M.; Pototsky, A. Faraday instability and nonlinear pattern formation of a two-layer system: A reduced model. Phys.

Rev. Fluids 2016, 1, 063905.
192. Neumann, T.V.; Dickey, M.D. Liquid metal direct write and 3D printing: A review. Adv. Mater. Technol. 2020, 5, 2000070.
193. Boyd, B.; Suslov, S.A.; Becker, S.; Greentree, A.D.; Maksymov, I.S. Beamed UV sonoluminescence by aspherical air bubble collapse

near liquid–metal microparticles. Sci. Rep. 2020, 10, 1501.



Sensors 2022, 22, 3921 45 of 45

194. Liu, T.; Sen, P.; Kim, C.J. Characterization of nontoxic liquid–metal alloy Galinstan for applications in microdevices. J.
Microelectromech. Syst 2012, 21, 443–450.

195. Lu, Y.; Hu, Q.; Lin, Y.; Pacardo, D.B.; Wang, C.; Sun, W.; Ligler, F.S.; Dickey, M.D.; Gu, Z. Transformable liquid–metal nanomedicine.
Nat. Commun. 2015, 6, 10066.

196. Henderson, B.; Khodabakhsh, A.; Metsälä, M.; Ventrillard, I.; Schmidt, F.M.; Romanini, D.; Ritchie, G.A.D.; te Lintel Hekkert, S.;
Briot, R.; Risby, T.; et al. Laser spectroscopy for breath analysis: Towards clinical implementation. Appl. Phys. B 2018, 124, 161.

197. Hayes, D.; Matsukevich, D.N.; Maunz, P.; Hucul, D.; Quraishi, Q.; Olmschenk, S.; Campbell, W.; Mizrahi, J.; Senko, C.; Monroe, C.
Entanglement of atomic qubits using an optical frequency comb. Phys. Rev. Lett. 2010, 104, 140501.

198. Sletten, L.R.; Moores, B.A.; Viennot, J.J.; Lehnert, K.W. Resolving phonon Fock states in a multimode cavity with a double-slit
qubit. Phys. Rev. X 2019, 9, 021056.

199. Tabrizian, R.; Ghatge, M. Phononic Frequency Synthesizer, U.S. Patent 10985741B2, 18 May 2018.
200. Ansari, A.; Park, M. Piezoelectric Resonant-Based Mechanical Frequency Combs. WO2019217668A1, 14 November 2019.


	Introduction and Motivation
	Optical Frequency Combs
	Electronically Generated Acoustic Frequency Combs
	Phononic Frequency Combs
	Micromechanical Resonator-Based Phononic FCs
	Phononic Frequency Combs in Bulk Acoustic Wave Systems

	Brillouin Light Scattering-Based Frequency Combs
	Magnonic BLS-Based Frequency Combs
	Plasmon-Enhanced Brillouin Light Scattering Effect
	Application of Plasmon-Enhanced BLS in Frequency Comb Generation

	Frequency Comb Generation Using Oscillations of Gas Bubbles in Liquids
	Physical Origin of the Acoustic Nonlinearity of Gas Bubbles
	Acoustic Frequency Comb Generation Using Oscillations of Multiple Gas Bubbles in Water
	Spectrally Wide Acoustic Frequency Combs Generated Using Oscillations of Polydisperse Gas Bubble Clusters in Liquids
	Temporal Stability of Bubble-Based Acoustic Frequency Combs

	Acoustic Frequency Comb Generation Using Vibrations of Liquid Drops
	Experimental Demonstration of AFC Generation Using Faraday Waves
	Existence Conditions for Faraday-Wave-Based Acoustic Frequency Combs
	Linear Response and Higher Harmonics
	Nonlinear Response and the Amplitude Modulation
	Faraday Wave Liquid–Metal Drops at Room Temperature

	Conclusions and Outlook
	References

